For Future Release

(Mail me if you need any of these now).
(1) Working binaries and fortran code for 64-bit machines.
(2) Working binaries for Macs (I actually develop the code on a Mac)

24 September 2008 (Current release)

This is a major update in techniques, which I hope to write up, but for the moment should be quoted as Naylor (in prep). (1) I use a new normalisation, which retains the mass function in the grids, but then normalises the grid to sum to one between the brightest and faintest datapoints. This avoids the problem of the normalisation going infinite if the isochrone is vertical.
(2) To generate the uncertainties I now use the uncer method (replacing bootstrap), for which there is a brief description. Its faster and more accurate.
(3) The calculation of the expected value of tau^2 has been improved, and is now done in a program called tau2, which replaces tau. The old estimate became increasingly poor as the number of free parameters increased. (4)

19 February 2008

(1) A correction to Example 2. The extra uncertainty to be added to the colour was given as 0.03, it should be 0.042. Both the web-page and the sample files have been updated to reflect this change.

21 August 2007

(1) V vs V-I for the Geneva isochrones.
(2) V vs B-V for the Siess and Baraffe isochrones.
(3) The option to use Bessell et al (1998) colour and bolometric corections.
(4) Grid now imposes the upper limit on tau-squared to be the tau-squared of the best fitting data point (i.e. that with the lowest tau-squared) plus some value. We do this so that if a different normalisation for tau-squared is used, which efectively adds a constant to all the tau-squared values, the answer remains the same. With the chi-squared-like normalisation the lowest tau-squared value was so close to zero this has little effect on the fits.

05 June 2007

(1) The Padova option was using the z=0.004 tracks from the Cioni et al (2006) papers, not as stated on the web pages Girardi et al (2002). The code has been changed so the web page is correct, and the web page now explicitly states its the z=0.019 models.

03 October 2006

(1) Corrected a problem whereby if the mass-range you requested outran that available in the isochrones for model numbers greater than 20 (i.e. those which come ready calibrated in colour and magnitude), you got some strange low-level effects in the 2D ischrones.
(2) Updated Example 1 so the numbers are correct for the new code (the differences are within the uncertainties).
(3) Added .in files to Example 1, which contain the precise inputs needed to run the programs.

30 September 2006

(1) Corrected bundle so it includes files which are soft links on my machine.
(2) Compiled all software statically, to improve portability.