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Ideal magnetohydrodynamics
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0.1 Numerical method

Induction equation with artificial viscosity

dB

dt
= (B ·r)v �B (r · v)
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art
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Ideal MHD

ØFully ionised plasma

ØZero resistivity & infinite conductivity
ØIons & electrons are tied to the magnetic field
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Density (rendered) + Magnetic field lines
Ideal MHD.  Left: Initial conditions.  Right: at ρmax = 10-9g cm-3



Ideal MHD: Artificial Resistivity
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Ideal MHD: Artificial Resistivity
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Ø Artificial resistivity (Tricco & Price, 2013)

Ø Always applied if there is a gradient in the magnetic field (i.e. |∇B | > 0 )

Plasma �:

� =
Pgas

Pmag
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2
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Daniel’s artificial resistivity
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Daniel’s artificial resistivity
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Divergence Cleaning

hr ·B
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0.2 Pseudo-Code

Grid code:
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Calculate forces using cell i, j, k

and neighbours
enddo

enddo
enddo
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i

Uses updated forces to calculate
new scalar quantities at
cell-centre

enddo
enddo

enddo
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Ø Artificial resistivity (Price, et al, submitted)

Ø Always applied for non-zero velocity
Ø Less resistive that that from Tricco & Price (2013)
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Wurster, Bate, Price & Tricco (2017)

With artificial viscosity
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Daniel’s artificial resistivity
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Daniel’s artificial resistivity
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and neighbours
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enddo
enddo
do k = 1,N

k

do j = 1,N
j

do i = 1,N
i
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new scalar quantities at
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Motivation: Non-ideal MHD

10Orion Molecular Cloud                                              HL Tau
Ionisation fraction ~ 10-14 ~ 10-12



Non-ideal MHD

ØPartially ionised plasma

ØNon-zero resistivity & conductivity
ØIons, electrons & neutrals behaviour is environment-dependent
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B
ρ

Ohmic Resistivity                          Hall Effect                            Ambipolar Diffusion
(ion-electron drift)                         (ion-neutral drift)



Non-ideal MHD

Adapted from Wardle (2007)
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Non-ideal MHD: Hall effect

Image credit: Tsukamoto et al (2017); see also: Braiding & Wardle (2012a,b) 13

The impact of the Hall e↵ect during cloud core collapse: implications for circumstellar disk evolution 3

Figure 1. Schematic diagram of the central structure of a collapsing magnetized cloud core. A protostar resides at the center and a

circumstellar disk surrounds it. A flattened disk-like structure, so called “pseudo-disk” surrounds the circumstellar disk at the “neck” of

the hourglass-shaped magnetic field. The midplane of the pseudo-disk corresponds to the current sheet. The direction of the Hall-induced
magnetic field drift and Hall-induced rotation are drawn by assuming ⌘H < 0.

Table 1. List of the models that we used. The model names, the relative angle ✓ between the initial magnetic field and the initial angular

momentum vector of the cloud core, and whether the Hall e↵ect is included (“Yes”) or not (“No”) are tabulated.

Model name Relative angle ✓ With Hall e↵ect

Model0 0� Yes
Model45 45� Yes

Model70 70� Yes

Model90 90� Yes
Model110 110� Yes

Model135 135� Yes
Model180 180� Yes

Model0NoHall 0� No
Model45NoHall 45� No

Model70NoHall 70� No

Model90NoHall 90� No

P is the Plank mean opacity, e = ⇢u+ 1
2
(⇢v2 +B2) is the

total energy where u is the specific internal energy, and �
is the gravitational potential. The parameters ar and G are
the radiation and gravitational constants, respectively.

To close the equations for radiation transfer, we employ
the flux-limited di↵usion (FLD) approximation,

Fr =
c�

R⇢
rEr, �(R) =

2 +R

6 + 2R+R

2
,

R =
|rEr|

R⇢Er
, Pr = DEr,

D =
1� �

2
I+ 3�� 1

2
n⌦ n, � = �+ �

2
R

2
,

n =
rEr

|rEr|
,

where R is the Rosseland mean opacity.

We use the smoothed particle hydrodynamics (SPH)
method (Monaghan & Lattanzio 1985; Monaghan 1992)
in our simulations. The numerical code has been devel-
oped by the authors and been used in our previous stud-
ies (e.g., Tsukamoto & Machida 2011, 2013; Tsukamoto
et al. 2013b, 2015c). The ideal MHD part was solved
with the Godunov smoothed particle magnetohydrodynam-
ics (GSPMHD) method (Iwasaki & Inutsuka 2011). The
divergence-free condition is maintained with the hyperbolic
divergence cleaning method for GSPMHD (Iwasaki & Inut-
suka 2013). The radiative transfer is implicitly solved with
the method of Whitehouse & Bate (2004) and Whitehouse
et al. (2005). We treated the Ohmic and ambipolar dif-
fusions with the methods described in Tsukamoto et al.
(2013a) and Wurster et al. (2014), respectively. Both the
di↵usion processes were accelerated by super-time stepping

c
� 0000 RAS, MNRAS 000, 000–000
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14
Density (rendered) + Magnetic field lines
During first core phase.   Left: ideal MHD.  Right: non-ideal MHD



Ideal vs non-ideal MHD

15
Density (rendered) + Magnetic field lines
During first core phase.   Left: ideal MHD.  Right: non-ideal MHD
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Non-ideal MHD

NICIL: Wurster (2016)                                                 Marchand+ (2016)
NICIL v1.2.3 is implemented in the current git version of Phantom

10-10

10-5

100

105

100 105 1010 1015 1020 1025
η

 (s
)

nH (cm-3)

First collapse
Isothermal

First core
Adiabatic

Second
collapse

Second core
Adiabatic

ηAD

ηΩ

-ηH
ηH

ηAD Duffin & Pudritz 2008

ηΩ Machida et al. 2007



Non-ideal MHD in Phantom: the NICIL library

1717

ØPhantom includes the NICIL code (Wurster 2016)
ØPublically available at https://bitbucket.org/jameswurster/nicil

ØWhen compiling, set NONIDEALMHD=yes
ØRealistic defaults are set; these will self-consistently calculate the non-ideal coefficients
ØFully parameterisable
ØPrimary parameters are included in Phantom’s .in file
ØAll parameters are included at the top of nicil.F90
ØImportant parameters that can be modified

ØIncluded non-ideal MHD terms (default = ohmic + Hall + ambipolar)
ØIonisation source (default = cosmic rays + thermal)
ØCosmic ray ionisation rate (default = 10-17 s-1)
ØElements that can be thermally ionised (cannot be modified through .in file)
ØGrain properties (default = fixed size of 0.1µm; alternate is MRN, but is slow)

ØImportant values are summarised in the dump files and the .ev file
ØCan optionally preselect non-ideal MHD coefficients (preferably for tests only)

ØAll coefficients and required variables are calculated at runtime



Implementation
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ØContinuum equations

ØSPMHD equations
1042 J. Wurster, D. J. Price and M. R. Bate
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∣∣∣∣
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,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,
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2
b

× ∇aWab(hb)
]
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where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using
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2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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dBi
a

dt
= − 1

!aρa

∑

b

mb

[
vi

abB
j
a ∇j

a Wab (ha)

−Bi
av

j
ab∇j

a Wab (ha)
]

+ dBi
a

dt

∣∣∣∣
non-ideal

+ dBi
a

dt

∣∣∣∣
artificial

,

(37)

∇2#a = 4πGρa, (38)

where we sum over all particles b within the kernel radius, Wab is
the smoothing kernel, vab = va − vb, !a is a dimensionless correc-
tion term to account for a spatially variable smoothing length ha

(Monaghan 2002; Springel & Hernquist 2002), the stress tensor is
given by

Sij ≡ −
(

P + 1
2
B2

)
δij + BiBj , (39)

and dvi
a

dt
|artificial is the artificial viscosity, as described in Price &

Federrath (2010).
Numerically, ∇ · B is not exactly zero. However, this term is

inherently contained in the conservative form of the momentum
equation (i.e. the first line of equation 36). When 1

2 B2 > P , the
inclusion of this term can trigger the tensile instability, which causes
particles to unphysically clump together. To correct for this, a simple
approach is to subtract the source term [i.e. the second line of
equation (36) using f = 1; Børve, Omang & Trulsen 2001]. Since
subtracting the term violates energy and momentum conservation
(but only in so far as the divergence term in (36) is non-zero; e.g.
Price 2012; Tricco & Price 2012), Børve, Omang & Trulsen (2004)
introduced a variable f such that 0 < f < 1

2 . However, Tricco &
Price 2012 showed that numerical artefacts can be produced for f <

1, thus suggested f = 1 everywhere. Since the tensile instability is
only triggered for 1

2 B2 > P , we use

f =

⎧
⎪⎨

⎪⎩

1; β ≤ 1,

2 − β; 1 < β ≤ 2

0; β > 2,

(40)

where β = 2P

B2 is the plasma beta; f is calculated for each particle, a,
using only the properties of particle a. This allows the source term
to be removed where it is problematic, but maintains energy and
momentum conservation elsewhere. The function 1 < β ≤ 2 allows
a smooth decrease between the two extremes, and to avoid sharp
jumps when β ∼ 1. To avoid confusion with the Hall parameters,
βe, β i and βg, we will always use β with no subscript to refer to the
plasma beta.

We adopt the usual cubic spline kernel, with hfac = 1.2 in (35)
specifying the ratio of the smoothing length to the particle spac-
ing, equivalent to ∼58 neighbours (Price 2012). Finally, the mag-
netic field has been normalized such that vA ≡ B/

√
ρ (see Price &

Monaghan 2004). We solve (38) following Price & Monaghan
(2007) at short range, with a k-d tree algorithm similar to that
described in Gafton & Rosswog (2011) used to compute the long-
range gravitational interaction in an efficient manner.

To calculate the non-ideal MHD terms in (37), we follow the
procedure described in Wurster, Price & Ayliffe (2014). First, the
current density, J ≡ ∇ × B, is calculated using the difference op-
erator (cf. Price 2010, 2012):

Ja = 1
!aρa

∑

b

mb (Ba − Bb) × ∇aWab(ha). (41)

The general non-ideal MHD term is then calculated using the con-
jugate (i.e. symmetric) operator,

dBa

dt

∣∣∣∣
non-ideal

= −ρa

∑

b

mb

[
Da

!aρ2
a

× ∇aWab(ha)

+ Db

!bρ
2
b

× ∇aWab(hb)
]

, (42)

where Da is defined for each non-ideal MHD term as

DOR
a = −ηOR Ja, (43)

DHE
a = −ηHE Ja × B̂a, (44)

DAD
a = ηAD

(
Ja × B̂a

)
× B̂a. (45)

Once Ja is calculated, Da can be calculated without knowledge of
any of particle a’s neighbours. Although this algorithm is the same
as in Wurster et al. (2014), here we self-consistently calculate the
resistivity coefficients as described in the previous sections rather
than defining them as constants for the entire simulation. Therefore,
no a priori knowledge is required of which term is dominant. This
algorithm has been thoroughly tested for ambipolar diffusion with
constant resistivity in Wurster et al. (2014); given the non-diffusive
nature of the Hall effect, we present the results from two tests in
Appendix C1.

We compute the artificial resistivity term (Price & Monaghan
2004, 2005) in (37) using

dBa

dt

∣∣∣∣
artificial

= ρa

2

∑

b

mb (Ba − Bb)

[
vB

sig,a

ρ2
a

r̂ab · ∇aWab(ha)
!a

+
vB

sig,b

ρ2
b

r̂ab · ∇aWab(hb)
!b

]
, (46)

where vB
sig =

√
c2
s + v2

A is the signal velocity, set to the fast mag-
netosonic speed. Each particle has its own αB, set using the switch
described in Tricco & Price (2013):

αB = min
(

h|∇ B|
|B|

, 1.0
)

, (47)

where the magnitude of the gradient matrix is computed from the
2-norm (Tricco & Price 2013). This ensures that resistivity is only
strong where there are strong gradients in the magnetic field. The
Ohmic diffusion resulting from the artificial resistivity term for a
given particle a is given by

ηa
art ≈ 1

2
αa

BvB
sig,aha. (48)

We compute this at each step in the calculation and compare it to
the physical diffusion coefficients to ensure that physical resistivity
dominates.

Finally, we control the divergence of the magnetic field using the
constrained hyperbolic divergence cleaning scheme described in
Tricco & Price (2012). Importantly, this treatment of the magnetic
field evolution is completely general as in Price et al. (2012) and
Bate, Tricco & Price (2014), unlike the Euler potentials method
used by PB07.
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0.1 Numerical method

Induction equation with artificial viscosity

dB

dt
= (B ·r)v �B (r · v)

+ r⇥ ⌘art (r⇥B)

Induction equation with artificial viscosity and nonideal MHD

dB

dt
= (B ·r)v �B (r · v)

+ r⇥ ⌘art (r⇥B)

+ r⇥ ⌘OR (r⇥B)

+ r⇥ ⌘HE

h

(r⇥B)⇥ B̂
i

+ r⇥ ⌘AD

nh

(r⇥B)⇥ B̂
i

⇥ B̂
o

1



Implementation
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0.2 Pseudo-Code

Density Loop:

do i = 1,N
do j = 1,N

neigh

Using j, calculate density of i
Using j, calculate current density, J = r⇥B, of i

enddo

Using new density of i, calculate ⌘
nimhd

enddo

Force Loop:

do i = 1,N
Calculate Ji ⇥Bi and (Ji ⇥Bi)⇥Bj

do j = 1,N
neigh

Calculate Jj ⇥Bj and (Jj ⇥Bj)⇥Bi

Using j, calculate dB/dt
non-ideal

of i
enddo

Calculate non-ideal timesteps

enddo

Step Loop:

do i = 1,N
Updated magnetic field of i, using ideal, non-ideal and artificial terms

enddo

2



ØTimestepping:

ØPhantom includes super-timestepping
(Alexiades, Amiez & Gremaud 1996) 

ØRight: cpu-hours required for the 106 particle 
models with µ0=5 in Wurster, Price & Bate (2016)
ØNon-ideal MHD is slightly slower for t < tff, and much slower for t > tff
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0.1 Numerical method

Induction equation with artificial viscosity

dB

dt
= (B ·r)v �B (r · v)

+ r⇥ ⌘art (r⇥B)

Induction equation with artificial viscosity and nonideal MHD

dB

dt
= (B ·r)v �B (r · v)

+ r⇥ ⌘art (r⇥B)

+ r⇥ ⌘OR (r⇥B)

+ r⇥ ⌘HE

h

(r⇥B)⇥ B̂
i

+ r⇥ ⌘AD

nh

(r⇥B)⇥ B̂
i

⇥ B̂
o

Timesteps

dtCourant = Cc
h

vsig

dtnimhd = Cni
h2

|⌘|

1



Conclusions

ØArtificial resistivity is required to stabilised magnetohydrodynamics equations
ØIdeal MHD is a poor approximation for modelling molecular clouds or protoplanetary discs
ØNon-ideal MHD requires an assumption of chemistry
ØThe non-ideal MHD coefficients are not dependent on neighbours
ØThe non-ideal MHD contribution to the magnetic field evolution is dependent on neighbours
ØNon-ideal MHD introduces a diffusion timestep∝h2, hence can be computationally expensive
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