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Abstract

In this thesis, an assessment is made of the value of optical CMDs as a useful diagnostic

of the accretion properties of young stars. An analysis has been made of the phenomena that we

observe and their effect on the position of stars in the CMD. Limitations and potential biases have

been identified and evaluated.

Variability causes some luminosity spread at a given colour in optical CMDs. A detailed

characterisation of variability has been performed which places strong constraints on the magni-

tudes and the timescales on which the variability is seen. On timescales . 15 minutes, almost

no variability is detected (at levels greater than ≈ 0.2%) in the i band for a sample of ≈ 700

disc-bearing young stellar objects (YSOs). This suggests that the variability predicted by some

accretion shock models is either very weak or not present. On hours to days timescales the optical

variability in most stars is well described by a simple power law. The amplitude of the variability,

a ∝ f −k, where f is the frequency of the variability in days. Disc-bearing and discless YSOs

exhibit median values of k of 0.85 ± 0.02 and 0.95 ± 0.03 respectively, the uncertainity being

the error on the median. The power law is valid up to a certain timescale (tmax) at which point

the variability amplitude does not increase any further. tmax is found to be 1.50 ± 0.07 days and

1.41 ± 0.10 days for disc-bearing and discless stars respectively. Disc-bearing stars show greater

variability amplitudes than the discless stars. However, it is notable that the variability timescale

and power spectrum exponent are remarkably similar. This implies that the amplitude of the vari-

ability is driven by the physics of the underlying process, but that the timescales are instead driven

by geometric effects.

For disc-bearing stars, the highest amplitude variables are the accreting stars, which often

appear to vary in the CMD along lines that correspond to changes in accretion luminosity. Four

disc-bearing stars (approximately 0.5% of the disc-bearing sample) in Cep OB3b show extreme

variability on timescales of years. Three (possible EXor candidates), show long-timescale changes

that have a dramatic effect on their CMD position. However their small numbers mean that the

overall impact on the CMDs of young associations is small. Variability on timescales of the

rotational period and shorter adds uncertainty to age estimates of individual stars that are calculated

by comparison with PMS models.

Having provided a detailed description of variability and its impact on the CMD, it is clear

that there are further significant mechanisms that affect the positions of YSOs in the CMD. I

show that the spread in luminosity seen in the Orion Nebula Cluster and NGC 2264 could not be

explained by accretion at rates of Ṁ ≥ 5× 10−4 M� yr−1 occurring within the protostellar phase of

YSO evolution. Thus it appears that CMDs are not a useful diagnostic for study of the accretion

histories of YSOs.

The wavelength dependence of the extinction by dust within the inner regions of YSO discs

is shown to differ from that seen in the ISM. Typically the wavelength dependence of the extinction

is given by RV ≈ 5 - 8, compared with the value of RV ≈ 3.1 typical of the ISM. The interpretation

is that grain growth has occurred. The location of this material within the ‘snow line’ implies that
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grains have coalesced rather than simply gaining an ice mantle. This is evidence for the beginning

of planet formation. The effect of the high value of RV on the CMD is to add additional uncertainty

of . 0.1 mag to photometric measurements that have been corrected for the effects of extinction.

Accretion luminosity is shown to be the dominant signal in the luminosity spread seen in

CMDs of young associations. Stars which exhibit excess flux in the U band or Hα are displaced in

CMD space. The accretion vector is shown to be a significant blueward shift in colour accompa-

nied by a modest brightening in the g, g− i CMD. Accretion results in a luminosity spread as stars

are displaced blueward below the PMS locus. This effect is not seen in non-accreting disc-bearing

stars. Examination of the underlying excess luminosity spectrum for 15 accreting stars shows

that the colour of the emission excess is not consistent across the sample. Thus to quantify the

effect of accretion luminosity on CMD positions for individual stars, moderate resolution spectra

are required with a large range in wavelength. This accretion luminosity may systematically bias

estimates of PMS ages. A simple mitigation is to exclude accreting stars from age analysis. U

band and Hα flux excesses are shown to vary independently by ≈ 1 dex on timescales shorter than

the rotation period of the star. The relation between U band flux excess and veiling at 7000Å

also appears to be variable. This implies that single epoch measurements of these parameters will

add an uncertainty of ≈ 1 dex on accretion rates derived from them. Accretion rates derived from

either U or Hα excess should be calculated from a mean of several photometric measurements,

separated by significant fractions of the rotation period of the star. In most stars, the veiling at

7000Å is shown not to be a good measure for the calculation of the accretion rate.

Despite providing a detailed characterisation of phenomena that influence the positions of

YSOs in the CMD, there exists some residual luminosity spread at a given Teff that cannot be

explained by variability on any timescale, extinction uncertainties or accretion luminosity. This

residual spread should provide an opportunity to study an as-yet uncharacterised aspect of young

stars.
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7.1 Relationship between TiO spectral index and measured g − i for discless template

stars. The (blue) circles are stars with AV < 0.05 according to Hillenbrand (1997).

The black line is a second order polynomial fit to these points. The (red) crosses

are stars with AV > 0.05. The dashed lines are the measured g − i colour excesses

which are attributed to extinction-reddening. Stars which show a g − i excess are

corrected for extinction and reddening using the wavelength dependent extinction

relation of Fitzpatrick (1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 The spectra of the selected discless template stars are shown, corrected for red-

dening and normalised to 1.0 at 7000Å. The correlation between the depth of TiO

absorption bands with the gradient of the spectra (increasing with reducing Teff) is

clear. The range of spectra shown here correspond to 1.26 < (g − i)0 < 3.06. . . . 145

7.3 g, g− i colour-magnitude diagram showing the positions of the template stars (red

circles) compared with the rest of the ONC population (grey dots). The templates

have been corrected for the effects of extinction and reddening, based on their

spectroscopic TiO index. The black dashed line is a linear fit to the template stars. 146

7.4 A grid of values showing the χ2 fitting statistic as a function of template and ex-

tinction, (Ai) for one example star in my sample (Star 50).The y-axis shows the

iterative step in Ai running from -0.5 (top) to 4.0 (bottom). The x-axis corresponds

to the template number, running from hotter (left) to cooler (right). White areas

show regions of the χ2 space that return negative veiling, an un-physical situation

that rules them out of the fitting. The colour scaling corresponds to log10 χ
2. Visu-

ally this reduces the contrast between good and poor fits, however it is necessary

to illustrate the large range of χ2 values returned. The best-fit solution in this case

is template 79 (g − i = 1.83), Ai = 0.3 and a veiling flux at 6805Å of 1.41x10−25

erg cm−2 s−1 Hz−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 ‘Best-fitting’ models of template, extinction and veiling for four target stars. The

dark blue line is the target spectrum, the green line is the best-fit template spec-

trum. The light-blue line is the residual (assumed to be the accretion spectrum)

and the black line is the boxcar smoothed residual against which χ2 is measured.

The red line is the complete model spectrum, comprising the extincted template

plus the smoothed accretion spectrum. The top two panels show stars which show

optical veiling and also show accretion luminosity excess in their photometry (left

panel - star 14, right panel - star 50) . The lower two panels show stars with discs

which do not have photometric excesses consistent with accretion (left panel - star

62, right panel - star 155). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1 g, g − i CMD of all stars in our field of view with clean photometry (unflagged

and S/N ≥10). The black (solid) lines show 1, 10 and 100 Myr isochrones from

the models of Bell et al. (2014). Red (dashed) lines show (from right to left)

evolutionary tracks for single stars of mass 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5

and 2.0 M�. The sample is limited at the faintest g magnitudes by S/N and a the

brightest magnitudes by saturation. . . . . . . . . . . . . . . . . . . . . . . . . . 154



LIST OF FIGURES 17
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Kóspál et al. (2011) [VSX J205126.1+440523], Coffey et al. (2004) [XZ Tau N],

Kun et al. (2011b) [PV Cep]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



List of Tables

2.1 Key parameters for clusters selected in this study. . . . . . . . . . . . . . . . . . 62

2.2 Parameters for accreting models plotted in Fig. 2.9 . . . . . . . . . . . . . . . . 74

3.1 Summary of observations made and collated as part of this study. . . . . . . . . . 82

3.2 Variability parameters derived through model fitting of YSO population SF data.

See section 3.4.1 for details. Note that tmax has been converted to days and c is

expressed as S (τ) (not log10S (τ) as shown in the plots). . . . . . . . . . . . . . 96

4.1 Star ID numbers assigned in this study, stellar coordinates and literature YSO

classifications (from Megeath et al. 2012) for all stars in the spectroscopic sample.

N: Naked photosphere, D: Circumstellar Disc, P: Protostar. . . . . . . . . . . . . 106

4.2 Central coordinates in each field of view for INT pointings . . . . . . . . . . . . 108

4.3 Filters and exposure times used for each of the cycled INT pointings . . . . . . . 109

5.1 Derived parameters for CMD variability for stars in the ONC. Each parameter

has a mean value quoted with its standard error. The standard deviations of each

parameter across the samples are also shown. . . . . . . . . . . . . . . . . . . . 121

6.1 Key parameters for stars which show variability in extinction. Ai is that measured

in Chapter 7 at a single epoch and varies from this value. Spectral types are from

Hillenbrand et al. (2013). The fraction of the SED variability described by the

FPC is shown in column 6. In all of these stars, the variability due to the FPC is

dominant, comprising > 96% of the variability observed. . . . . . . . . . . . . . 132

6.2 Derived extinction parameters for ‘variable extinction’ stars. AV and AB are found

by linear interpolation of extinctions in the INT WFC filters. Note that all of the

RV values are ‘greyer’ than that typically adopted for the ISM (RV ≈ 3.1). . . . . 134

6.3 Comparison of the spectroscopically derived Ai with the Peak-to-peak inner-disc

extinction for the four ‘extinction variable’ stars. For stars 62 and 66, the over-

all extinction for the star can be entirely explained by the circumstellar material.

For stars 133 and 152, approximately 25% of the observed extinction can be at-

tributed to inner circumstellar material, the rest being due to the ISM or the outer

circumstellar regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

22



LIST OF TABLES 23

7.1 Best-fit parameters determined for stars with discs in the ONC based on the spec-

troscopic fitting procedure. The last column defines the accretion status of each

star based on U band and Hα excess flux found in Chapter 8. ‘acc’ denotes accret-

ing stars, ‘non-acc’ denotes non-accreting stars. . . . . . . . . . . . . . . . . . . 151

8.1 Mean colour excess and 1σ limits for all discless stars in our sample . . . . . . . 159

9.1 Key parameters for stars showing correlated U excess and veiling behaviour . . . 178

9.2 Key parameters for stars showing uncorrelated U excess and veiling behaviour . . 178

9.3 Estimated stellar masses and accretion rates for stars with extracted excess lumi-

nosity SEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



Declaration

This thesis contains work published or pending publication as papers. The results and techniques

of Chapter 2 have been published in MNRAS, Volume 434, Issue 2, pp. 966-977. Chapters 3 to

10 contain work that will be published in the near future.

The photometric observations taken with the Wide-Field Camera on the Isaac Newton Tele-

scope and the spectroscopic observations taken with AF2/WYFFOS on the William Herschel Tele-

scope were obtained by Nathan Mayne, Tim Naylor, Jon Rees and myself. The rest of the work

presented in this thesis is my own.

The Isaac Newton Telescope and the William Herschel Telescope are both operated on the

island of La Palma by the Isaac Newton Group (ING) in the Spanish Observatorio del Roque de

los Muchachos of the Institutio de Astrofisica de Canarias.

24



Acknowledgements

Matthew Bate once made a comment which went something along the lines of “A PhD is all

done in the last 6 months anyway”. As I sit here in June adding the finishing touches prior to

submission, it certainly feels like that comment has some truth. Particularly as the reduction of

the simultaneous photometry and spectroscopy seemed to spring no-end of awkward challenges to

test the student.

Fortunately, I have had the support of an excellent supervisor. Tim Naylor has been con-

stantly supportive, particularly as I undertook my PhD whilst I and my family live 70 miles away

in Cornwall. Tim’s ability to ask the question that instantly illuminates the solution to a problem

has saved me from myself on many occasions. I offer him my most sincere thanks, both for giving

this ‘mature student’ an opportunity to fulfil a longstanding dream of studying for a PhD and for

letting me have the freedom to really find my own way through this project.

I also offer my thanks to the various scientists with which I have had the great fortune to

work. In no particular order, Nathan Mayne, Rob Jeffries, Cameron Bell and Jon Rees have been

a source of great inspiration and intellectual support. My thanks also go to all of the staff and

students at the Astrophysics department of Exeter University for their friendship and help.

On a more personal level, I have to thank my Mum and Dad, not least for the number of

times that they have stepped into the breach, looking after the girls so that I could concentrate on

my work. Also to my dearest wife Amy, who gave me the push to give up my perfectly good

job to become a student again, then supported me throughout. During the course of my PhD she

also gave me a second beautiful daughter and did me the greatest honour of becoming my wife.

Finally, I would like to dedicate this thesis to my two beautiful daughters, Eva and Flo, a constant

source of inspiration and mischief!

Darryl Sergison

Exeter, U.K.

8th June 2015

25



Chapter 1

Introduction

1.1 Star Formation - Clouds to Cores

Young stars are typically found associated with regions of cold and dense molecular gas. These

‘molecular clouds’ are found on a variety of scales from giant star forming complexes of ∼ 106 M�
and diameter 100 pc to clouds of < 1 M� and < 1 pc and smaller (Hartmann 1998). A significant

nearby example is the Orion nebula (Fig. 1.1) where an estimated 105 M� of molecular hydrogen,

helium and a small fraction of heavier elements is found within a region of diameter ≈ 10 pc.

Being only 400 pc from the Earth (Menten et al. 2007) allows study of the Orion nebula in greater

detail than most other star formation regions. At the centre of the molecular cloud is a large cavity

which contains a young star cluster containing more than 2000 stars within the central 0.15 pc

(Hartmann 1998). At the centre of the cluster is found the trapezium group of OB stars. The

cluster has an estimated age of between of 2 and 6 Myr (Mayne & Naylor 2008; Da Rio et al.

2010b; Bell 2012). As a result of its youth, most stars in the cluster are pre-main sequence stars

(Hillenbrand 1997) and the majority have dusty circumstellar discs (Haisch et al. 2001).

Giant molecular clouds (GMCs) probably form and evolve dynamically from compression

of the interstellar medium (ISM) by kinematic motions driven by gravity and turbulence (Bergin

et al. 2004; Dobbs et al. 2006; Dobbs & Bonnell 2007). The clumps and cores that form stars also

appear to be dynamic and evolving objects that behave somewhere between waves and discreet ob-

jects (Vazquez-Semadeni et al. 1996). H2 molecules are believed to form in the ISM by catalysed

combination of hydrogen atoms on the surface of interstellar dust grains (Hollenbach & Salpeter

1971). H2 will dissociate again through thermal collisions or exposure to ionising radiation. The

rate of H2 production compared with its dissociation reaches an equilibrium that depends on the lo-

cal conditions within the cloud. A density increase caused by dynamical compression of the cloud

will increase the collision probability between hydrogen atoms and dust grains, thus shifting the

equilibrium in favour of the production of H2. The molecules can only survive for any significant

time within the interiors of dark and translucent interstellar clouds (and possibly the deep interior

of diffuse clouds), which are simultaneously shielded from radiative dissociation by external UV

photons and are cold enough (. 20 K, e.g. Wilson et al. 1997) to avoid collisional dissociation

(Shull & Beckwith 1982). The observed low temperatures of molecular regions are explained as

the result of a thermal balance between heating by cosmic rays and cooling by molecular line
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1.1. STAR FORMATION - CLOUDS TO CORES 27

Figure 1.1: A VISTA near-Infrared image of the Orion Nebula with the Trapezium OB stars at its
core. Credit: ESO/J. Emerson/VISTA & R.Gendler. Acknowledgment: Cambridge Astronomical
Survey Unit

emission, the rate of which increases steeply with increasing temperature (de Jong et al. 1980).

If the density of the cloud falls, so will the collision probability between grains and atoms. Thus

the rate of dissociation will become larger than recombination and the equilibrium will favour

production of neutral hydrogen. As a result, the dynamic nature of cloud compression and the

resulting H2 production means that GMCs are relatively short lived. Observational evidence sug-

gests that clouds appear, form stars and disperse on dynamical timescales of just a few million

years (Elmegreen 2000).

The high density and low temperatures found in the cores of molecular clouds are essential

for the gas to collapse under gravity to form stars. The gas will be prevented from collapse as long

as its internal pressure is in balance with the gravitational force acting on the cloud. This balance

is described by the virial theorem which states that in static equilibrium

2Ek + Eg = 0 (1.1)

where Ek is the internal energy of the gas and Eg is the gravitational potential energy of the system.

In the case where

Ek < −
1
2

Eg (1.2)

the cloud will collapse. For a spherical cloud containing N particles, of total mass M, temperature

T , and with mean radius 〈R〉, if the gas is considered ideal and the density is uniform then the

condition for collapse becomes
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3
2

NkT <
GM2

〈R〉
, (1.3)

where k is the Boltzmann constant. This is known as the Jeans’ condition (Jeans 1902). For a

given temperature and density, the minimum mass required for a cloud to collapse is

MJ =

(
3NkT 〈R〉

G

) 1
2

. (1.4)

This is known as the Jeans’ mass. The number of atoms in a Jeans’ mass is

N =
MJ

mp µ
(1.5)

where mp is the atomic mass unit and µ is the mean molecular weight of the gas. The density of

the cloud is defined as

ρ =
4
3
π〈R〉3 (1.6)

Substituting Equations 1.5 and 1.6 into Equation 1.4 gives

MJ = ρ−
1
2 T

3
2

(
5k

Gµmp

) 3
2
(

3
4π

) 1
2

(1.7)

It is clear from this equation that both an increase in density or a decrease in temperature will

reduce the mass required for gravitational collapse. This explains why the cool, dense cores of

molecular clouds are the preferred regions for star formation. This equation also suggests that as

the cloud collapses (assuming the collapse is isothermal) its rising density means that the Jeans’

mass within the cloud will fall, leading to fragmentation and the possible formation of many

smaller cores from the initial larger cloud.

Protostellar formation

(Larson 1969) conducted some of the first successful 1D simulations of the collapse of molecular

clouds into protostars. Since 1969, star formation theory has developed significantly and now in-

cludes more complex physics such as magnetic fields and angular momentum evolution. However,

to provide a basic outline of protostellar formation, the results of the early work are outlined here.

As a cloud collapses, it will be heated by its own liberated gravitational energy. Initially the

heated gas is cooled through line and then dust continuum emission and will remain essentially

isothermal. As the collapse progresses, pressure gradients cause the density of the cloud to in-

crease preferentially toward the centre. As the density rises the gas becomes increasingly opaque

and enters a more adiabatic phase, which slows the rate of cooling and collapse. Fortunately, the

increasing density heats the dust in the cloud through collisions, allowing it to radiate and permit

further cooling and contraction. Eventually collapse in the centre of the cloud is halted by the

thermal pressure and it approaches hydrostatic equilibrium. This results in the formation of the

first hydrostatic core with a predicted temperature of ≈ 170K and a radius of ≈ 4 AU . Further

accretion and the development of shocks from infalling material cause the core to continue to be
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heated until the temperature reaches ≈ 2000 K, at which point the H2 molecules begin to dissoci-

ate. This process cools the cloud and permits its further collapse on timescales commensurate with

the free-fall time. The contracting core of the cloud dissociates its H2 and reaches temperatures

high enough to ionise hydrogen and helium gas, both of these processes further cool the cloud and

permit further collapse. Once the core of the cloud reaches a temperature of ≈20000 K it once

again reaches hydrostatic equilibrium with a radius close to that of a star. Accretion continues

both directly from its collapsing cloud and via a forming circumstellar disc onto the central object

which is now classified as a protostar.

Star formation timescales

The timescales for converting ISM material into new stars has been the focus of much research,

yet is still not well constrained and observational estimates are contradictory. The picture so

far described in this introduction of dynamic molecular cloud formation is principally based on

theoretical models and observations of GMCs. It suggests that star formation is a rapid process,

occurring in a given region on timescales commensurate with the sound crossing-time (which

might be ∼ 1 Myr for a region such as the ONC). This is a picture that is supported by studies

such as Elmegreen (2000), Hartmann et al. (2001), Ballesteros-Paredes & Hartmann (2007) and

Jeffries (2007) who infer rapid cloud evolution and cessation of star formation. However, this view

of rapid star formation in a given GMC is not one that is universally observed. Blitz et al. (2007)

find that molecular clouds in the Large Magellanic Cloud have lifetimes of 20 - 30 Myr and that

star formation could continue in a given cloud for ≈ 10 Myr. Populations of stars that appear to

be older than 8 Myr have been found in the Eagle nebula, apparently co-located with stars of age

1 Myr (De Marchi et al. 2013), implying an extended star formation history. Extended periods

of star formation have also been suggested in NGC 6306 (Correnti et al. 2012) and other nearby

associations (Palla & Stahler 2000, 2002). Elmegreen (2007) suggests that the discrepancy may be

due to there being a two stage process where initial rapid star formation and subsequent feedback

from ionising radiation and supernovae leads to fragmentation of the clouds, which then continue

to form stars at a slower rate.

1.2 Young low-mass stars (< 2 M�)

The newly formed protostars described in Section 1.1 are thought to be enshrouded in their ac-

creting envelopes for timescales of ∼ 5x105 years (Feigelson & Montmerle 1999; Hatchell et al.

2007). During this time they slowly contract as thermal energy is radiated away. Finally, the infall

slows as the environment around the protostar becomes depleted in gas and the photosphere of the

young star becomes visible, surrounded by an orbiting circumstellar disc. At this stage the star is

referred to as a pre-main-sequence (PMS) star.

The emerging star has a radius and luminosity that are significantly greater than its main

sequence counterpart of similar mass. For instance, a 1 M� star at an age of 1 Myr is predicted

to have a radius of 2.6 R� and a bolometric luminosity of 2.3L� (Siess et al. 2000). At this stage,

the energy source of the star is gravitational contraction, as opposed to the hydrogen burning seen
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Figure 1.2: Theoretical evolutionary tracks for stars with masses between 7.0 to 0.1 M� for solar
metalicity PMS stars. Isochrones at 1, 10 and 100 Myr are also shown (dashes). Credit: Siess
et al. (2000).

in main sequence stars. Once PMS stars become optically visible, theoretical models suggest that

they slowly contract whilst their surface temperature remains broadly stable. The timescale for the

contraction is defined by the Kelvin-Helmholtz timescale

tKH ≈
total gravitational energy

rate of energy loss
≈

GM2

RL
. (1.8)

For a 1 M� star at an age of 1 Myr, this corresponds to a timescale of ≈ 30 Myr. The con-

traction causes the luminosity to decrease, whilst the colours remain broadly unchanged. On the

Hertzsprung-Russell (H-R) or colour-magnitude diagram (CMD) this contraction follows a ver-

tical Hayashi track (Hayashi 1961). Stars of mass . 0.5 M� will continue on Hayashi tracks,

eventually reaching the zero-age main sequence (ZAMS) and the commencement of hydrogen

burning. More massive PMS stars will develop a radiative core prior to reaching the ZAMS and

will turn onto a horizontal Henyey track (Henyey et al. 1955), across the convective-radiative gap

(Mayne 2010). These evolutionary paths are shown in an H-R diagram in Fig. 1.2.

All PMS stars of less than 2 M� are expected to be fully convective at ages less than 10 Myr

(e.g. Siess et al. 2000; Baraffe et al. 2002). They also appear to exhibit very strong (kG) yet variable

magnetic fields, often with strong dipolar components (e.g. Johns-Krull 2007; Donati et al. 2007;

Yang & Johns-Krull 2011; Donati et al. 2013). The magnetic field reaches out into the inner

regions of the circumstellar disc and controls the final trajectory of material accreting onto the star

(see Section 1.2.3 for further discussion on accretion).

The presence of a strong magnetic field also results in cool spots on the surface of the star

where convection is locally suppressed by flux tubes emerging from the stellar surface. Large cool
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spots are observed that cover up to ≈ 40% of the surface of the star and with temperatures between

500 and 1500 K cooler than the surrounding photosphere (Bouvier et al. 1986b, 1995; Bary &

Petersen 2014).

1.2.1 Angular momentum evolution

It has long been known that PMS stars rotate remarkably slowly (. 10%) compared with their

break-up velocity (Vogel & Kuhi 1981; Bouvier et al. 1986a; Hartmann & Kenyon 1996). This is

contrary to the expectation that these stars might rotate close to breakup velocity, having recently

contracted from molecular clouds with much higher intrinsic angular momentum. Thus they ap-

pear to have shed large amounts of angular momentum in the protostellar phase. The primary

candidate mechanism for the removal of angular momentum is magnetic disc-locking between the

rotating star and its orbiting circumstellar disc (Koenigl 1991; Shu et al. 1994). In this scenario,

the magnetic field lines of the star thread the inner regions of the disc and magnetically couple

the star to orbiting material. The resulting torque prevents continued accretion from increasing

the rotational velocity of the star. The additional interaction of an accretion-driven wind may

also moderate the rotational velocity of the star (Fendt 2007; Romanova et al. 2008). The result

is a period distribution that ranges from approximately 2 to 10 days (Fig. 1.3). PMS stars that

still have their circumstellar discs tend toward the longer periods. Stars without discs are seen to

have ‘spun-up’ and exhibit rotational periods at the lower end of this range (Rebull et al. 2006;

Davies et al. 2014). Whilst this model appears to describe the behaviour of higher mass PMS stars

(> 0.25M�), there is a curious trend for lower mass stars to exhibit significantly higher rotational

velocities, even when they exhibit a significant circumstellar disc. (Choi & Herbst 1996; Stassun

et al. 1999; Herbst et al. 2002; Irwin et al. 2007). Following the dispersal of their discs, stars

continue to increase their rotational velocity until they reach the ZAMS and the onset of hydrogen

burning halts further contraction (see Bouvier et al. 2014, and references therein).

1.2.2 Circumstellar discs

A large fraction of the PMS stars in young clusters exhibit strong emission at mid-infrared wave-

lengths, λ & 2µm (e.g. Mendoza V. 1966; Lada & Wilking 1984; Lada et al. 2006; Megeath et al.

2012). Theoretical models (e.g. Whitney et al. 2003; Robitaille et al. 2006) and resolved observa-

tions at many wavelengths (e.g. Burrows et al. 1996; O’dell & Wong 1996; Dutrey et al. 1996, and

Fig. 1.4) suggest that this emission is caused by dust within a cool orbiting circumstellar disc.

During the protostellar phase, the infalling material possesses angular momentum. Thus

material does not generally fall directly onto the surface of the young star but to conserve angular

momentum it forms a dusty, gaseous rotating disc which orbits the young star. Buckle et al. (2015)

find that the median disc mass is . 1% of the mass of the star at ages beyond ∼ 105 yr. Many

observed discs have radii of several hundred AU (e.g. Burrows et al. 1996). The most successful

SED models suggest that discs are ‘flared’ with a scale height that increases with distance from

the star (e.g. Robitaille et al. 2006). The inner edge is typically truncated at a few stellar radii from

the star, and significant evidence exists that the inner edge is ‘puffed-up’ through heating by the
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Figure 1.3: Histograms showing the period distribution for ONC stars with masses exceeding
0.25M� (top) and with masses below 0.25M�. It is clear that the higher mass stars exhibit a
bi-modal period distribution and that the lower mass stars rotate faster and exhibit a unimodal
distribution. Credit: Herbst et al. (2002).

Figure 1.4: Resolved observations of circumstellar discs around PMS stars. Left: ALMA
sub-mm observations of the disc surrounding the young star HL Tauri. Credit: ALMA
(ESO/NAOJ/NRAO). Right: HST WFPC2 image of HH30, an edge-on PMS system. The cen-
tral star is hidden from view, but its light is visible, scattered off the upper and lower surfaces of
the disk. A bipolar outflow is also seen. Credit: Chris Burrows (STScI), the WFPC2 Science Team
and NASA/ESA.
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Figure 1.5: Fractions of stars with circumstellar discs as a function of cluster age. Credit: Bell
et al. (2013).

star (Kraus et al. 2009). Within the disk, collisional growth of small dust grains can occur, these

grains may eventually form into planetesimals and lead to the formation of planets (see Chambers

2010, for a review).

Fig 1.5 shows that ≈ 80% of discs are found to have dispersed on timescales of ≈ 10 −

12 Myr. Bell et al. (2013) finds a disc half-life of ≈ 5 − 6 Myr. Disc dispersal is driven by a

combination of photo-ablation, accretion onto the central star and planet formation (Hollenbach

et al. 2000; Meyer et al. 2007). The local star-formation environment may be significant in disc

dispersal, the presence of nearby OB stars likely increasing erosion by strong UV flux and winds

(e.g. Henney & O’Dell 1999; Clarke 2007).

1.2.3 Accretion

Active accretion is one of the key defining processes in young PMS stars. Material that has col-

lected in the disc is subject to viscous forces which cause it to fall inward through the disc toward

the star. Models and observations suggest that the accretion rate declines as a function of age, typ-

ical rates of Ṁ ∼ 10−7 − 10−8 M�yr−1 at 1 Myr, tail off to Ṁ ∼ 10−9 M�yr−1 or less after several

Myr (Gullbring et al. 1998; Hartmann et al. 1998; Barentsen et al. 2013; Venuti et al. 2014). The

mass accretion rate is also seen to vary with stellar mass as Ṁ ∝ M2
?, albeit with a large spread in

Ṁ at any given mass (Muzerolle et al. 2003; Mohanty et al. 2005; Natta et al. 2006) .

Gravitational potential energy liberated during the accretion process is observed in contin-

uum emission from soft-X-rays through to UV and optical wavelengths (e.g. Hartigan et al. 1989;

Gullbring et al. 2000; Kastner et al. 2002). Strong emission lines (such as Hα and Ca I) are also

observed in accreting YSOs, often with strong inverse-P-Cyg profiles, indicative of infalling gas
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Figure 1.6: A schematic of the accretion shock models of Matsakos et al. (2013). A strong mag-
netic field penetrates the chromosphere and confines the plasma in flux tubes. The accretion stream
impacts on the surface and pushes the chromosphere down to the point where the ram pressure is
equal to the stellar pressure. The black dashes show the region of interest in shock simulations by
Sacco et al. (2008); Orlando et al. (2010); Matsakos et al. (2013). Credit: Matsakos et al. (2013).

(Reipurth et al. 1996).

The current paradigm that explains the wide range of YSO observations is magnetospheric

accretion. In this model the rotating magnetic field of the star disrupts ionised material in the inner

disc, causing the disc to become truncated at a distance of a few stellar radii (e.g. Koenigl 1991;

Shu et al. 1994; Romanova et al. 2002). Material disrupted at the inner edge of the disc becomes

channeled by the magnetic field and falls along field lines onto the surface of the star. The free-

falling material impacts the surface at velocities of up to several hundred km s−1, shock-heating

the gas to temperatures of ∼ 106 K (Calvet & Gullbring 1998, see Fig. 1.6). Magnetic confinement

of the flow may cause the shocked gas to build into columns that rise several thousand km above

the chromosphere, periodically collapsing as opacity changes modulate the cooling rate (Sacco

et al. 2008; Orlando et al. 2010; Matsakos et al. 2013). Infalling material upstream of the shock

is heated by X-ray emission from the shock, and more importantly by adiabatic compression due

to the converging nature of the flow (Martin 1996). Emission from this optically thin infalling

gas is principally in the Balmer and Paschen continuum and lines. The high velocity of the gas

relative to the photosphere explains in-part the complex line morphologies (including inverse-P

Cyg profiles) observed (Walker 1972; Edwards et al. 1994; Kurosawa et al. 2006). X-ray emission

from the shock is also likely to heat the post-shock gas and the surrounding photosphere, leading

to thermal continuum emission with a characteristic temperature of Teff ≈ 6000 - 10000K (Calvet

& Gullbring 1998; Gullbring et al. 2000).

The magnetic field entrains the infalling gas, confining its impact to relatively small regions

of the stellar surface (e.g. Romanova et al. 2002, 2008). Depending on the strength of the stellar
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Figure 1.7: 3D MHD models of stable (left) and unstable (right) magnetospheric accretion. Red
lines are sample magnetic field lines. The green surface is a constant-density surface showing the
distribution of accreting gas. The black arrows indicate the rotational and magnetic field axes.
Credit: Romanova et al. (2008).

magnetic field, its alignment with the magnetic poles and its morphology, the accretion flows may

be stable and quasi-static on the surface of the star, or may alternatively be unstable and sweep

across the surface of the star in multiple streams. Fig. 1.7 shows 3D MHD models of these

unstable and stable configurations.

Many observations and models suggest that ≈ 10% of the accretion energy is ejected via

winds and outflows that occur along open magnetic field lines (Hartigan et al. 1995). The wind

launching mechanism is relatively poorly understood. If open field lines occur in the disc, close

to the co-rotation radius an X-wind Shu et al. (1994) may result. If the open field lines are lo-

cated over a wider area of the disc, a disc wind similar to that of Konigl & Pudritz (2000) is

produced. Jets and winds are are sometimes observed as Herbig-Haro objects (see Fig. 1.4) and

also contribute significantly to modification of emission line profiles.

YSO accretion rate variability on days-to-weeks timescales is observed in Hα line emission

(Costigan et al. 2014) and broadband flux (Venuti et al. 2014). This variability is attributed to

the interaction between the rotating magnetic field of the star and that of the disc (termed ‘mag-

netorotational disc instability’). Field lines connecting the star to the disc ’wind-up’ on rotational

timescales before reconnection events accelerate material along the field lines to accrete onto the

star (e.g. Romanova et al. 2011). On long timescales (τ >> rotation period), it is not clear whether

the majority of accretion occurs via a broadly smooth progression of material through the disc or

whether relatively quiescent periods are punctuated by episodes of high accretion rate. High-rate

bursts are certainly predicted from theory (see Fig. 1.8). Proto-planets within the disc are pre-

dicted to trigger instabilities that may lead to an ‘avalanche’ of material accreting onto the star

(e.g. Lodato & Clarke 2004). Planets may also cause dynamical modulation of accreting material

through the disc (e.g. Nayakshin & Lodato 2012). Gravitational and magneto-rotational instabil-

ity of the disc is also predicted to occur, both within dense regions of the outer disc and within

shielded regions of the inner disc (e.g. Gammie 2001; Vorobyov & Basu 2005; Martin et al. 2012;



1.3. CLASSIFICATION SCHEMES 36

Figure 1.8: Simulated lightcurves provided by models of accretion in which gravitational insta-
bility (top), planet induced thermal instability (middle) and inner-disc thermal instability (lower)
cause episodic bouts of accretion to occur between quiescent phases. Credit: Audard et al. (2010).

Vorobyov & Basu 2015). These and other mechanisms that are predicted to occur within the disc,

strongly suggest that accretion on long-timescales should be highly variable. Despite this, evi-

dence for variability on year and longer timescales is weak. Costigan et al. (2012) and Grankin

et al. (2007) study changes in spectral-line and broad-band emission respectively, but they find lit-

tle evidence of long-term accretion changes. However, when one moves to timescales of decades

and longer, a small number of YSOs (‘FUors’ and ‘EXors’) do exhibit large-amplitude variabil-

ity. Unfortunately though, these objects are largely discovered by chance. When statistics on

high-amplitude long-timescale variability have been obtained (Scholz et al. 2013; Contreras Peña

et al. 2014) they have been from IR data, which will be significantly biased toward deeply embed-

ded systems in the protostellar phase (ages <1Myr), have consisted of only two widely separated

epochs, and sampled only extreme variability.

1.3 Classification schemes

1.3.1 T Tauri stars: Hα emission

Optically visible young stars with masses M? < 2M� are often referred to as T Tauri stars after

the prototype of the class. T Tauri stars have traditionally been subdivided into two subclasses

based on the strength of Hα emission in their spectra. Classical T Tauri stars (CTTS) display a
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Figure 1.9: IPHAS colours of known T Tauri stars in IC 1396. Green squares are identified CTTS.
Red triangles are WTTS. The solid line shows the simulated main-sequence curve at the mean
reddening of the cluster (AV= 1.56). Dashed lines show the position of stars at increasing levels
of Hα emission as predicted by Drew et al. (2005). Grey dots show field stars in the region. The
arrow shows the reddening shift for an M0V object being reddened from AV = 0 to AV = 1.56.
Credit: Barentsen et al. (2011).

strong Hα emission line with an equivalent width defined as EWHα > 10Å. T Tauri stars with

EWHα < 10Å are referred to as weak-lined T Tauri stars (WTTS). CTTS have traditionally been

discovered though objective prism surveys (e.g. Herbig 1958; Babcock & Weaver 2000). More

recently, Hα narrowband surveys have been very successful in identifying emission line stars and

classifying them as CTTS (see Barentsen et al. 2011, and Fig. 1.9). WTTS have traditionally been

more difficult to identify, however the advent of X-ray surveys has allowed identification of these

stars based on their high levels of coronal activity and hence X-ray emission (e.g. Montmerle

et al. 1983; Getman et al. 2005). The two classifications are thought to broadly correspond to

accreting and non-accreting YSOs respectively, although the distinction is probably a poor one as

stars will fall onto a spectrum of accretion behaviour and hence the strict delineation is probably

inappropriate. Unfortunately for a given star, the Hα line is composed of emission and absorption

from many sources including the photosphere, chromosphere, accretion flows, winds and nebular

emission. Thus whilst useful for identifying populations of young stars, the EWHα of a given star

is a relatively poor descriptor of the individual properties of a system. Also, there is some evidence

that stars can change their spectral signatures significantly so as to change from WTTS to CTTS

on decade timescales (Littlefair et al. 2004; Hillenbrand et al. 2013).

1.3.2 YSO Classifications: mid-IR emission

Lada (1987) first proposed a classification scheme for young stars based on the slope of the spectral

energy distribution (SED) in the wavelength range 2.2 to 20 µm. This slope is determined by
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thermal emission from the circumstellar disc or infalling envelope, making it a powerful diagnostic

for the evolutionary status of young stars. He proposed a scheme of Class I, II and III YSOs based

on the spectral index α, defined as

α =
d log(λ fλ)
d log(λ)

(1.9)

where λ is the wavelength and fλ is the flux density. Andre et al. (1993) and Greene et al. (1994)

added the additional Class 0 and ‘Flat spectrum’ classifications. The classification scheme is

broadly considered to be an evolutionary progression. A summary, including model SEDs are

shown in Fig. 1.10.

Class 0: Undetectable at λ < 10µm
Class 0 sources are very young (< 104 yr) objects where the bulk of the final mass has

not yet been assembled. They feature strong sub-mm emission and remain undetected at

λ < 10µm, hence the α index is not strictly applicable to this class. These objects are still

deeply embedded within their infalling molecular envelope, however theory suggests that

even at this early stage a disc has formed and the core will be driving powerful bipolar

outflows (e.g. Machida et al. 2006, 2010; Bate 2011).

Class I: α > 0.3

As the infalling molecular envelope depletes in mass, the protostar begins to become visible

in the mid-IR. The peak of the SED is still at ∼ 100µm and is dominated by emission from

the envelope. At the Class I stage, the star is thought to have accreted most of its mass,

however a remnant envelope still exists. Class I spectra are broadly featureless due to the

strong continuum veiling from the envelope dust emission. Strong bipolar outflows are a

feature at this stage. The Class I stage is thought to last for ∼ 0.5 Myr (e.g. Hatchell et al.

2007), although the revised Class II lifetimes found by Naylor (2009) and Bell et al. (2013)

may indicate that is is closer to 1 Myr.

Flat spectrum: −0.3 < α < 0.3

Flat spectrum sources are thought to have broadly cleared their infalling envelopes, however

their spectra are strongly veiled at near-IR wavelengths due to the presence of hot circum-

stellar dust (Greene & Lada 2000). At this and later stages, accretion proceeds via the disc.

Class II: −1.6 < α < −0.3

Class II YSOs are dominated by photospheric emission that broadly approximates to a

black-body. In addition, a significant flux contribution is made by dust in the circumstellar

disc at wavelengths λ & 2µm. The YSO is typically modelled as an optically visible star

surrounded by an optically thick circumstellar disc. Evidence of outflow is still seen, how-

ever the infalling envelope that dominates earlier phases has dissipated. At this stage the

extinction to the star can be low so UV flux from accretion hot-spots may become visible.

Veiling (see Section 1.4.3) is often observed both at optical wavelengths by accretion lumi-

nosity and at IR wavelengths by dust emission from the disc. Class II YSOs share many
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characteristics with CTTS. The Flat-spectrum and Class II stages combined are thought to

last for ∼ 106 − 107 yr

Class III: α < −1.6

Flux from Class III YSOs is essentially limited to photospheric emission with a small con-

tribution from the highly active chromosphere. There is possible evidence for some weak

contribution from optically thin gas in the disc but IR emission from dust is all but absent.

At this stage the disc has dissipated and the remaining PMS star is possibly surrounded by a

planetary system and debris leftover from the planet forming process. Class III YSOs share

many characteristics with WTTS.

With the advent of large ground and space based IR surveys, comprehensive classifica-

tion schemes have been developed to identify and characterise YSOs using combined photometry

at wavelengths from 1 − 24µm. Gutermuth et al. (2008, 2009) present one notable example,

whereby YSOs are distinguished from contaminating sources such as nebular knots and back-

ground galaxies, whilst differentiating between evolutionary phases within the YSO classification

scheme. Some example classification cuts are shown in Fig. 1.11 for stars within the Orion star-

forming regions.

1.3.3 YSO Classifications: nomenclature used in this study

The classification schemes discussed here have dealt with young stars on the basis of their ob-

servable parameters. As there now exists a significant understanding of the drivers of these ob-

servational phenomena, I have chosen to use terminology in this thesis that relates to the physical

mechanisms rather than the observable traits. There is a traditional view that Class II and Class III

YSOs are equivalent to CTTS and WTTS respectively. However, a significant number of Class II

YSOs have been found that do not show evidence of accretion (e.g. Teixeira et al. 2012). There

also appears to be some evidence of ongoing accretion in a small subsample of Class III YSOs

(e.g. Rebull et al. 2002; Littlefair et al. 2004). This presumably implies that significant accretion

rates can still occur from dust-free circumstellar discs or that some substantial discs (possibly with

large central holes) remain undetected in near-IR photometric surveys. To clarify the physical

nature of the stars studied in this thesis I have referred to WTTS or CTTS stars as ‘non-accreting’

or ‘accreting’ stars respectively. Similarly, I have referred to flat-spectrum and Class II YSOs in

this thesis as ‘disc-bearing’ (although ‘dusty-disc-bearing’ might be more accurate) and Class III

YSOs are referred to as discless (after Cody et al. 2014). In the rare event that I describe a Class I

object, it will be referred to as ‘disc-bearing’, however a comment will be made on the protostellar

nature of the object if it is pertinent to the discussion. Fig. 1.12 illustrates the relationship between

the classifications and nomenclature that I have used in this thesis.

1.4 Measuring accretion rates

Understanding accretion rates is crucial to understanding how young stars are built and evolve. No

single method is entirely satisfactory when attempting to measure accretion rates as each method
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Figure 1.10: A representation of the YSO classification scheme. Left panels show the ideal SED
for YSOs at each stage of the scheme. Right panels show a schematic of the morphology of the
YSO at each stage. Credit: Andre (2011).
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Figure 1.11: IRAC and IRAC-2MASS colour-colour diagrams used to identify young stellar ob-
jects in the star-forming regions of Orion (upper panels) and reference fields (lower panels). The
coloured markers show identified protostars (Class 0, I and flat-spectrum sources) in red and Class
II YSOs in green and blue. Blue markers in the Class II sample indicate possible ‘transition’ ob-
jects, which may exhibit disc truncation at a larger radius than typical of Class IIs. This may be
indicative of disc clearing and reaching the end of the Class II phase. Black points are stars that do
not exhibit IR excess. Further details of the classification cuts may be found in Gutermuth et al.
(2008, 2009). Credit: Megeath et al. (2012).

Figure 1.12: The relationship between traditional young star classifications and the nomenclature
used in this thesis.
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employed has limitations and model dependencies. Circumstantial accretion indicators such as

the presence of mid-IR disc emission are sometimes used as a proxy for classifying the accretion

status of YSOs (e.g. Littlefair et al. 2011). However, it is not clear that disc presence alone is a

guarantee that accretion is ongoing (see Teixeira et al. 2012, and Chapter 8 of this thesis) and no

quantitative estimate of accretion rate may be made.

To obtain quantitative measures of accretion rate, three principal observational tools are

available for PMS stars at the Class II stage. Broadband UV flux may be measured in a wavelength

region that is typically dominated by accretion luminosity in low mass YSOs and may be achieved

through photometric measurements. The flux in emission lines such as Hα or Ca II, which is

associated with accretion flows and shocks are also valuable measures of accretion rate, although

calibration is required though modelling or comparison with other accretion measures. As well

as spectroscopic measurement of these line fluxes, Hα flux may be measured through the use of

narrowband photometry. A further estimate of broad-band accretion luminosity in the Paschen

continuum may be made by comparing the depths of photospheric absorption lines to that of a

template which is assumed to be free of accretion luminosity, a quantity known as veiling. These

quantitative accretion measures are discussed further in the following sections.

1.4.1 UV photometry

Much of the energy in the accretion flows that is thermalised in shocks near the stellar surface

is re-emitted as a hot ≈ 6000 − 10 000 K thermal continuum and in Balmer emission (Hartigan

et al. 1991; Calvet & Gullbring 1998). This flux is most effectively detected and measured using

U band photometry, as that is where its SED is intrinsically brightest. For low mass stars, the

photospheric luminosity in U is lower than at redder wavelengths, thus U band measurements

provide a greater contrast between the accretion luminosity (Lacc) and photospheric luminosity

(Lphot) than measurements at longer wavelengths. Fig. 1.13 shows a population of objects that are

anomalously bright in the U band compared with the main population in the Orion star forming

region.

Lacc may be used to calculate the mass accretion rate, Ṁ, by simple energy arguments

Ṁ =

(
1 −

R?
Rtrunc

)−1 LaccR?
GM?

∼ 1.25
LaccR?
GM?

. (1.10)

The factor
(
1 − R?

Rtrunc

)−1
is estimated to be ∼ 1.25 by assuming that the accreting gas falls onto the

star from the truncation radius of the disc at Rtrunc ≈ 5R? (Hartmann et al. 1998). This method

also relies on an estimate of the bolometric correction for the accretion luminosity to derive Lacc

from the U band flux. Gullbring et al. (1998) found a relation between Lacc and U band luminosity

(LU) defined by

log
(

Lacc

L�

)
= 1.09+0.04

−0.18 log
(

LU

L�

)
+ 0.98+0.02

−0.07. (1.11)

Venuti et al. (2014) derive a similar relation which estimates Lacc to be a factor of ≈ 2 to 4 greater.

This corresponds to a difference of ≈ 0.2 dex at the highest Ṁ rates (∼ 10−7 M�yr−1) and ≈ 0.6 dex

at the lowest Ṁ rates (∼ 10−10 M�yr−1). Uncertainties in U band flux estimates of Ṁ also hinge
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Figure 1.13: U − V,V − I colour-colour diagram of stars in the Orion flanking-fields. Note the
population of stars with U − V colours that are far above the main population and the ZAMS
model. These U band excesses cannot be explained by extinction and reddening as shown by the
extinction vector (arrow) corresponding to AI = 0.25. Credit Rebull et al. (2000).

on uncertainties in extinction and distance. Whilst in a given star forming association, the distance

is often well constrained, the extinction for individual stars is often difficult to calculate from

photometry due to degeneracy in the signatures of accretion luminosity and reddening. Spectra

that are simultaneously collected with U band photometry can break this degeneracy if a robust

estimate of Teff and extinction can be made from fluxes in the photospheric spectral lines. Fig 1.14

shows that in a given star forming region, accretion rates derived from U band fluxes are seen to

scatter by at least 2 orders of magnitude at a given mass. This scatter is likely to be the result of

both intrinsic accretion rate spreads, variability in accretion rate (∼ 0.5 dex according to Venuti

et al. 2014) and also uncertainties due to poor extinction correction.

1.4.2 Emission line flux

Muzerolle et al. (2003) developed models to measure Ṁ from high-resolution Hα line profiles for

low-mass stars and brown dwarfs in the range M? ≈ 0.02 − 0.14 M�. The models varied param-

eters such as stellar mass and radius, viewing inclination, and accretion rate. The accretion rates

modelled ranged from 10−12 < Ṁ < 10−9 M�yr−1. At higher accretion rates, strong stellar out-

flows contaminate the line profile and bias the result (Muzerolle et al. 2001; Kurosawa et al. 2006).

The use of spectroscopic line profiles in this way is useful as the results are not compromised by

uncertainties in extinction and distance.

Empirical relations between emission line fluxes and accretion rates derived using UV ex-

cess have also been found. Muzerolle et al. (1998) derive relations between Ṁ and the equivalent

width of Brγ and Paβ lines of hydrogen (see Fig. 1.15). Similar relations are found for other lines

of hydrogen and other elements such as Ca II and Na I (e.g. Muzerolle et al. 2001). Barentsen

et al. (2011) derive a relation between spectroscopically derived LHα and Lacc. This relation is
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Figure 1.14: Mass accretion rates calculated from U band fluxes in the nearby star forming regions
σ Ori (left) and NGC 2264 (right). In the left panel the different colours represent different disc
classifications. Red dots are Class IIs, green triangles are ‘Transition-discs’ and blue squares are
‘Evolved-discs’ (see Hernández et al. 2007, for more details on these classifications), arrows show
upper limits. In the right panel, orange dots and green triangles show stars identified by Stauffer
et al. (2014) whose variability is dominated by stochastic accretion bursts and variable extinction
respectively. Black dots are all other objects in the sample, arrows show upper limits. Credit:
Rigliaco et al. (2011) [left panel], Venuti et al. (2014)[right panel].

then used with photometrically derived LHα measurements from IPHAS survey data to estimate Ṁ

using equation 1.10. Manara et al. (2012) define a relation between U band derived Lacc and LHα

using photometry of the ONC from Da Rio et al. (2009).

1.4.3 Veiling

The addition of a smooth continuum to a stellar photospheric spectrum results in a reduction of the

equivalent width of photospheric absorption lines. This phenomenon is called veiling and makes

the lines appear weaker (see Hartigan et al. 1989, and Fig. 1.16). In YSOs a smooth continuum is

thought to result from accretion hot-spots (λ . 1µm) and thermal emission from the circumstellar

disc (λ & 2µm). There is also evidence of an additional (and unidentified) source of veiling at

wavelengths around λ ≈ 1µm (Fischer et al. 2011).

The veiling at a given wavelength is defined as

rλ =
fveil

fphot
, (1.12)

where fveil is the flux from the veiling continuum and fphot is the flux from the photosphere. The

veiling at optical wavelengths can be measured if the photospheric line flux (or equivalent width)

is compared with synthetic or observed templates of similar spectral type and surface gravity. For

measurement to be possible, the veiling continuum must be assumed to be smooth and free from

line emission. If the veiling continuum flux can be measured and is assumed to be entirely due

to accretion luminosity (as is often assumed at optical wavelengths), then a bolometric correction
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Figure 1.15: A comparison of Paβ and Brγ emission line equivalent widths with accretion rate.
Filled circles are accretion rates from blue spectra, crosses are from U band photometry. Credit
Muzerolle et al. (1998).

Figure 1.16: Spectra for RU Lup at two epochs with different levels of veiling. In the most veiled
phase, photospheric lines are noticeably weaker. Certain lines (marked with arrows) appear to
show line-filling as well as the addition of the continuum flux. Credit Gahm et al. (2008).
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can be applied to correct for unseen emission, providing an estimate of Lacc and hence Ṁ (e.g.

Hartigan et al. 1991; White & Basri 2003; White & Hillenbrand 2004). Unfortunately, the shape

of the accretion SED is poorly understood, with ‘hot slab’ models appearing to underestimate the

veiling at 7000Å by factors of ∼2. Herczeg & Hillenbrand (2008) estimate that a factor two error

in the bolometric correction could lead to an overall error in Ṁ of 0.3 dex. Veiling measurements

are complicated by the fact that at high accretion rates, the accretion continuum is unlikely to be

smooth and certain photospheric lines will be preferentially filled by line emission (Gahm et al.

2008; Dodin & Lamzin 2012a). In addition, one must be very careful when selecting templates

for PMS stars as the surface gravity is significantly different from (and in between) that of field

dwarfs and giants. Surface gravity differences have a significant impact on both continuum shape

and line depths, thus biasing veiling measurements.

1.5 Young star variability

Young stars show photometric variability at all wavelengths and on all timescales that have been

observed (e.g. Joy 1945; Montmerle et al. 1983; Bouvier et al. 1993; Herbst et al. 1994; Burning-

ham et al. 2005; Morales-Calderón et al. 2011; Cody et al. 2014; Rice et al. 2015). The variability

arises from a wide range of physical processes occurring on the stellar surface, within the magne-

tosphere, and in the disc and outflows. Fig. 1.17 shows a non-exhaustive selection of theoretically

postulated physical mechanisms that have been associated with YSO variability. Ultimately, a full

understanding of the time-domain behaviour of young stars is needed to inform models of their in-

teraction with surrounding discs, the accretion process, and the structure and geometry of star-disc

systems.

In Class III YSOs, the absence of a significant disc or accretion means that the optical

and near-IR variability is dominated by changing viewing angles of irregular distributions of cool

spots (similar to solar sunspots) on the surface of the rotating star (e.g. Bouvier et al. 1986b;

Stassun et al. 1999; Saunders et al. 2009). In addition, contributions to variability at optical and

shorter wavelengths have been attributed to chromospheric activity such as flares, analogous to

those seen on the Sun (Gahm et al. 1995; Guenther & Ball 1998; Uzawa et al. 2011). In Class IIIs,

the physical mechanisms driving the variability are located on or close to the surface of the star.

Thus the variability timescales found have typically been commensurate with the rotation period

of the star or shorter. It is likely though that some longer timescale variability may be associated

with Class III YSOs. Decade timescale magnetic cycles have long been studied on the Sun and

are now being identified and studied in other active stars (Lanza 2010). Whilst no photometric

evidence of magnetic cycles has been found for YSOs, magnetic field evolution on timescales of

years has been detected in spectropolarimetric observations of CTTS (Donati et al. 2012, 2011).

In addition, some evidence of significant spectroscopic changes have been observed in four WTTS

stars between observations made two decades apart (Littlefair et al. 2004). These observations are

explained through changes in accretion rate, despite their being little evidence of a circumstellar

disc in these stars.

In Class II YSOs the variability picture is far more complex. Fortunately however, this
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Figure 1.17: Non-exhaustive list of theoretical physical mechanisms that may be associated with
variability in YSOs.

complexity allows variability to be used as a diagnostic tool in investigating the nature of Class II

stars and their environments. Herbst et al. (1994) used UBVRI photoelectric monitoring data for

≈ 80 young stars collected over ∼ 10 years to characterise YSO variability. The sample included

stars brighter than V ≈ 14, thus limiting it to nearby stars of spectral type earlier than ≈M2. They

summarised some basic features of YSO variability and defined three main categories.

Type I: Cool spots
Type I variability is essentially that described for Class III YSOs, cool magnetically induced

spots rotating into and out of view. These variability events were often periodic and showed

typical amplitudes of a few tenths of a mag in V . Stars were seen to redden as they faded.

Lightcurve shapes were seen to change as spot patterns evolved but periods remained stable

over months or years.

Type II: Changes in veiling continuum
Type II variability was only seen in CTTS and generally showed irregular variability on

timescales as short as hours. Amplitudes were typically less than 1 mag in V , however oc-

casional events of up to 2.6 mag were observed. Periodicity was sometimes present with this

behaviour but was not as persistent as in Type I. The cause of the variability was attributed

to changes in accretion rate and small (0.3% of stellar surface) hot spots with temperatures

∼10 000K rotating into and out of view. The origin of the spots was attributed to magneti-

cally channelled accretion.

Type III: Unknown origin (but probably variable circumstellar obscuration)
Type III behaviour was generally irregular variations on timescales of days to weeks. The
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minima appeared to be asymmetric with faster declines than recoveries. Amplitudes were

typically less than 1 mag but variations as great as 2.8 mag were seen. Spectroscopically

the photospheric lines remained unchanged, however strengthening Hα was seen during

fades. Typically colours became redder during fade events, however in extreme fade events

a colour reversal towards the blue was seen. Linear polarisation was anti-correlated with

brightness.

The observationally based classifications defined by Herbst et al. (1994) have been investigated

by many authors to further develop models of the underlying physical processes. However, most

studies have either focussed on detailed measurements of individual objects, (perhaps using a wide

wavelength or cadence range) or more limited observations of larger stellar samples.

Bouvier et al. (1999) performed a one-month campaign, observing the CTTS AA Tau in

BVRI bands and with low-resolution spectra on timescales ranging from hours to weeks. AA Tau

exhibited deep quasi-periodic fading events that were accompanied by an increase in the equivalent

widths of the Balmer lines of hydrogen. The fades were interpreted as occultation events caused

by the presence of an orbiting magnetically induced disc-warp. The Balmer line EW increases

were attributed to suppression of the continuum rather than an increase in line flux.

Grankin et al. (2007) improved the long-baseline observational sample by collecting UBVR

lightcurves for 72 disc-bearing YSOs over ∼20 years. The variability that was observed strongly

implied that the vast majority of variability occurs on timescales shorter than one month, with only

smooth low-amplitude variations (possibly associated with changes in extinction) seen on longer

timescales.

Rucinski et al. (2008) dramatically increased the cadence range observed in a given object

with observations of TW Hya on timescales from 30 seconds to 8 years using broad-band space

and ground based monitoring. Some evidence of periodic behaviour with a period of 3.56 days was

identified at one epoch, however at later epochs a spectrum of unstable periods within the range of

2 to 9 days was observed. The detected periods had a tendency to progressively shorten with time

and the overall power spectrum of the variability suggest a combination of several mechanisms

dominated by accretion processes.

Alencar et al. (2010) studied high precision ‘white-light’ lightcurves of 83 CTTS stars in

NGC 2264 collected continuously for 23 days by the CoRoT satellite with a cadence of ≈8 min-

utes. The unbroken nature of these observations were instrumental in providing detailed morpho-

logical classifications for lightcurves on much shorter timescales than were previously possible.

61% of stars in of the sample exhibited some kind of periodic behaviour, 25% of which were

quasi-sinusoidal and attributed to modulation by cool spots (similar to Herbst et al. 1994, Type

I). Between 24 and 34% of stars in the sample exhibited quasi-periodic dips in their lightcurves,

analogous to those seen in AA Tau. Interestingly, stars with spot modulated lightcurves had a

similar distribution of periods to the AA Tau analogues. This is a curious result as the standard

disc locking paradigm might imply that stars with less accretion activity (and hence cool spot

dominated lightcurves) should be less likely to be disc locked and thus might be expected to rotate

more quickly than stars where the magnetosphere is able to actively disrupt the inner disc to create

an obscuring disc warp.
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Costigan et al. (2012) used high resolution spectroscopic time-series of 10 accreting stars

in the Chameleon I star forming region to investigate changes in accretion rate that might occur

over the course of 15 months. They derived accretion rates using equivalent widths of Hα and

Ca II emission lines. It appeared that the maximum variability in Ṁ was on the order of 0.37dex,

far below the scatter seen in typical accretion rate vs. stellar mass relations (Fig. 1.15). A major

portion of the variability was seen on timescales shorter than ≈ 10 days.

Cody et al. (2014) undertook a further 40 day set of CoRoT observations of NGC 2264

in 2011/2012. They observed 489 high-probability members of which 162 were ‘disc-bearing’

stars. A simultaneous campaign was undertaken for 29 days during this period using the 3.6µm

and 4.5µm channels on the Spitzer telescope. They developed two metrics to describe the degree

of periodicity(Q) and the flux asymmetry (M) within each lightcurve. They computed Q by first

searching for the strongest period present in the lightcurve using the autocorrelation technique

defined by McQuillan et al. (2013). They then folded the lightcurve on the strongest period and

assessed how close the lightcurve points were to the systematic noise floor before and after the

phased trend was subtracted

Q =
rms2

resid − σ
2

rms2
raw − σ

2
, (1.13)

where rmsraw and rmsresid are the rms values of the raw lightcurve and σ is the estimated uncer-

tainty. A low value of Q (. 0.15) is associated with well defined periodicity, such as an eclipsing

binary. A high value of Q (0.6 - 1) describes no detectable periodicity. Intermediate values of Q

describe quasi-periodic behaviour such as rotationally modulated accretion bursts or occultation

by disc warps. In addition, Cody et al. (2014) observed that many lightcurves are asymmetric

with respect to a reflection along the magnitude axis. Some stars show prominent downward flux

dips, while others have abrupt increases. The flux asymmetry metric (M) quantifies this asymme-

try, and was defined by first selecting the 10% highest and 10% lowest magnitude values in each

lightcurve, after removal of 5σ outliers. M was then calculated as

M = (〈d10%〉 − dmed)/σ, (1.14)

where 〈d10%〉 is the mean of all data in the top and bottom decile of the lightcurve, dmed is the me-

dian of the entire light curve and σ is its overall rms. Negative values of M indicate a lightcurve

which is predominantly in a faint state but brightens in bursts. Positive vales of M indicate a

lightcurve that is predominantly bright but appears to experience fading behaviour. M ≈ 0 indi-

cates no preference for a bright or faint state. Fig. 1.18 compares the measured Q and M metrics

for disc-bearing stars in the sample and classifies them as ‘periodic’, ‘quasi-periodic’ and ‘aperi-

odic’, and also classifies them as ‘bursting’, ‘symmetric’ and ‘dipping’. 21% of the disc-bearing

stars are found to be ‘dipping’ variables at optical wavelengths, slightly more than the 15% pre-

dicted by analysis of hydrostatic disc models by Bertout (2000). Whilst this study provided a

robust analytical method of classifying lightcurves using high-quality data, further follow-up is

required to interpret these classifications.

Stauffer et al. (2014) makes a thorough analysis of 23 stars which fall in the ‘bursting’
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Figure 1.18: Lightcurve morphology classes, based on periodicity (Q) and flux asymmetry (M)
metrics for optical light curves from CoRoT in a disc-bearing sample. Colour coding indicates the
variability classification chosen by eye, before statistical assessment. The eclipsing binary is not
strictly periodic because its lightcurve contains aperiodic fluctuations out of eclipse. Credit: Cody
et al. (2014).
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Figure 1.19: B band photometry of the outburst of FU Ori. Credit: Hartmann & Kenyon (1996)

category from the Cody et al. (2014) classifications. These light curves show many short (hours

timescale) brightenings with amplitudes generally in the range of 5% to 50% of the quiescent

level. These bursts appear in stochastic sequences and are found to appear most often in stars

with large UV excess. Thus these bursts are attributed to increases in mass accretion rates. This

lightcurve morphology is predicted for stars whose accretion is modulated by Rayleigh-Taylor

or magneto-rotational instabilities in the inner disk. (e.g. Romanova et al. 2012; Kurosawa &

Romanova 2013). They also find that lightcurve morphologies suggestive of stable funnel-flow

accretion occur only about 1/3 as often as light curves dominated by short-duration accretion

bursts and that the spectroscopic Hα profiles for these stars are generally centrally peaked (class I

in the scheme of Reipurth et al. 1996).

Long term, high-amplitude variability

The studies discussed so far have all found little evidence of significant variability on timescales

much longer than the typical rotation periods of young stars (∼ 10 days). This contrasts with

the behaviour observed for a small number (≈ 20) of YSOs which are classed as FUor or EXor

outbusting stars. FUors are believed to undergo accretion outbursts during which the accretion rate

typically increases from Ṁ ∼ 10−7 M�yr−1 to Ṁ ∼ 10−4 M�yr−1 and remains at a high level on

timescales of decades. The prototype of this class, FU Ori, brightened in magnitude from B ≈16.0

to 9.7 in 1937 and has since faded only very slowly (see Kenyon et al. 2000, and Fig. 1.19).

During their outbursts, classical FUors have bolometric luminosities of 100 - 300 L� and exhibit

F/G supergiant spectral types but with broad absorption lines compared with CTTS, and with little

indication of accretion. The two FUor objects with pre-outburst spectra appear to be similar to

CTTS in quiescence (Herbig 1977).

EXors are a loosely defined class of PMS stars that exhibit shorter (often repeating) out-

bursts, and appear to be associated with lower accretion rates. Outburst luminosities peak at a few
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tens of L�, and the colour evolution suggests that the brightening is due to a combination of emis-

sion from circumstellar dust that has been heated by accretion emission (Lorenzetti et al. 2012)

and clearing of circumstellar material (Kóspál et al. 2013). In quiescence, EXors display spectra

that are similar to CTTS (Parsamian & Mujica 2004; Herbig 2008).

The relationship between the two classes, and broader PMS evolution, is unclear. Theory

suggests that accretion may proceed in ‘episodic’ bursts on long timescales (see Section 1.2.3),

however current observations cannot tell us whether FUor and EXor phenomena are triggered by

the same physical mechanism or even occur within the same evolutionary phase.

1.6 The ages of young stars

A wide range of key properties of young stars are believed to evolve as a function of time. Thus,

being able to robustly measure the ages of young stars is critical to understanding physical pro-

cesses such as their internal structure, the evolution of circumstellar discs and the formation of

planets. Two key methods are available to estimate the ages of optically visible (principally Class

II and Class III) stars, both involving comparison of observations with theoretical models of stellar

evolution. The observable parameters that are predicted and used in age estimation are the colours

and magnitudes (as proxies for Teff and Lbol respectively), and abundance of Lithium in the stellar

photosphere.

1.6.1 Colour-magnitude diagrams

Colour-magnitude diagrams (CMDs) are the observer’s equivalent of the Hertzprung-Russell di-

agram. Instead of deriving astrophysical parameters (Teff and Lbol) from observed parameters,

we plot the observed colours and magnitudes and then compare them with theoretical model data

that has been transformed into the observational plane. Interior models are able to simulate the

evolution of young stars and predict Teff and Lbol at any given age (e.g. D’Antona & Mazzitelli

1994; Baraffe et al. 1998; Siess et al. 2000; Dotter et al. 2008). Stellar atmosphere models (e.g.

Castelli & Kurucz 2004; Allard et al. 2011) combined with filter and instrument system responses

then allow the prediction of photometric colours and magnitudes. Improvements to these mod-

els can also be made through calibration of isochrones against well characterised datasets, thus

overcoming some shortfalls known to exist in stellar atmosphere models (e.g. Bell et al. 2012).

Isochrones are then created which show the relation between colour and magnitude at a given age.

Systematic correction must be made to the models to allow for distance, binarity and interstellar

extinction and reddening. Often these parameters may simultaneously be derived as part of the

fitting process (Jeffries et al. 2007; Naylor 2009; Bell et al. 2013). Comparison of isochrones of

different ages with a stellar association that is assumed to be co-eval allows an estimate of the age

of the association to be made. Fig. 1.20 shows a CMD for the Pleiades compared with model

isochrones.

Many physical mechanisms can affect the colours of a star so that its position in the CMD

does not represent the intrinsic properties of the star. Improper extinction correction, cool spots on

the surface, an intrinsic radius difference, accretion luminosity, and contamination from additional
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Figure 1.20: A CMD of the Pleiades cluster compared with a simulated model population. Both
the data (red dots) and the model (black points) are by Bell et al. (2012). The model age is 135Myr,
is comprised of both single and binary stars and is corrected to a distance modulus of 5.61mag.

sources of emission may all affect the CMD position. The perturbing effects are particularly

potent in the youngest clusters (< 10Myr) as at this stage the stars may still be embedded within

the precursor cloud and surrounded by accretion discs. The effect of these factors on a population

of stars causes a spread in positions about the nominal PMS. Fig. 1.21 shows an example CMD for

the ONC, where considerable scatter is evident, some apparent members are even seen to be fainter

than the ZAMS. It is not clear whether all of the luminosity spread seen in young clusters is due

to contaminating effects or whether a real luminosity spread is in fact present. The confirmation

of a genuine luminosity spread in a PMS population would be important as it would imply that

the stars in a given region displayed a range of intrinsic radii. A radius spread that could explain

the luminosity spread in a cluster such as the ONC would have important ramifications for our

understanding of star formation and stellar evolution. It could imply that stars in a given region

have a significant range of ages and thus star formation had been proceeding in a given cloud for an

extended period of time (Palla & Stahler 1999). Alternatively, some theories suggest that episodic

bouts of accretion at high rates (Ṁ & 10−4M�yr−1) in the protostellar phase could reduce the

radius of a star, leaving it smaller and fainter throughout the PMS contraction phase (e.g. Baraffe

& Chabrier 2010).
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Figure 1.21: A V , V − I CMD of the ONC is compared with ZAMS, 0.1Myr, 1Myr and 10Myr
isochrones by D’Antona & Mazzitelli (1994) Filled circles indicate proper motion members.
Crosses are proper option non members. Open circles are stars without proper motion data. Credit:
Hillenbrand (1997).

1.6.2 Lithium derived (nuclear) ages

In low-mass stars, photospheric lithium depletion can be used as an alternative method of age

estimation to CMDs. Unfortunately though, lithium depletion ages do have the disadvantage that

they are only effective in stars older than ≈ 15 Myr.

Lithium depletion occurs as the abundance of lithium in the photosphere is a sensitive

function of the temperature at the core of a fully convective star. PMS contraction causes the

temperature in the core of the star to slowly increase as the star evolves along its Hayashi track.

Once core temperatures exceed ∼ 2.5 × 106 K (slightly below that required for hydrogen burning),

lithium is swiftly depleted via 7Li + p → 4He + α reactions. Depletion is predicted to begin at an

age of ∼10 Myr in stars of mass M? ≈ 0.6 M�. By the time that a coeval association reaches ≈ 15

Myr there is a sharp transition between faint stars that retain their initial lithium and only slightly

more luminous stars that are depleted. This boundary then steadily progresses to stars with lower

masses at greater ages. Measurement of the luminosity at which this ‘lithium depletion boundary’

is found can then be used to estimate the age of the association (Bildsten et al. 1997). Lithium

depletion ages are thought to be less model dependent than CMD ages as stellar atmospheric

models are not required to convert stellar parameters into the observational plane. However, at

young ages veiling can be a problem and must be carefully measured and accounted for to prevent

over-estimation of lithium depletion.
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1.7 The structure of this thesis

Colour-magnitude diagrams are widely used and powerful tools for the study of young stars. If

we are to make use of CMDs to study the underlying physical phenomena, it is important that we

fully understand how different physical processes drive the position of stars in the CMD. It is also

crucial that any limitations and potential biases are fully understood. In this context, the aim of

this thesis is defined as.

Aim: To explore poorly understood behaviours that are seen in colour-magnitude diagrams of

young star forming regions and use this new information to characterise the physical pro-

cesses that occur in the formation and evolution of young stars.

This thesis is the result of three distinct datasets, two of which explore different aspects of time-

series variability in young stars. The multi-epoch nature of these observations reflect the dynamic

and varying nature of the young stars under study and have been absolutely essential for charac-

terising the behaviour and physics that occur. To achieve the stated aim, the thesis has been split

into chapters that address the following aspects:

Chapters 3, 5 and 10 provide a thorough characterisation of photometric variability in YSOs and

investigates the effect that it has on the interpretation of physical phenomena and the posi-

tions of stars in the CMD. Variability in the i band is shown to be dominated by processes

that occur on timescales shorter than the rotation periods of YSOs (. 10 days). However,

almost no variability is detected (at levels above ≈ 0.2%) on timescales shorter than 30

minutes. Optical variability is also shown to be strongly dominated by phenomena that are

directly related to accretion luminosity (rather than the presence of discs alone). I identify

four high-amplitude long-timescale variable stars which do show significant variability on

timescales longer than the rotation period. One of these stars is a known FUor. The other

three are likely to be EXor outbursting stars. The frequency of these stars within the sample

imply that episodic accretion events may occur for a given disc-bearing star on timescales

of ≈ 2000 years.

Chapter 6 shows that models for ISM dust are unsuitable for correcting for the extinction of

YSOs with discs. The chromatic dependence of the extinction (RV ) measured in four YSOs

imply that dust grains within the inner regions the circumstellar disc have coagulated to form

larger grains. Extinction corrections made using values for RV typical of the ISM, would

underestimate the V band luminosity of these stars by between 0.05 and 0.1 mag, making

them appear fainter in the CMD.

Chapter 2 shows that the spread in luminosity seen at a given Teff in many young associations

cannot be explained by episodic accretion at high-rates occurring within the protostellar

phase of YSO evolution. It is clear that the CMD is not a useful tool for examining the

accretion history of young stars. This chapter almost entirely comprises Sergison et al.

(2013).
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Chapter 8 shows that accretion luminosity significantly shifts the positions of YSOs blueward in

the g, g− i CMD. This effect causes stars to appear older that they really are when compared

with non-accreting models and explains the presence of cluster members which fall below

the ZAMS in CMDs.

Chapter 9 assesses the limitations of accretion rate diagnostics by comparing simultaneous mea-

surements of U band excess, Hα excess and veiling at 7000Å for 15 stars in the ONC. Some

evidence is found for the presence of ‘cool’ veiling sources which may contaminate veiling

measurements that are used to estimate accretion rates.



Chapter 2

Using Lithium to probe the accretion
history of young stars

2.1 Introduction

The radius and luminosity of a pre-main-sequence (PMS) star are determined by the balance be-

tween its Kelvin-Helmholtz (K-H) contraction timescale and accretion activity. If accretion in-

creases the mass of the star more rapidly than the K-H timescale allows energy to be radiated away,

it will displace the star from thermal equilibrium and cause it to exhibit a radius and luminosity

that is inconsistent with non-accreting models (Tout et al. 1999; Baraffe et al. 2009; Hartmann

et al. 2011). As the age of a T Tauri star (∼ 2 − 5 Myr) can be less than the K-H timescale, its

radius and luminosity may still exhibit the influence of its prior accretion history in the embedded

phase.

The core conditions of an embedded protostar are potentially dependent on its mass ac-

cretion rate. Accretion of material with low internal energy (‘cold’ accretion), at rates in excess

of Ṁ ≥ 10−4 M� yr−1 may gravitationally compress the star, increasing its core temperature and

triggering the early onset of lithium burning (see Baraffe & Chabrier 2010, and Section 1.6.2).

Efficient large-scale convection (seen in PMS stars) would then rapidly deplete lithium throughout

the star. Observationally, this mechanism may be apparent in the later T Tauri phase as a surface

lithium abundance that is much lower than that expected for a given age. In order for lithium to be

depleted, a star must be radially compressed and hence the luminosity must be affected. As a re-

sult, lithium abundance in combination with luminosity may be a powerful observational signature

of heavy accretion during the early evolution of PMS stars.

Current support for past accretion at high rates in early stellar evolution stems from three

key observations.

1. Kenyon et al. (1990) find observational evidence for accretion at high rates contributing a

significant fraction of a star’s mass during the early ‘assembly phase’ of star formation.

Angular momentum conservation indicates that infall must proceed first onto a circum-

stellar disc. Some of this material may then fall onto the star in bursts, perhaps through

gravitational instability. Models by Vorobyov & Basu (2005) predict heavy bouts (Ṁ ≥

57
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Figure 2.1: Colour-magnitude diagrams of target cluster members in the Orion Nebula Cluster
(top) and NGC 2264 (bottom) compared with isochrones from Siess et al. (2000). Medium orange
(light grey) filled circles are confirmed single star members for which I have established veiling
and EW[Li]. Large green (dark grey) filled circles are spectroscopic binary stars (and confirmed
members) for which I have EW[Li] lower limits. Red crosses depict stars that I observed but were
identified as radial velocity non-members. The limits of the plot represent the photometric limits
imposed on my sample by (i) the sensitivity of the observations (ii) the Teff cuts applied for the
mass range of interest. Note: The three members that appear fainter than the 10 Myr isochrone in
the ONC are numbered, these are discussed in Section 2.5.4. ONC photometry from Hillenbrand
(1997), NGC 2264 photometry from Mayne et al. (2007).
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10−4 M� yr−1) of accretion lasting≤ 100 years, between quiescent periods (Ṁ ≤ 10−6 M� yr−1)

lasting 1−3 kyr. These timescales fit with current observations of YSOs, explaining both the

large population of low-luminosity class I sources and the small fraction of very luminous

sources (Enoch et al. 2009).

2. Many observations of both star-forming regions (see Elmegreen 2000, for a review) and

local molecular clouds (Ballesteros-Paredes & Hartmann 2007) appear to support the idea

that star formation occurs on the order of one to a few dynamical crossing times, which is

no more than a few Myr for a cluster such as the Orion Nebula Cluster (ONC) (e.g. Tan

et al. 2006; Jeffries et al. 2011). If this is true then the CMD luminosity dispersion observed

in young clusters (see Fig. 2.1 and McNamara 1976; Palla & Stahler 2000; Da Rio et al.

2010a), that is sometimes attributed to an age spread ≥ 10 Myr, may simply be evidence

of variation in radius (and potentially early accretion history) within a coeval population.

Jeffries (2007) find strong evidence for this in the ONC through statistical comparison of

rotational periods and v sin i.

3. Stars that are unusually depleted in lithium have been reported in the young clusters σ Ori

and the ONC (Palla et al. 2005, 2007; Sacco et al. 2007). Some of these lithium depleted

objects are also faint compared with the main cluster population. These characteristics are

explained by invoking ages that are at least 10 Myr older than the main cluster population.

However, past accretion at high rates may also be a consistent explanation and does not need

to invoke an age spread that is at odds with observations of star formation on a dynamical

crossing time.

Accreting material adds gravitational and thermal energy to the stellar interior at a rate

defined by Hartmann et al. (1997) as

dEacc

dt
= α ε

G M? Ṁ
R?

(2.1)

where ε ≤ 1 for material falling from within the star’s potential well and ε ≤ 0.5 for material

accreted through a boundary layer from a thin disc. α is the fraction of the accretion luminosity

absorbed by the star. Hartmann et al. (1997) suggest that α � 1, providing the fraction of the

stellar surface that accretion occurs over is small.

These qualitative ideas are supported by the results of numerical simulations, such as those

by Tout et al. (1999), Baraffe et al. (2009), Baraffe & Chabrier (2010), Hosokawa et al. (2011)

and Baraffe et al. (2012). Baraffe & Chabrier (2010) find that in the limit where α . 0.2 (termed

‘cold’ accretion) additional mass added to the star causes gravitational contraction, reducing over-

all luminosity and increasing core temperature and pressure (see Fig. 2.2). They also find that

this process significantly depletes lithium abundance in very young stars (from . 1 Myr) with

M? < 2 M�. The models suggest that a threshold accretion rate exists whereby detectable lithium
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depletion occurs if the accretion rate during bursts exceeds Ṁ ≥ 5 × 10−4 M� yr−1 and the initial

core mass of the proto-star has a mass ≤ 0.03 M� (see Fig. 2.2). For a 1 M� star, cold accretion

that is able to measurably change a star’s luminosity is found to always cause a measurable deple-

tion in lithium. In contrast, non-accreting models suggest that lithium depletion will occur much

later in the star’s evolution. Siess et al. (2000) and Baraffe et al. (2002) predict less than 20 per

cent lithium depletion for stars of age < 10 Myr at masses above 0.6 M�. Cold accretion models

make two clear predictions which I have tested by observation.

1. If accretion occurs at Ṁ ≥ 5 × 10−4 M� yr−1, some highly lithium depleted stars should be

found that cannot be explained by non-accreting evolutionary models.

2. In the cold accretion model, lithium depletion and low luminosity result from the same

mechanism, hence observed lithium depletion should correlate with the appearance of old

age in the CMD.

Section 2.2 describes the theoretical models and target selection. Section 2.3 details the

observations and data reduction process. Section 2.4 presents the results, including radial veloc-

ity, binarity, accretion veiling, v sin i, and lithium equivalent width. In Section 2.5, I discuss the

lithium and veiling results for each cluster and show that there is some correlation between lithium

abundance and CMD position. In Section 2.6, I conclude that there is no evidence for past episodes

of cold accretion at very high rates.

2.2 Theory and target selection

2.2.1 Theoretical lithium depletion

Fig. 2.3 shows simulated lithium isochrones based on several different interior models (Baraffe

et al. 2002; Siess et al. 2000) and illustrates the predicted equivalent width of the 6708 Å lithium

line (EW[Li]) as a function of (V − Ic)0 colour. The isochrones were derived using a colour – Teff

relation defined by observations of main-sequence stars (Kenyon & Hartmann 1995), curves of

growth from Jeffries et al. (2003) and an assumed initial lithium abundance of A(Li) = 3.3 on the

logarithmic scale of Anders & Grevesse (1989).

These models suggest that lithium depletion can be used as a sensitive indicator of age in

the mass range 0.4 < M? < 0.6 M� (3400 < Teff < 3800 K, 1.2 < (V − Ic)0 < 2.6). Outside this

range, PMS stars of lower mass than 0.4 M� reach the temperature for lithium burning too slowly

to show depletion in young (< 10 Myr) clusters. Stars of mass > 0.6 M� develop a radiative core

early and the base of the convective zone rises to regions of cooler temperature before all lithium

can be destroyed (Pinsonneault 1997), rendering lithium depletion ineffective as an age indicator

in young clusters.

Studies by Palla et al. (2005), Palla et al. (2007) and Sacco et al. (2007) derive ages based on

EW[Li] for individual stars in the ONC and σ Ori. They compare lithium depletion ages for each
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Figure 2.2: Evolution of radius (upper panel) and photospheric lithium abundance (lower panel)
as a function of time for Baraffe & Chabrier (2010) models with episodic accretion and reaching a
final mass of 1 M�. Short dash (red): Minit = 1 Mjup, Ṁburst = 1 × 10−4 M�yr−1,Nburst = 100
; dot (green): Minit = 10 Mjup, Ṁburst = 5 × 10−4 M�yr−1,Nburst = 20; dash-dot (black):
Minit = 20 Mjup, Ṁburst = 5× 10−4 M�yr−1,Nburst = 20; long dash (blue): Minit = 30 Mjup, Ṁburst =

5×10−4 M�yr−1,Nburst = 20; solid line (black) is a non-accreting model for a 1 M� star. All calcu-
lations are made with ∆tburst = 100 yr and ∆tquiet = 1000 yr. The grey shaded region encompasses
age estimates for the clusters studied in this paper
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Figure 2.3: Predicted evolution of the 6708 Å lithium line strength as a function of age and colour
in non-accreting models of PMS stars. The (red) hatched region is where I expect to find no stars
that are younger than 20 Myr, thus defining a ‘forbidden zone’ in the clusters based on current
age estimates. Stellar interior models are from Baraffe et al. (2002) and Siess et al. (2000), Teff to
(V − Ic)0 from Kenyon & Hartmann (1995), curves of growth from Jeffries et al. (2003), A(Li) =

3.3 from Anders & Grevesse (1989).

Table 2.1: Key parameters for clusters selected in this study.
Cluster Age Distance Number of Supporting

(Myr) modulus selected targets catalogues
Orion Nebula Cluster 2(1) 8.08±0.04(2) 115 Hillenbrand (1997)
NGC 2264 3(1) 9.37+0.15

−0.11
(1) 88 Mayne et al. (2007)

1Mayne & Naylor (2008)
2Menten et al. (2007)

star with that found using isochrone fitting in the CMD. A small number of objects are identified in

each cluster with anomalously low lithium line strength and in a few cases these correlate with an

older CMD age. The lithium-derived age spread found within the clusters is proposed to support

a slow star formation model. However, a small number of stars in the very low mass regime

(. 0.25 M�) are found in both the ONC and σ Ori with lithium depletion significantly greater that

expected from their CMD age.

Lithium depletion predicted from simulations of cold accretion may occur throughout the

mass range (see examples in Baraffe & Chabrier 2010, of stars with mass 0.1 and 1 M�) providing

the mass accretion rate during bursts Ṁ ≥ 5 × 10−4 M� yr−1. Conversely, age related depletion

is highly sensitive to mass and is shown by some stellar interior models to be suppressed in the

range 0.6 – 2 M� due to the onset of the radiative core. As a result, the region in EW[Li] vs.

colour space between 0.5 > (V − Ic)0 > 1.6 and below a EW[Li] of 0.35 Å is a ‘forbidden zone’

(shown in Figure 3) where low lithium objects should not exist according to non-accreting models.

Confirmed young cluster members found in the forbidden zone would offer strong support to cold

accretion theories, even if combined with modest age spreads.
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2.2.2 Target selection

The constraints established in Section 2.2 lead me to require nearby young clusters with ages <

10 Myr, where lithium depletion may identify PMS members with a high accretion rate history or

greater age. I also required comprehensive literature photometry and spectroscopy to characterise

the observed stars and allow construction of CMDs for isochronal age determination. The clusters

selected were the ONC and NGC 2264. Key parameters for these clusters are shown in Table 2.1.

Whilst previous age estimates for these clusters are around 2-3 Myr, recent work by Naylor (2009)

and Bell et al. (2013) suggest that PMS ages are underestimated by a factor 2, hence the clusters

may in reality be closer to 4-6 Myr.

To ensure a high fraction of stars studied were cluster members, indicators of youth such as

X-ray luminosity (Flaccomio et al. 1999, 2002), Hα emission (Dahm & Simon 2005) and optical

variability (Herbst et al. 2002; Lamm et al. 2004) were used in conjunction with position in colour-

magnitude space to select target stars. Importantly, photometric selection did not exclude members

with low luminosity. Instrumental constraints meant that selection was also weighted toward the

cluster centre, thus preferring a smaller number of objects close to the cluster core over a larger

number further out. This led to the selection of fewer stars per field, although those selected had

a higher probability of cluster membership. The final selection criteria for target stars was a cut

in Teff (determined via the colour - Teff relation of Kenyon & Hartmann 1995) in the range 3400-

− 4900 K, approximately corresponding to mass range 0.3 − 1.9 M� on the isochrones of Siess

et al. (2000) at an age of 3 Myr.

For the ONC, the selection deliberately targeted 7 literature cluster members that appear to

be fainter than the main population in the CMD. Since low-luminosity objects could result from

cold accretion, I shall investigate whether these objects also exhibit depleted lithium. Alternative

theories proposed to explain them include an age spread (Palla & Stahler 2000), as gravitationally

captured field stars (Pflamm-Altenburg & Kroupa 2007) or unusually blue objects exhibiting heavy

accretion veiling (Hillenbrand 1997). I shall refer to this population in the rest of the chapter as

the ‘low luminosity group’ (LLG).

2.3 Observations and data reduction

The observations were made on the nights of 2011 November 20, 21 using the AF2/WYFFOS

multi-object fibre-fed spectrograph on the 4.2 m William Herschel Telescope. The small fibres

module contains 150 fibres, each with a diameter of 1.6 arcsec. To avoid potentially damaging

fibre collisions, not all of the fibres may be placed on target stars in any given configuration, thus

limiting the actual number of targets to significantly less than 150 per field. This was an important

limiting factor in these observations due to the centrally condensed nature of the clusters studied.

I used an echelle grating and order sorting filter, centered at 6545 Å with a range of ∼ 390 Å. This

covered the wavelength range including Hα and the lithium doublet at 6708 Å. The signal-to-noise

(SNR) obtained ranged from 10-60 per 0.22Å wavelength step with a resolution, R ∼ 10 000.

Time, weather and observability constraints meant that for the ONC two ‘bright’ (1 x

2700 sec) and one ‘faint’ (4 x 2700 sec) setups were obtained and for NGC 2264 three ‘bright’
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(1 x 2700 sec) setups. The longer exposure times for the ONC were offset by the greater lev-

els of extinction to that cluster (Av ∼ 1.5 − 6, Hillenbrand 1997) as compared with NGC 2264

(Av = 0.37, Mayne et al. 2007). As a result, the limiting magnitude (corrected for extinction) for

both clusters was V0 ≥ 17. 115 stars were observed in the ONC and 88 in NGC 2264 (see Fig.

2.1).

Science frames were bias corrected using a median of 5 bias frames, with bad pixels iden-

tified from dark frames and subsequently masked. Tungsten lamp flat-fields were obtained before

each science exposure and used to trace the positions of spectra on the CCDs. Flat-field images

were also used to construct a weighting function for the optimal extraction routine. Arc lamp

exposures before and after each science frame were used to provide wavelength calibration. Sky

signal was subtracted using a minimum of 30 randomly placed sky fibres. The spectra were ex-

tracted and calibrated using an IDL based software pipeline provided by the Issac Newton Group

and optimised for the AF2/WYFFOS instrument1. Spectra were extracted using an optimal rou-

tine (see Horne 1986) which helps to minimise statistical noise. Once calibration and reduction

were complete the data were then interpolated and re-binned onto 10 000 logarithmically placed

wavelength steps.

2.4 Analysis

The 6708 Å lithium line equivalent width (EW[Li]) was measured with respect to a pseudo-

continuum. A wavelength step integration of the spectral line was performed between upper and

lower line limits defined to exclude other lines and to incorporate the entire line irrespective of

rotational broadening or binarity. At the resolution of my spectra, contamination of up to 20 mÅ

is likely to be present from a weak Fe I line at 6707.4 Å. Uncertainties due to the definition of the

pseudo-continuum and line limits were determined through repeat measurements to be ± 10 mÅ.

Photon noise in the signal contributes a further ± 10 − 60 mÅ, dependent on the SNR of the spec-

trum. The three uncertainties are combined in quadrature with that described in Section 2.4.2 for

accretion veiling.

As I am trying to measure the intrinsic EW[Li] for these stars, I must account for ‘veiling’

of spectral lines by continuum emission from magnetospheric accretion regions on the surface

of the star. This ‘veiling’ effect is well studied (eg. Gahm et al. 2008; Dodin & Lamzin 2012b)

and its effect has been corrected through the use of techniques outlined in Hartigan et al. (1989).

The accretion veiling contamination is visible as a weakening of absorption lines and hence has

a significant effect on the measurement of photospheric features such as the 6708 Å lithium line.

The effect of accretion veiling is to reduce measured EWs, hence without careful consideration

this could affect the apparent lithium abundance in the objects being studied. A correction for

the veiling flux is made assuming that it is a smoothly varying continuum over the spectral range

from 6390 to 6710Å. Within the narrow range specified this is probably a reasonable assumption

as determined by Hartigan et al. (1989) and Guenther & Hessman (1994). Before determining and

correcting for veiling, an assessment of radial velocity and v sin i must first be made between the

1http://www.ing.iac.es/astronomy/instruments/af2/reduction.html
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object and template stars in order to correct for wavelength and line profile differences. Typically

the unveiling process contributes an uncertainty of similar magnitude to the combination of the

other measurement uncertainties and is combined with them to provide an uncertainty estimate for

the final measurements.

2.4.1 Radial velocity and binary stars

Radial velocities (RVs) were determined using cross-correlation of spectral lines in the range

6385 − 6510 Å between each star and an arbitrary (low v sin i) single star reference in the field.

No absolute RV standards were measured as relative velocities are sufficient for veiling analysis

and cluster membership verification. Fig. 2.4 shows histograms of the derived radial velocity

distributions for both clusters.

The ONC displays a clear velocity grouping with a range of ± 10 km s−1 about the sample

median, this is consistent with previous RV studies of this cluster (e.g. Biazzo et al. 2009). 21

objects were identified with velocities outside the range specified and hence were removed from

further analysis of the sample. Many of these objects are likely to be unequal mass spectroscopic

binary cluster members that are unresolved from their cross-correlation function (CCF), however

without multi-epoch measurements I cannot be clear as to which objects fall into this category. As

a result I reject all stars with |RV| > 10 km s−1.

The NGC 2264 RV histogram shows that this cluster exhibits a non-Gaussian velocity dis-

persion with a range of ± 9 km s−1 about the median. This is consistent with previous measure-

ments by Fűrész et al. (2006). Nine objects in the NGC 2264 sample exhibit RV with magnitudes

outside the range defined above and hence have also been removed from further analysis.

Some of the identified RV outliers exhibit lithium absorption and Hα emission, so are likely

to actually be cluster members. I have been deliberately cautious in excluding potential non-

members though, as my aim was to set up a robust sample of members that does not use lithium

detection as a criterion. Exclusion of some stars which are actually members only affects the result

by reducing the sample size. Conversely, including a star that was not a member could seriously

bias the result.

Binary stars with resolved splitting in spectral lines cause significant difficulties with ac-

cretion spectrum fitting. Potential binaries were identified since they exhibit multiple peaks in the

CCF and were removed from the data set before the veiling analysis. Examples showing single

and binary star CCFs are shown in Fig. 2.5. Multiple peaks in a broad CCF could also be due to

noise overlaid on highly rotationally broadened spectra. This is difficult to confirm or refute on

a star by star basis, however unveiled Li[EW] measurements for these stars were included in the

analysis as veiled lower limits in EW[Li].

Four of the seven stars in the ONC ‘LLG’ (see Section 2.2) were identified as having RVs

that are inconsistent with the cluster. As a result they are removed from the sample and their faint

nature may be explained as being characteristic of main-sequence or post-main-sequence stars

from the galactic field that are moving through or behind the cluster. These objects are marked by

red crosses in Fig. 2.1.
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Figure 2.4: Histogram of radial velocities for stars in the ONC (top) and NGC 2264 (bottom)
relative to the median of the respective samples. Inset shows the entire sample including radial
velocity outliers.
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Figure 2.5: Example velocity cross-correlation function (CCF) plots, showing single star (top left),
and close and wide line separation binary stars (top right and bottom).
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2.4.2 Accretion veiling and v sini

In Section 1.4.3, the veiling for a given object at a given wavelength was defined as:

rλ =
fveil

fphot
(2.2)

where rλ is the flux ratio of the accretion veiling continuum ( fveil) to the stellar photospheric

continuum ( fphot).

To estimate the veiling continuum flux, a set of template stars have been selected for each

cluster from their own populations (9 for the ONC and 8 for NGC 2264) across the full colour

range. Selected template stars form the upper envelope of the EW[Li] vs. (V − Ic)0 diagram and

exhibit v sin i limited by the instrumental FWHM. Hence these objects should be amongst those

with the lowest veiling and intrinsic v sin i within my sample. The templates were first offset in

wavelength to compensate for the difference in RV between template and object. They were then

rotationally broadened (using a kernel with limb darkening coefficient of 0.5; van Hamme 1993)

and normalised to a similar flux as that of the object spectrum to produce reference templates.

The templates were then subtracted from the object spectrum to leave residuals which are

assumed to represent the accretion spectrum. I varied the normalisation of the templates and

examined the residuals using a χ2 test, performed between the residuals and (30 Å boxcar aver-

age) smoothed versions of themselves. Adopted v sin i and veiling values were identified using the

residuals with minimum χ2. The parameter search space was defined by v sin i, from 0− 100 km s−1

with a resolution of 1 km s−1 and veiling ratio of 0 – 5 in steps of 0.01 of the photospheric contin-

uum. Fig. 2.6 shows an example of an object spectrum, template and best fitting broadened and

veiled model template.

This process was repeated as it was found that a considerably stronger CCF was obtained if

the RV cross correlation is performed against an appropriately broadened template. Thus the first

iteration identifies approximate RV and v sin i, the second iteration improves the RV and hence

v sin i as the fitted RV template has a more similar shaped line profile.

Fitting of templates was performed in two wavelength regions, the first between 6390 and

6500Å, in a region containing 7 photospheric absorption lines (Fe I 6393.6Å, Ne II 6407.9Å, Fe I

6411.7Å, Fe I 6421.3Å, Fe I 6431.0Å, Ca I 6439.1Å, Ca I 6450.0Å, Ca I 6462.5Å and Fe I 6495Å).

The second was between 6610 and 6675Å, containing three lines (V I 6624.8Å, Ni I 6643.6Å and

Fe I 6663.4Å). These regions are free from contamination by Hα or significant sky and nebular

line emission.

Analysis of sky and nebular lines indicate that the spectrograph was operating with a res-

olution of R ∼ 10 000. Comparison with literature (see Rhode et al. 2001; Baxter et al. 2009)

indicate that the corresponding limit in v sin i resolution is ∼ 20 − 30 km s−1, depending on target

SNR.

The veiling for each star was calculated as the weighted mean across the cluster template

set based on the inverse of the difference in (V − Ic)0 colour between each template star and

the object. To avoid overweighting when the template and object colours were very close, a
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Figure 2.6: Spectrum of object RA = 05 35 15.47 Dec = -05 27 22.7 in the ONC. The thin black
line is the object spectrum. The dotted line is the template showing significantly deeper photo-
spheric absorption lines. The green (light grey) broad line is the broadened and veiled template
that best fits the object spectrum (rλ = 0.69). The template spectrum has a greater SNR than the
target one (SNR of 58 per pixel as opposed to 38 per pixel). The broadening kernel and the addi-
tion of the smooth veiling model are also likely to make the model spectrum appear more smooth
outside of the line regions than the target spectrum.

minimum ∆(V − Ic)0 of 0.1 was placed on the weighting algorithm. The aim of this process is to

use multiple templates to provide reliability of fit, without introducing errors from large template-

to-star colour differences. It should be noted that although great care was taken to ensure that the

veiling was derived from templates of similar colour, in practice the veiling measured was found to

be surprisingly insensitive to template colour for any given star. The range of fractional uncertainty

due to template mismatch was measured to be ∼ 0.05−0.3 across the sample. Template to template

variations appear to dominate, possibly caused by differences in the template line profiles due to

rotation, binarity, and chromospheric activity.

Uncertainties in veiling were derived by analysing the range in veiling estimates returned

by all of the fits from the full template set. The standard deviation (also weighted as a function

of template to star colour difference) of the set of veiling values was calculated and adopted as

the uncertainty in the veiling measurement. As the method used here analyses lines over a narrow

spectral range, it is independent of reddening and extinction and hence is robust in dusty regions

of new star formation such as the clusters studied in this paper. Measured values of rλ vary from 0

to 4.0.

2.4.3 Lithium equivalent width versus colour

Once the magnitude of the veiling continuum had been established for each star, a correction

was applied to the raw measured lithium EW to quantify the unveiled EW. The uncertainty in
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the corrected EW[Li] was calculated by combining uncertainties in the raw line measurements

with the uncertainty in veiling. Fig. 2.7 shows veiling corrected lithium EWs and associated

uncertainties plotted as a function of dereddened (V − Ic)0 colour. Most of the data points lie

slightly above the undepleted model isochrone. Reasons for this may include uncertainties in

molecular line strengths in stars with Teff < 4000K, causing difficulty in definition of the the

pseudo-continuum around the lithium line. In the hotter stars a lack of inclusion of NLTE effects

may cause uncertainties in the modelled curves of growth (e.g. Carlsson et al. 1994). Theoretical 0

(undepleted), 10 and 20 Myr isochrones (Baraffe et al. 2002) are also shown. Dereddened (V− Ic)0

colours for the ONC are from Hillenbrand (1997). It should be noted that the dereddening method

used for the ONC was performed on a star-by-star basis and groups objects into bins by spectral

class. Hence (V − Ic)0 colours are not continuous. Dereddened colours for NGC 2264 were

derived in Mayne et al. (2007) using a single global solution of E(V − Ic) = 0.15, based on a mean

measured (V − Ic) excess for main-sequence stars. Accurate unveiling of spectroscopic binaries is

a very difficult and uncertain process, so these points have been left in their raw measured (veiled)

values and are displayed as lower limits in EW[Li].

2.5 Discussion

2.5.1 Accretion veiling

The data show that the sample of stars in the ONC exhibit greater accretion veiling than the sample

in NGC 2264. The mean rλ and standard deviation have been calculated for all stars in both clusters

and for a subset in both clusters that cover a common colour range (1.2 < (V − Ic)o < 2.0). All

measured stars in the ONC exhibit a mean rλ = 0.48 with a standard deviation (σ) of 0.37 dex.

This compares with mean rλ = 0.16, σ = 0.34 dex for all measured stars in NGC 2264. The subset

with colour range 1.2 < (V − I)c < 2.0 in the ONC exhibit a mean rλ = 0.44, σ = 0.41 dex and in

NGC 2264 the mean rλ = 0.15, σ = 0.34 dex. It is notable that whilst the absolute levels of veiling

differ, the ratio of σ/rλ is similar in both clusters.

If NGC 2264 is older than the ONC as suggested through studies of young main-sequence

stars (Mayne & Naylor 2008) then my finding is consistent with models of decreasing disc fraction

(and hence accretion) with age. If however, the ages of the clusters are indistinguishable from

each other as suggested by main-sequence turn-off ages (see Naylor 2009) then the difference in

apparent accretion luminosity may suggest an environmental difference between the two clusters

such that stars in the ONC accrete more vigorously or for longer than NGC 2264.

2.5.2 EW[Li] distribution, age spreads and correlation with CMD position

Both clusters appear to exhibit lithium equivalent widths that are approximately consistent with

their CMD derived ages (< 10 Myr). It is also apparent that no highly lithium depleted stars are

seen with EW[Li] . 0.4 Å. NGC 2264 appears to show a slightly greater spread in EW[Li] at

higher masses than the ONC.

The observed dispersion in EW[Li] might imply an age spread that is similar in magni-
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Figure 2.7: A comparison of 6708 Å lithium line equivalent width measurements for stars in the
ONC (top) and NGC 2264 (bottom) plotted as a function of intrinsic (V − Ic)0. Red points are un-
veiled single star measurements, black triangles are lower limits for spectroscopic binaries which
are left as veiled (raw) measurements. The 0 Myr, 10 Myr and 20 Myr isochrones are based on
models by Baraffe et al. (2002). Solid lines indicate models using a convective mixing length
parameter (α) of 1.9. Dotted lines indicate α = 1.0. Blue triangles are data from Palla et al.
(2005) which are cited as having depleted lithium. These points have been calculated using n(Li)
to EW[Li] conversion from curves of growth in Table 1 of Palla et al. (2007). The conversion from
Teff to intrinsic (V − Ic)0 colour for the Palla et al. (2005) data have been made using the relation
defined by Kenyon & Hartmann (1995).
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Figure 2.8: Comparison of the EW[Li] data for bright and faint sub-samples in each cluster. In
both clusters the population of faint stars shows a systematic decrease in lithium line strength.
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tude to the apparent age spread implied by the luminosity dispersion seen in CMD space. To test

whether this really could be an age spread, I looked for disagreement between the EW[Li] seen in

bright and faint sub-populations of stars. Each cluster was split onto two sub-samples representing

the bright and faint populations using the following method. First I calculated the median dered-

dened colour in 0.1 mag. wide magnitude bins, and a straight line was fitted to define the median

magnitude as a function of colour. These lines may be seen plotted over the data in Fig. 2.1.

Stars with magnitudes brighter than this were assigned to the bright sub-sample and vice-versa.

If an age spread explanation were to be plausible, the bright sample should be the youngest and

ages should increase as one moves to fainter magnitudes. This should be evident as a depletion in

lithium in the faint population.

I compared the sub-populations for each cluster using the 2 sample K-S test. The ONC

shows evidence for the two samples being drawn from different populations with the null hypoth-

esis that they are from the same population being rejected at the 99.8 per cent confidence level.

The bright population exhibits median EW[Li] = 0.63 Å and the faint population median EW[Li]

= 0.56 Å. A similar trend is shown in NGC 2264, the bright population exhibits median EW[Li]

= 0.59 Å and the faint population EW[Li] = 0.54 Å with the null hypothesis being rejected at the

98.2 per cent confidence level. These findings are illustrated in Fig. 2.8.

I have considered whether this trend in EW[Li] is a systematic effect of the unveiling pro-

cess. Although there is a weak correlation between EW[Li] and veiling, this cannot be the cause

of the correlation of CMD position with Li[EW] since there is not the correlation between veiling

and position in the CMD which would be required to translate this into the observed effect. It

should be noted that if there is a veiling related systematic error, one would expect its effect to be

most apparent in the ONC where veiling is strongest. In practice the ONC shows no correlation

between veiling and CMD position, yet the EW[Li] vs. CMD position correlation is significant.

I have also considered whether this trend in EW[Li] may be due to differences in surface

gravity, however the correlation is in the opposite sense to that found in simulations by Zapatero

Osorio et al. (2002) and Palla et al. (2005) as a function of log g. Another consideration is whether

the observed depletion (either real or a systematic measurement error) is related to rotation rate.

Studies such as Viallet & Baraffe (2012) suggest that rotationally induced mixing can deplete

lithium on timescales of just a few Myr. I find no correlation when EW[Li] is plotted against

measured v sin i or rotation period. The depletion I see would also conflict with the rotation rate

vs. CMD position correlation seen by Littlefair et al. (2011) if rotationally induced mixing were

responsible.

Interpreting this trend in luminosity and EW[Li] is critically dependent on the adopted value

of the convective mixing length (α). In the model where α = 1.9, the EW[Li] trend is compatible

with an evolution where ageing stars are slowly depleting lithium across the (V − Ic) colour range

as they contract toward the zero age main-sequence (ZAMS). This model agrees with Jeffries

(2007) who finds a statistical decrease in radius as one moves from bright to faint objects at a

given colour in the CMD. Importantly, if α is closer to 1.0 then I would expect to see a difference

in dispersion with colour if a large (≥ 10 Myr) age spread were present as at (V − Ic) ≈ 2.2 the

uncertainties in EW[Li] are less than the depletion predicted by the 10 Myr isochrone. My data
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Table 2.2: Parameters for accreting models plotted in Fig. 2.9
Ref Minit Ṁ No. Tquiet Time to complete Final mass

(M�) (M�yr−1) bursts (yr) accretion (yr) (M�)
1 0.001 1 × 10−4 100 103 1.1 × 105 1.0
2 0.01 1 × 10−4 99 103 1.1 × 105 1.0
3 0.01 1 × 10−4 69 103 7.6 × 104 0.7
4 0.01 5 × 10−4 14 103 1.5 × 104 0.7
5 0.01 5 × 10−4 16 103 1.8 × 104 0.8
6 0.01 5 × 10−4 20 103 2.2 × 104 1.0
7 0.01 5 × 10−4 14 104 1.4 × 105 0.7
8 0.02 5 × 10−4 20 103 2.2 × 104 1.0
9 0.03 5 × 10−4 20 103 2.2 × 104 1.0

appear inconsistent with an age spread of this magnitude.

Whilst it is tempting to consider the link between EW[Li], luminosity and radius as con-

firmation of an age spread, it is evident from Fig. 2.2 that cold accretion can ‘accelerate’ the

evolution of a star making it appear in all observable ways older. Thus the EW[Li], luminosity

and radius trends are the expected outcomes of either an age spread or cold accretion; my data do

not allow me to differentiate.

2.5.3 Depleted lithium members

It should be noted that not all cold accretion scenarios will show detectable lithium depletion in

young stars in the mass (0.3 < M? < 1.9 M�) and age range (2 − 6 Myr) that I consider in

this Section. Fig. 2.9 shows a range of accreting models from Baraffe & Chabrier (2010) with

a selection of starting and accretion parameters that are summarised in Table 2.2. My data place

limits on the levels of lithium depletion seen in my sample. I observe up to ≈ 10 per cent depletion

in EW[Li] which corresponds to a factor of . 2 in lithium abundance for stars within the colour

range defined by the forbidden zone. Thus, my observations exclude the possibility that the objects

have experienced past accretion with Ṁ ≥ 5 × 10−4 M� yr−1. The only exception might be in the

case of an extremely high-mass initial core (Minit > 0.03 M�). An initial core mass > 0.03 M� is

at least an order of magnitude larger than expected from calculations (see Baraffe et al. 2012, and

references therein) of collapse from first to second Larson core (Larson 1969). Also, these high

initial mass models do not explain the full range of luminosities seen in the CMD and thus do not

help to explain the observed luminosity dispersion.

The lack of strongly lithium depleted members in the sample is consistent with the findings

of Palla et al. (2005) for the ONC in my mass range, and with the only available literature sample

for NGC 2264 (King 1998). The Palla et al. (2005) sample has 82 stars in the ONC, in the mass

range 0.4−1 M�. Significant lithium depletion is cited for 4 of these stars, however (as may be seen

in Fig. 2.7) these depleted objects are found to be broadly consistent with the spread in EW[Li]

seen in my data. The levels of depletion identified are far less than expected for cold accretion at

high rates and no stars are shown to fall within the forbidden zone.
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Figure 2.9: Evolution of the surface lithium abundance divided by initial Li abundance for a
selection of models producing stars in the range 0.7−1 M� (from Baraffe & Chabrier 2010). Solid
lines (blue) are those using accretion burst rates Ṁ = 5 × 10−4M�yr−1. Dashed (red) lines are
those using Ṁ = 1×10−4M�yr−1. For model details see Table 3. Shaded grey region encompasses
age estimates for the clusters in this study.
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King (1998) finds that lithium abundance is indistinguishable from meteoritic values in a

sample of 12 stars of spectral type range G0V to K3V in NGC 2264. The 3 stars closest in spectral

type to my sample (K3V) exhibit EW[Li] ranging from 0.49 - 0.75 Å, which falls firmly within

the range observed in my data.

Below the mass range that I explore, Palla et al. (2007) present lithium measurements for

4 objects of M? < 0.3 M�. Their EW[Li] measurements range between 0.3 − 0.44 Å, implying

lithium depletion of 1 to 2 orders of magnitude, and ages of 15-30 Myr according to non-accreting

models. Objects as old as this in the mass range I explore would exhibit levels of lithium far below

that which I observe.

2.5.4 Isochronally old stars

In Section 2.2 I described the selection of seven stars that appear faint with respect to the ONC

cluster CMD and referred to these as the LLG. These stars could be interpreted as being older than

the bulk of the population if their CMD position was considered a reliable diagnostic of age. How-

ever, four of these stars were shown in Section 2.4 to be non-members based on their RV. Of the

remaining three, two lie below the 10 Myr isochrone and one lies below the 100 Myr isochrone.

Whilst in CMD space these objects appear old, their measured EW[Li] and veiling ratio are en-

tirely consistent with the other apparently younger measured stars in the cluster. If the apparently

oldest star has an age that is genuinely > 100 Myr, then I would expect its EW[Li] to have depleted

by approximately two thirds, which I do not see. Thus the lithium age and CMD age are in con-

flict. I now discuss these three stars, reconcile their photometric and EW[Li] properties and show

that none are likely to be genuinely ‘old’ compared with the rest of the cluster.

H676. In CMD space, this star is apparently far older than the rest of the cluster with an

isochronal age of > 100 Myr. Hubble Space Telescope (HST) images (Smith et al. 2005)

reveal an edge-on massive flared disc and accompanying Herbig-Haro jet. Its exhibited low

luminosity appears to be a function of disc extinction due to the geometry of the system. It

is clear from studies by Walker et al. (2004) and Mayne & Harries (2010) that circumstellar

disc and accretion structures associated with young PMS stars can have a significant impact

on the position of an object in CMD space. The disc is a clear indicator of youth and thus

the age of the object should be considered consistent with its EW[Li] age of < 10 Myr.

H198. This object sits below the 10 Myr isochrone in the CMD and yet has an unveiled EW[Li]

of 0.57 ± 0.03 Å, which is consistent with a star that is undepleted in lithium. HST im-

agery (Bally et al. 2000) reveals a resolved proto-planetary disc, visible in Hα emission. It

also exhibits strong evidence of interaction with a fast wind and strong UV flux from the

star Θ1 Ori C. This is evident from the strong bow shock where the T Tauri wind interacts

with the wind from the O-star. The intense UV irradiation may cause the disc to be heated,

increase in thickness and photo-ablate (Johnstone et al. 1998). An inflated disc and down-

stream flow of dusty ablating material may be obscuring the central star and decreasing its
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apparent luminosity.

H6. This object also sits below the 10 Myr isochrone in the CMD and has an unveiled EW[Li]

which is consistent with a star that is undepleted in lithium. It is found to be highly extincted

in photometry by both Hillenbrand (1997) and Da Rio et al. (2009). AV values are 3.96 and

5.30 respectively, measured at the two epochs which are separated by over a decade. Infrared

colour indices (J − H) = 1.32 and (J − K) = 2.12 also indicate strong reddening, suggest-

ing that this object is deeply embedded within its envelope or within the OMC1 molecular

cloud. When subject to dereddening and extinction correction by Hillenbrand (1997), it ap-

pears that the luminosity may be underestimated. Dereddening vectors typically lie almost

parallel to the PMS in MV vs. (V − Ic) if the ratio of total to selective extinction is the typical

interstellar value of RV ≈ 3.1 (Bessell et al. 1998). In Chapter 6 of this thesis, I show that

dust within the inner disc of YSOs in the ONC exhibits 5 < RV < 8. A higher value of RV

steepens the reddening vector in MV vs. (V − Ic)0. Thus for a given correction in (V − Ic)0,

a greater value of RV would give an intrinsically brighter star once corrected for extinction.

2.6 Summary

I have performed a spectral analysis of two young clusters, NGC 2264 and the Orion Nebula

Cluster around the 6708Å lithium doublet at a resolution of R ∼ 10 000. Correction has been made

for accretion veiling, yielding estimates of the EW of the lithium line for 94 stars (76 single and 18

binary) in the ONC field and 74 stars (54 single and 20 binary) in the NGC 2264 field. Comparison

has been made between measured EW[Li] and theory. I draw the following conclusions from my

analysis.

1. No evidence is found in 168 stars (130 unveiled stars and 38 spectroscopic binaries with

lower limits) for objects with EW[Li] < 0.4 Å. This finding is consistent with that of

King (1998) for 12 stars in NGC 2264 and 82 stars in the ONC of Palla et al. (2005),

but I have now almost tripled the available sample. The 262 stars now observed in the

two clusters place limits on cold accretion models, indicating that burst accretion rates of

Ṁ ≥ 5 × 10−4 M� yr−1 occur in less than 0.5 per cent of 0.3 ≤ M? ≤ 1.9 M� stars. This

mass accretion rate can only be exceeded without depleting lithium if the initial core mass

is > 0.03 M�, however such models seem incapable of producing the luminosity dispersion

seen in CMDs. This initial core mass is also at least an order of magnitude larger than pre-

dicted by theory (see Baraffe et al. 2012, and references therein).

2. Approximately 10 per cent depletion in EW[Li] is seen between the brighter and fainter

populations in both clusters and the depletion appears to be broadly independent of mass.

This could be due to an age spread if the convective mixing length parameter (α) is close to
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1.9. The scatter in age implied by the scatter in EW[Li] is similar to the small age spread im-

plied by the scatter in CMD position. If α is closer to 1.0 then a large age spread (> 10 Myr)

is inconsistent with my observations and another explanation must be sought. The spread in

EW[Li] is also consistent with the accelerated evolution of stellar radius and lithium abun-

dance described by models of past cold accretion at rates of Ṁ < 5× 10−4M� yr−1. I cannot

tell which of the above scenarios are preferred as the data and models do not allow me to

distinguish between the age spread and accretion mechanisms.

3. I targeted seven previously identified members in the ONC whose position in the CMD indi-

cated they may be old. Four turned out to be radial velocity non-members. The other three

objects exhibit EW[Li] consistent with very young stars but are also found to be directly

associated with circumstellar discs or strong extinction. Whilst in each case I cannot be sure

that these features are the reason for the discrepant luminosity, it adds weight to the idea that

discs and extinction contribute to the observed luminosity dispersion in PMS CMDs. No

correlation is apparent between extinction corrected V magnitudes and derived AV across

the population as a whole.

4. The median accretion veiling found for single stars in the ONC (rλ = 0.24) is greater than

than seen in NGC 2264 (rλ = 0.13). In addition, the ONC displays 9 highly veiled objects

(rλ > 1) whereas none are seen in NGC 2264. The highest veiling ratio seen in the ONC is

4.0 and in NGC 2264 is 1.0.

5. When establishing membership lists for young clusters (< 10 Myr), lithium detection is a

necessary requisite for membership confirmation in the mass range 0.3 ≤ M? ≤ 1.9 M�.

If lithium is not detected, a star must have less than 0.5 per cent chance of being a young

cluster star.



Chapter 3

Characterising YSO variability

3.1 Introduction

Photometric variability on a wide variety of timescales is a key characteristic of YSOs. Joy (1945)

observed brightness fluctuations in emission line objects near molecular clouds. Since then, YSO

variability has been associated with many physical processes operating at the stellar surface, in

its nearby environment and within the orbiting circumstellar disc. The amplitudes, timescales

and wavelength dependence of the variability are important clues to understanding the underlying

physics, and are therefore key to the study of young stars.

Until recently, most work on young star variability has concentrated on searches for pe-

riodicity (e.g. Herbst et al. 2002; Lamm et al. 2004; Rebull et al. 2006; Littlefair et al. 2010),

typically using frequency analysis to identify dominant periods.(e.g. Lomb 1976; Scargle 1982).

Most authors draw conclusions based on the assumption that the observed periodic signal reflects

the rotation period of the star. Roughly one-third of YSOs appear to exhibit behaviour that is

broadly periodic. Herbst et al. (2002) found 25-40% of stars in the ONC to offer convincing peri-

ods, Littlefair et al. (2010) found 25-30% in Cep OB3b. Periodic variability is often attributed to

the presence of cool (e.g. Bouvier et al. 1986b) or hot (e.g. Kenyon et al. 1994) spots on the sur-

face of the rotating star . In addition, many stars exhibit quasi-periodic lightcurve behaviour (e.g.

Bouvier et al. 2003; Cody et al. 2014). Alencar et al. (2010) find that 28 ± 6% of stars monitored

in NGC 2264 using the CoRoT spacecraft exhibit quasi-periodic fading behaviour.

This leaves roughly half to two-thirds of the variable stars in star-forming regions without

well-defined periods, and this aperiodic variability may provide a window on different physical

phenomena to those associated with periodic variability. Aperiodic variability has often been

noted and catalogued but until recently has been relatively uninterpreted within the YSO literature.

Many stars slip between periodic and aperiodic variability at different epochs (Herbst et al. 1994;

Rucinski et al. 2008). Aperiodic or quasi-periodic variability in YSOs has been attributed to

a number of mechanisms, including obscuration by circumstellar material (Herbst et al. 1994;

Chelli et al. 1999; Alencar et al. 2010), accretion shock instability (Sacco et al. 2008; Matsakos

et al. 2013), unsteady accretion (Fernandez & Eiroa 1996; Scholz et al. 2009; Stauffer et al. 2014;

Venuti et al. 2014) and instabilities within the circumstellar disc (Bouvier et al. 2007; Romanova

et al. 2008, 2011).

79
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It is important to distinguish between phenomena that occur on different timescales. Many

studies to-date have concentrated on timescales of days to a few years (e.g. Bouvier et al. 1993;

Herbst et al. 1994; Grankin et al. 2007; Wolk et al. 2013). However there is significant evidence

that we should see important variability on a much wider range of timescales. For example Sacco

et al. (2008) and Matsakos et al. (2013) propose that accretion shock instabilities at the surface

of the star may show variability on timescales of minutes. In contrast, long-term outbursting be-

haviour such as that seen in EXor (Herbig 2007, 2008) and FUor (Reipurth 1990) stars may support

models of accretion rate variability that is predicted to occur on timescales of years to thousands of

years (e.g. Vorobyov & Basu 2005; D’Angelo & Spruit 2012). Thus, several important questions

concerning YSO variability are outstanding.

• What is the full range of timescales on which we observe YSO variability?

• Can we quantitatively characterise the aperiodic-variability more robustly?

• What range of variability amplitudes do we see as a function of timescale?

I have compiled a set of SDSS-i (hearafter ‘i’) photometric observations for ≈ 1100 YSOs in

the young OB association Cep OB3b. The observations are all made using the Wide Field Camera

(WFC) on the 2.5m Issac Newton telescope (INT) and provide well-sampled monitoring with a

cadence ranging from 1 minute to 10 years (a dynamic range of ≈ 7 dex). This unique dataset

provides variability monitoring data that is capable of providing useful statistics on variability

events occurring with duty cycles of up to ≈ 10 000 years and allows us to begin to answer the

questions outlined above.

3.2 Data

The time-series photometric measurements have been compiled using data from several observing

campaigns, performed between 2004 and 2013. The subject is Cep OB3b which is an OB associ-

ation containing more than 3000 X-ray and infrared identified PMS stars (Allen et al. 2012). It is

similar in membership and overall size to the ONC, however Cep OB3b appears older and more

evolved. Bell et al. (2013) assigns Cep OB3b an age of ≈ 6 Myr (similar to σ Ori and IC 348)

and distance of 570±20 pc. Allen et al. (2012) measure an average disk fraction in the region as

33±2%. The CMD for the association is shown in Fig. 3.1.

3.2.1 Observations

I used INT photometry taken with the Wide-Field Camera (WFC) which consists of four EEV 2k

x 4k CCDs, providing a 34 x 34 arcmin2 field of view. The CCDs are arranged in an ‘L’ shape

with a small square region mission from the top-right corner and small gaps between CCDs. The

image scale is 0.33′′ per pixel. A single field was observed centred on α = 22h 55m 43s.3, δ =

+62d 40m 13s J2000.0, this region is shown in Fig. 3.2.

The observations were made at several different epochs by different observers. A summary

of the observations are shown in Table 3.1. Observations made during 2004 Sep 21- Oct 6 were a
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Figure 3.1: V,V − I CMD of Cep OB3b. The black dots are all sources in the Cep OB3b field. The
blue dots are sources classified as pre-MS using Spitzer infrared colours (left panel) and detection
in X-rays (right panel). The dashed white and black line is the ZAMS of Siess et al. (2000) and
the region defined by the black curve represents the PMS locus. The black arrow corresponds to
1 mag of extinction using the reddening law of Rieke & Lebofsky (1985). Credit: Allen et al.
(2012).

Figure 3.2: INT WFC field-of-view (blue lines) overlaid on a Digitized Sky Survey red image of
Cep OB3b. Circles denote the locations of periodic association members. The black boxes denote
the field-of-view of observations made using the Faulkes telescope that were not used in this study.
Credit: Littlefair et al. (2010).
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Table 3.1: Summary of observations made and collated as part of this study.

Date Number of Filter Exposure Publication reference
observations time Publication reference

2004 Sep 21- Oct 6 617 i 300s Littlefair et al. (2010)
2005 Aug 23 - Nov 1 41 i 300s Littlefair et al. (2010)
2007 Oct 21 - 24 5 i 100-500s Bell et al. (2013)
2013 Nov 9 - 10 175 i 30s -

time series taken throughout the 16 nights with a cadence of ≈ 8 minutes. Some breaks occurred

due to poor weather, however observations were made for at least 2 hours on most nights. Obser-

vations made between 2005 Aug 23 - Nov 1 typically consisted of one or two exposures per night.

Some nights in this period were missed due to weather or telescope scheduling constraints. Full

details of the observing campaigns for these two runs are given by Littlefair et al. (2010). Stuart

Littlefair provided the reduced lightcurves and photometric catalogues for all stars within the field

of view. The observations made on 2007 Oct 21 - 24 also consisted of one or two exposures per

night. Full details of these observations and subsequent reduction are given in Bell et al. (2012)

and Bell et al. (2013). Cameron Bell again provided the reduced lightcurves and photometric

catalogues for all stars within the field of view.

The final set of observations were taken specifically for this study. I performed the obser-

vations on 2013 Nov 9 - 10 and they consisted of 174 observations taken in two approximately

90 minute blocks (one on each night) with a cadence of ≈1 minute. Conditions during the night

of Nov 9 were clear but with some patchy cirrus. Frames that required a correction for changes

in atmospheric transparency greater than 0.1 mag have been rejected. The seeing ranged from

1.6 to 3.0 arcsec with a median seeing of 2.0 arcsec. The night of Nov 10 was photometric, the

seeing ranged from 0.9 to 1.3 arcsec with a median of 1.1 arcsec. Fig. 3.3 shows the seeing and

transparency for the observations on these two nights and highlights the quality cuts in seeing and

transparency made during the reduction process.

3.2.2 Reduction

The reduction details in this section are for the dataset collected in 2013 November. They are

however almost identical to those for the other datasets. Specific details for the reduction of

the 2004, 2005 and 2007 datasets are detailed in Littlefair et al. (2010) and Bell et al. (2012)

respectively.

WFC frames were first bias subtracted using a median stack of bias frames. To mitigate

for non-linearity in the response of the CCDs, linearity tests were performed by comparing counts

in the vignetted corner of CCD 3 with the rest of the mosaic. As the corner is vignetted, its

count values are much lower than the rest of the CCDs and can provide a linear reference level

from which non-linearity at high counts on the other regions of the detector may be measured.

The derived CCD dependent non-linearity corrections were then applied to the data before further

processing.
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Figure 3.3: Seeing and transparency plots for the observations made in 2013 Nov. Top panels
show seeing conditions on the night of Nov 9 (left) and Nov 10 (right). Lower panels show the
relative transparency on Nov 9 (left) and Nov 10 (right). The horizontal dashed lines show cuts
made in seeing and transparency to reject the poorest data.

Twilight flat frames were constructed using frames taken during bright sky conditions, with

detector count levels between 30 000 and 40 000. Application of the flat frames allowed pixel-to-

pixel sensitivity variations and vignetting effects to be corrected. A bad pixel mask constructed

by Littlefair et al (2010) was used. De-fringing was performed by scaling library fringe frames to

match the amplitude of the fringes in the target exposures.

The data were analyzed using the cluster software package described in detail by Naylor

et al. (2002), Burningham et al. (2003) and Jeffries et al. (2004). Star positions were measured

from a stack of 10 frames with seeing <1 arcsec, airmass < 1.4 and good transparency.

Optimal photometry was performed, fixed on the measured positions, providing a flux for

each object in each frame. The fluxes were then ‘profile corrected’ (analogous to an aperture

correction in aperture photometry) using a spatially varying polynomial function, calculated using

bright unsaturated stars. The photometric measurements were then adjusted for any difference in

the airmass and transparency for each frame, by determining a relative transparency correction

from an ensemble of bright stars which showed no evidence of variability in a chi-squared (χ2)

test. An additional statistical uncertainty (0.013 and 0.007mag on Nov 09 and Nov 10 respectively)

was added to each measurement at this stage to ensure that the distribution of χ2 for all stars was

independent of signal-to-noise ratio. This uncertainty reflects uncertainties in the flat-fields and

profile corrections. Positions from the Two Micron All Sky Survey (2MASS; Cutri et al. 2003)

were used to provide an astrometric solution with a precision ≈ 0.1 arcsec. Lightcurves were

constructed in each dataset by collating all reduced measurements for each star. An example set of

lightcurves for one star is shown in Fig. 3.4. The lightcurves from the four individual datasets were

merged to create a single lightcurve for each star. Each star had different identification number

in each of the individual datasets, so cross matching was performed on an astrometric coordinate

basis to guard against mis-matches. The final identification numbers assigned to each star were

those from Littlefair et al. (2010). Typically each star has ≈ 840 points in its final lightcurve.
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Figure 3.4: Examples of subsets of INT WFC i lightcurve data collected for a single disc-bearing
source in Cep OB3b. The top panel shows data collected at a cadence of 1 minute on a single night
in 2013 November. The middle panel is data collected over 16 nights in 2004 September. The
lower panel is data collected over a period of 68 nights in 2005 August to November. Additional
data was also collected in 2007 October.
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Figure 3.5: r, r− i CMDs showing the classification of sources in Cep OB3b. The left panel shows
the disc-bearing sample (red crosses) overlaid on the photometry for all stars (black dots). The
PMS locus is clearly visible, offset from the field stars. The right panel shows the X-ray identified
discless sources (blue crosses) on the same CMD. The green box bounds the region from which
the ‘Field’ population was selected. The region was selected to be wider in colour at brighter
magnitudes to reduce the numerical bias toward fainter stars

3.3 Analysis

3.3.1 Source classification

Sources in the i band catalogue were cross matched against the catalogue of Allen et al. (2012)

using a matching radius of 1 arcsec. The sample was then divided into three subgroups. The first

two subgroups contained stars which Allen et al. (2012) classified using Spitzer colours and X-ray

fluxes as Class II and Class III YSOs respectively. Importantly, for Class III objects to be included

within the sample they had to show increased X-ray flux compared with the main-sequence or

post-main-sequence populations of similar optical colours. This minimised contamination from

foreground dwarfs or background giants and ensured that the statistics were not significantly bi-

ased by inclusion of many non-PMS stars. A final subgroup was defined from stars that were not

identified as YSOs and that fell within a defined region of the r, r − i CMD that is well below the

identified PMS locus (see Fig. 3.5). This final subgroup is ‘Field’ stars which as an ensemble

should exhibit low intrinsic photometric variability. This control group allows precise measure-

ment of the noise at all epochs and allows the robust combination of data-sets which have been

collected many years apart. As outlined in Section 1.3.3, The Class II sample will be described as

the ‘disc-bearing’ sample and the Class III sample with be called the ‘discless’ sample. 758 stars

were identified in the disc-bearing sample, 448 in the discless sample and 6614 stars were found

in the ‘Field’ sample.

3.3.2 Characterising the lightcurve variability

Characterising aperiodic variability is a challenge for statistical techniques. Lomb-Scargle pe-

riodgrams are successful in characterising the presence of periodic components in lightcurves,

however they are ineffective in analysing aperiodic signals. No standard metric analogous to the
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periodgram exists for characterising aperiodic signals. Autocorrelation functions are a useful tool

for finding repeating patterns in signals and may be of use in systems where cyclical physical be-

haviour occurs. However, they require that the sampling is regular and uninterrupted, a situation

that is very rarely achievable in astronomical data-sets. A tools that is useful for studying aperiodic

signals is the Structure Function (Simonetti et al. 1985; Hughes et al. 1992; de Vries et al. 2003).

Structure functions - Theory

Structure functions (SF) are a method of measuring the time dependence of both periodic and

aperiodic variability in a lightcurve that is relatively insensitive to sampling cadence and aliasing.

This makes it particularly useful in analysing data such as YSO lightcurves, where the sampling

is by necessity discreet, sometimes sparse and on a wide variety of cadence scales. Structure

functions provide an effective tool for quantifying aperiodic variability power spectra. Upper

and lower limits on the timescales of physical phenomena within the system may be determined,

providing the amplitude of the variability is at least comparable to the photometric uncertainties.

Another useful feature is that variability resulting from systematic errors in the data (for instance

photometric zero-point errors in observations made at different epochs) may be removed from the

target SF by characterising the structure function of a sample on non-varying stars in the field and

subtracting that structure function from that of the target (e.g de Vries et al. 2003).

The SF adopted here provides a measure of root-mean-squared (rms) variability as a func-

tion of sampling timescale. I calculate the SF in discreet logarithmically spaced time-lag bins by

first taking all N(τ1, τ2) data points in a given bin, where

τ1 < τi − τ j < τ2. (3.1)

τ1 and τ2 are the lower and upper timescale limits for each bin. The SF is then calculated in each

bin as

S (τ = τ1 → τ2) =

(
1

N(τ1, τ2)

∑
[ fi − f j]2

) 1
2

. (3.2)

The summation is made for N(τ1, τ2) pairs of data points, each with a time separation τ = τi − τ j,

τ > 0 so that each pair of points is measured only once. The uncertainty is calculated as the

standard deviation of the measurements in each bin divided by
√

N. The resulting SF provides

a method for assessing the power spectrum of the variability, however in contrast with Fourier

techniques it has the advantage that it is calculated in the time domain, and thus the dependence

on the sampling is much reduced. Gaps in the sampling have little impact on the SF, as long

as a statistically meaningful number of time differences exist within a each bin. It also has the

advantage that it is sensitive to all variability, unlike a Fourier analysis which is preferentially

sensitive to periodic signals.

SFs have been widely used in the study of active galactic nuclei, where stochastic lightcurves

(similar to those often seen in YSOs) are common (e.g. Kawaguchi et al. 1998; Hawkins 2002;

de Vries et al. 2003; Wilhite et al. 2008; MacLeod et al. 2012). Fig. 3.6 shows an ideal structure
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Figure 3.6: An Ideal structure function, illustrating the main regimes. (See text for detail). Credit:
Paltani (1999)

function and highlights the four main regimes that can be identified.

Region 1 is at a timescale where any intrinsic variability within the lightcurve is much smaller

than the measurement uncertainties on the data points. This region provides an independent

estimate of the short-timescale photometric uncertainty.

Region 2 sees the SF rise above the uncertainty level, increasing as τ2 while τ � tmin, the mini-

mum timescale on which the target lightcurve exhibits real variability.

Region 3 sees the SF increase, but less steeply than τ2. The gradient is determined by the vari-

ability power spectrum exhibited by the target. It is possible to see plateaux in this region if

the variability power spectrum contains discreet low and high frequency components.

Region 4 is beyond tmax, the point at which the variability power spectrum tends to zero. i.e. at

timescales longer than tmax, no additional intrinsic variability, beyond that seen on shorter

timescales is present.

Fig. 3.7 shows an example structure function for BL-Lac object PKS 2155-304.

3.3.3 Constructing the structure functions for YSOs in Cep OB3b

Structure functions were created for each star with logarithmically spaced time-lag bins in the

range 0.0005 to 3796 days (≈ 45 seconds to ≈ 10.4 years). Each bin has an upper limit that is

1.5 times greater than that of the previous bin. Importantly, the structure functions calculated

for the very shortest time-lag bins ( τ < 5 min) were constructed only using data from the night

of 2013 Nov 10. While the data from the night of 2013 Nov 9 was sampled at a high enough

cadence to contribute to these bins, the relatively poor observing conditions added significantly to
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Figure 3.7: The structure function for BL-Lac object PKS 2155-304. The solid line is a fitted
model of a power-law-shaped PSD. Credit: Paltani (1999)

the uncertainty on those measurements. As the shortest time lag bins are intrinsically measuring

the smallest variability amplitudes, only using the highest quality photometry will increase the

sensitivity of the experiment to any low amplitude variability present. The data from 2013 Nov 9

were of sufficient quality to contribute to the calculation of SFs on multi-year timescales.

The SF points for the longest timescales (> 1 year) were constructed by combing the

datasets taken by different observers at different epochs. Great care was taken to ensure that vari-

ability was not introduced through calibration and zero point errors between observations made so

far apart in time. A comparison was made between the mean fluxes of the individual field stars in

each reduction. A multiplicative correction was made on a CCD by CCD basis to each data-set so

that the mean flux across the field star population was constant across all epochs and agreed with

the fluxes measured by Bell et al. (2013). Once these bulk ‘flux zero point’ corrections had been

made, the residual systematic flux discrepancies were at a level < few% and are probably due to

a combination of scattered light within the flat fields and discrepancies in the profile correction

polynomials at the extreme corners of the field (see Fig. 3.8). A systematic at this level is far be-

low any significance threshold for studying long-term ( > years) variability, thus it was considered

acceptable.

Modelling and subtraction of non-stellar variability

The structure functions for the YSOs were corrected for variability resulting from processes un-

related to the stellar variability through analysis of the field star population. Structure functions

were calculated for > 5000 ‘field’ stars over the field of view. This large sample allowed the

creation of an analytical model of the noise on each SF measurement. Once the non-stellar signal

was quantified it was subtracted from the SF for each YSO, leaving a SF that represents only the
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Figure 3.8: A comparison of mean fluxes measured for individual field stars in data collected on
2013 Nov 10 and 2007 Oct 21 - 24. The data for 2013 Nov 10 have been corrected with a single
scaling factor (of ≈ 10%) for each CCD, bringing the fluxes for all field stars into agreement within
better than a few percent across the majority of the field. The left panel shows flux residuals as a
function of x-position on each CCD. The right panel shows the same as a function of y-position.
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Figure 3.9: Example noise model for field stars on CCD 2. Each point represents a slice of 51
stars in a given SF time-lag bin. The x-axis shows the mean flux for the stars in each slice. The
y-axis is the (log10) mean fractional variability for all of the stars in that flux bin. The circles are
the measured values, the lines are the best-fit analytical model described by Equation 3.3. The
different colours represent different time-lags, calculated as part of the structure functions. Each
CCD and time-lag have their own defined analytical coefficients that allow precise subtraction of
non-astrophysical contributions to stellar variability.

intrinsic stellar variability signal.

To do this, the structure functions for the field stars on each CCD were ordered by mean

flux and then sliced into groups of 51 stars. Each of these 51 star ‘magnitude slices’ then had its

median SF calculated. Thus for each small magnitude slice on each CCD I had a empirical median

structure function. Then, for each time-lag bin the variability as a function of flux was fitted with

an analytical model of the form

σ =

√
S 2 + K2

1 f? + (K2 f?)2 (3.3)

where S is the sky noise in the frame (a fitted parameter that is constant across the CCD), f? is the

measured stellar flux and K1 and K2 are empirically derived constants. Examples of the empirical

relations and analytical fits are shown in Fig. 3.9. Once the model was fitted, the non-astrophysical

SF for each target star was precisely characterised as a function of time-lag, CCD and stellar flux.

This non-astrophysical component was then subtracted. Any error within the model left a residual

within the calculated intrinsic stellar SF. If the process is working effectively, the distribution

of these residuals should be centred about zero, providing that the intrinsic stellar variability is

negligible. It appears than on the shortest timescales (τ . 10 mins) this is true. Fig. 3.10 shows

the distribution of intrinsic SFs for disc-bearing stars on three timescales, all shorter than ≈ 30
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min. The SF distribution (having had the systematic non-stellar component subtracted) peaks

within < 0.1% of zero and has a residual scatter of approximately ±0.2%. The peak is actually

very slightly negative and this probably reflects intrinsic variability (e.g. eclipsing binaries or

pulsating variables) within the field stars causing a slight over-estimation of the non-astrophysical

SF. This illustrates that the systematic model subtraction appears to be both highly effective and

robust. The resulting SFs allow the detection of variability that is statistically significant, at levels

below the photometric noise level. Examples of the calculated SFs may be seen in Fig. 3.11 for

disc-bearing stars and in Fig. 3.12 for discless stars.

It is expected that the SF should always increase as the sampling timescale increases. How-

ever, in some cases the SF is seen to reduce slightly. There are two reasons for this behaviour.

Firstly, in a small fraction of stars, a difference in the short term variability at different long-term

epochs means that less variability is seen on the longer timescales than shorter ones. This is real

and tells us that the short-term variability that we measure can change with time. Secondly, for

very regular and periodic lightcurves, an effect akin to aliasing within periodic signals is seen

where the sampling timescale is close to an integer number of half periods. This effect is miti-

gated by the discrete bin-widths employed. Thus in a given SF we may see points with reduced

RMS in a certain bin followed by an increase corresponding to this ‘aliasing’ effect.

3.4 Discussion

3.4.1 Population-level variability statistics

It is immediately clear that the SFs of almost all YSOs have an upper variability timescale (tmax)

that is on the order of days. It is also apparent that almost no variability (where S (τ) & 0.2%)

appears in the SFs on timescales shorter than ≈10 minutes. Probability distribution functions

(PDFs) of the measured S (τ) were constructed by combining all of the SF measurements for all

stars in a given source category. The density of points was measured by binning the individual

points in S (τ) vs. τ space into bins of size 0.3 in log10 S (τ). The measurements are already binned

in log10 τ as part of the SF measurement process. The numbers of stars in each bin were then

normalised so that the sum of the probability in each log10 τ column equals unity. The resulting

PDFs, describing the variability behaviour of the disc-bearing and discless populations are shown

in Fig. 3.13.

This basic analysis allows several important conclusions to be drawn. As expected, the

disc-bearing stars show greater variability amplitude on all timescales than the discless sample.

The fact the the SF PDF flattens indicates that variability saturates for all YSOs on timescales tmax

> few days. Beyond this timescale, little (if any) extra variability is seen. At timescales < tmax, the

variability power spectrum appears linear (in log-log space) whilst above the measurement noise

floor.

The PDFs suggest that the structure function, S (τ) is well modelled by

S (τ) = kτ τ < tmax

S (τ) = c τ > tmax
(3.4)
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Figure 3.11: Example structure functions for disc-bearingYSOs in this analysis. A range of vari-
ability amplitudes and characteristic timescales are shown. Circles are the ‘field subtracted’ struc-
ture function for the target star. The dotted line shows the structure function for the subtracted
‘non-stellar’ variability. The red points are those which only use the high cadence data from 2013
Nov 10. The blue points are calculated using the years-timescale lightcurves.
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Figure 3.12: Structure functions for a selection of discless YSOs in this study. Detail as per Fig.
3.11
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where k and c are constants describing the gradient and saturation level respectively. The fact that

S (τ) = kτ when τ < tmax means that the intrinsic variability power spectrum is well described by

a simple power law. The gradient k, becomes the exponent of the power law if we describe the

amplitude of the variability as a function of frequency.

a ∝ f −k (3.5)

where a is the amplitude of the variability and f is the frequency in cycles per day. I measured

k, c and tmax for each star by fitting the function described in Equation 3.4 to the individual SFs.

The fitting was performed using a simple routine which minimises χ2. Fig. 3.14 compares his-

tograms of the derived parameters for the disc-bearing and discless samples. The median of each

of these parameters was calculated for each sample. The uncertainties on the median values were

calculated by first creating a model sample of 1000 points drawn randomly from the observed

distribution. The median of this sample was calculated. This process was repeated 1000 times,

providing a sample of calculated medians. The standard deviation of the sample of median values

was adopted to represent the uncertainty on the median for the real data sample. Table 3.2 shows

the measured parameters.

Variability amplitudes

Parameter c is found to be ≈ 2.3 times larger in disc-bearing stars than discless stars. Disc-bearing

stars show a median variability rms (when τ > tmax) of 8.3±0.3%. For discless stars it is 3.6±0.1%.

Variability timescales

The disc-bearing population is found to show a median tmax that is slightly greater than that of

the discless population. However, considering the overlapping uncertainties, the significance of

this difference is weak. A longer tmax possibly reflects the longer rotation periods typically found

in disc-bearing stars. It is interesting to explore whether tmax really does describe the rotational

timescale of these stars. Fig 3.15 shows a comparison of tmax against the rotational periods of

periodic stars found by Littlefair et al. (2010). It is clear that tmax correlates strongly with rotational

period although the value of tmax is ∼ 1/4 of the period for any given star. If this relation between

tmax and rotation period holds for all stars then the similarity in the distributions of tmax that is seen

between periodic and non-periodic stars implies that the rotational period distribution described

by periodic stars is representative of the population as a whole.

Variability power spectra

Notably, the median gradient k, where τ < tmax appears to be very similar for the two populations.

The power law exponent describing the variability power-spectrum for the discless stars is slightly

greater than in the more-variable disc-bearing stars. Considering the different physical mecha-

nisms at-play in the two populations, this might appear surprising. The actual values (0.85 ± 0.02

and 0.95 ± 0.03 for disc-bearing and discless respectively) are close to the value of ∼ 1 found by

Cody et al. (2014) in a sample of stochastically varying stars in NGC 2264. Similar behaviour was



3.4. DISCUSSION 96

Table 3.2: Variability parameters derived through model fitting of YSO population SF data. See
section 3.4.1 for details. Note that tmax has been converted to days and c is expressed as S (τ) (not
log10S (τ) as shown in the plots).

Sample tmax k c
(days)

Disc-bearing 1.50 ± 0.07 0.85 ± 0.02 0.083 ± 0.003
Discless 1.41 ± 0.10 0.95 ± 0.03 0.036 ± 0.001
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Figure 3.13: PDFs of intrinsic stellar variability for disc-bearing (left) and discless YSOs (right)
respectively.

also detected in a Herbig Ae stars by Rucinski et al. (2010). This is in contrast to the a ∝ 1/
√

f

‘flicker noise’ spectrum found in photometric data of TW Hya by Rucinski et al. (2008), although

the distribution of k that is shown in Fig. 3.14 certainly includes many stars with values of k con-

sistent with this lower value. Objects with a higher value of k display greater amplitudes at lower

frequencies than expected for standard a ∝ 1/
√

f flickering (Press 1978).

3.4.2 Sub-hour timescale variability

Analysis of the high-cadence dataset shows that variability on timescales of less than 0.5 hours

is almost entirely dominated by residual noise from the subtraction of the non-astrophysical SF

model. Fig. 3.10 compares the variability observed across the entire disc-bearing sample on

three different timescales of . 0.5 hours. The longer (0.5 hours) timescale appears to show a

weak tail of variability at the 1 to 2% level when compared with the shorter timescale. This is

probably real and is the tail of the power spectrum that we see at hour timescales and longer.

All variability on sub-hour timescales appear to be dominated by variability that is significantly

below the photometric uncertainties. This implies that both of these timescales are still within

Region 1 of Fig. 3.6, where the variability is dominated by the measurement uncertainty. Thus,

the vast majority of variability occurring in the disc-bearing sample on timescales less than ≈1

hour exhibits amplitudes comparable-to or less-than our measurement noise threshold (& 0.7%).

The discless sample shows almost the same result, except for two stars which do exhibit some
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Figure 3.14: Histograms of derived parameters for YSOs in Cep OB3b. The top left panel com-
pares S (τ) when τ > tmax, for stars in the disc-bearing and discless samples. The top right panel
compares the exponent of the variability power-law (k) for the samples. The lower panel compares
tmax.
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Figure 3.15: tmax is compared with the rotation periods of periodic stars from Littlefair et al.
(2010). Blue diamonds are discless stars. Red circles are disc-bearing stars.

short timescale variability that may be associated with chromospheric magnetic activity.

Disc-bearing stars

I do not observe the short-timescale variability that is predicted to result from instability in accre-

tion shocks. Thus it is either very weak or not present in this sample. It may be that the emission

from the accretion shock is simply too hot to contribute significantly in the i-band, or it may be

that the quasi-periodicity that is predicted in the oscillation of the shock-front is in some way

disrupted (e.g. Matsakos et al. 2013). Alternatively, it may be that gas in the shock region is opti-

cally thin and thus any quasi-periodic emission from the shock-heated gas is emitted in the Balmer

continuum and lines.

Discless stars

In contrast to the disc-bearing stars, two individual discless sources in my sample do show bone-

fide short timescale variability. This is in the form of short brightening events which exhibit

amplitudes of 0.6 and 0.25 mag respectively. One of these brightenings appears to be a discreet

transient ‘flash’ with a total duration of less than 10 minutes. The other has a similarly fast rise-

time but then appears to decay more slowly. Fig. 3.16 shows the lightcurves of these events and

Fig 3.18 compares images taken before and during one of the events. The other was also inspected

and was confirmed to be real in the raw images.

T Tauri stars have long been known to exhibit flares, analogous to magnetic reconnection

events seen on the Sun. Guenther & Ball (1998) estimate a rate of 0.015 - 0.04 flares per hour



3.5. SUMMARY 99

7.46 7.47 7.48 7.49 7.50 7.51 7.52 7.53

BJD - 2456600.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

i 
[m

a
g

]
Star 4-1304

7.46 7.47 7.48 7.49 7.50 7.51 7.52 7.53

BJD - 2456600.0

0.4

0.3

0.2

0.1

0.0

0.1

i 
[m

a
g

]

Star 4-1660

Figure 3.16: Short-timescale transient events seen in the i lightcurves of two discless stars. The
lightcurves are normalised so that their quiescent magnitude is zero.

for WTTS based on 7250 spectroscopic observations of young stars in the Taurus and Chameleon

star-forming regions. I have 417 discless stars with high-cadence monitoring, each of which was

observed for 1.34 hours. The detection of two flares implies a flare-rate of 0.0036±0.0014 flares

per hour. This is significantly less than the rate seen by Guenther & Ball (1998). The two studies

do however use different techniques. My data rely on changes within the continuum emission,

whereas the study by Guenther & Ball (1998) detect changes in emission lines such as Hα. It

is expected that much weaker flare events would be visible in optically thin emission than in

the continuum, thus the lower flare detection rate in my data may be explained by the different

observing technique. Alternatively, the relatively low flare rate that I see may be explained if stars

in Cep OB3b are systematically older than those in Taurus and Chameleon and if their magnetic

activity reduces as function of time.

3.5 Summary

Analysing the i band variability of 755 disc-bearing and 445 discless sources on timescales be-

tween 1 minute and ≈ 10 years gave this study a uniquely large sample of data from which to

characterise population scale YSO variability. The key results are as follows.

• On timescales . 15 minutes, almost no variability is detected (at levels greater than ≈ 0.2%).

• Two discless stars show variability on minutes timescales, these are individual events that

appear to be ‘flare’ like activity.

• On timescales between ≈ 30 minutes and 1 week, the variability for both disc-bearing and

discless stars is entirely dominated by a power-law spectrum where the amplitude, a ∝

f −0.85±0.02 for disc-bearing stars and a ∝ f −0.95±0.03 for discless stars. It is notable that these
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Figure 3.17: Structure functions for the stars exhibiting short-timescale ‘flaring’ transient events.
Details as in Fig. 3.11. As the flare events are ‘one off’ events that only occur within the minutes
timescale dataset, the SF on longer timescales appears lower than on short timescales.

Figure 3.18: INT WFC i band images of star 4-1660 before (left) and during (right) the flare event
shown in Fig. 3.16. These images were taken ≈ 5 minutes apart at BJD 2456607.49479 and
2456607.49820 respectively.
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exponents are quite similar for both populations and close to a ∝ 1/ f found for stochastic

stars in NGC 2264 by Cody et al. (2014).

• Variability typically saturates on timescales on the order of the rotation period (disc-bearing:

tmax = 1.50 ± 0.07 days, discless: tmax = 1.41 ± 0.10 days). Whilst longer term variabil-

ity is observed (such as the years timescale modulation seen by Grankin et al. 2007), the

amplitude of the long timescale variability is less than that seen on timescales less than tmax.

• The median S τ when τ > tmax is 0.083± 0.003 for disc-bearing stars and 0.036±0.001 for

discless objects (note the uncertainties are the standard error on the median).

Whilst as expected the disc-bearing stars exhibit greater variability amplitude than discless stars

at all timescales larger than 1 hour, it is notable that other parameters are very similar. Whilst dif-

ferent physical mechanisms may drive the observed variability in disc-bearing and discless stars,

the similarity in tmax and k indicate that the timescales that these processes exhibit are remarkably

similar. tmax appears to correlate well with the rotational timescale of periodic stars and the distri-

butions of tmax seen imply that this holds true for the entire population. The close link between tmax

and rotation periods is probably no coincidence as optical variability is most-likely either driven

by the transit of cool or hot spots across the disc of the star as it rotates, or by accretion flows and

inner-disc structures that are coupled to the magnetic field of the star. On timescales longer than

the rotation period, It is striking that little additional variability appears in the structure function

analysis on timescales of up to 10 years. This implies that almost the full range of variability

that we might observe for a given star may be characterised by observing it for just a single ro-

tation period. In discless stars, ‘flare’ events appear to occur at a rate of 0.0036±0.0014 per hour

(roughly 1 every 12 days). In the sample of two flare events seen in Cep OB3b, the duration of the

brightenings range from ≈ 10 minutes to 1 hour.



Chapter 4

Performing simultaneous multi-colour
photometry and spectroscopy to explore
young star variability

4.1 Introduction

Understanding the circumstellar environment and accretion process in Young Stellar Objects (YSOs)

is crucial for the study of the formation of stars and planetary systems. Protostellar evolution, disc

dissipation and planet formation all hinge on the mass, energy and angular momentum exchange

that is regulated by the infall of material onto the surface of a young star. The central AU in these

systems is currently unresolved in any waveband, so I have used the time-domain to provide a win-

dow on this highly dynamic and variable region. I have chosen principally to study disc-bearing

YSOs as they show strong signs of accretion and a circumstellar disc (e.g. Ménard & Bertout

1999), yet the dusty envelopes that conceal very young stars have dissipated. Disc-bearing YSOs

can show complex variability in their optical photometric lightcurves with amplitudes up to several

magnitudes (e.g. Herbst et al. 2002; Alencar et al. 2010; Cody et al. 2014; Stauffer et al. 2014).

Similarly complex and variable behaviour are also seen in spectral lines (particularly emission

lines), which betray the presence of dynamic processes both in the disc and the stellar atmosphere

(e.g. Herbig 1962; Kenyon et al. 1994; Alencar & Basri 2000; Kurosawa et al. 2006).

Many previous approaches to the study of the central AU have concentrated on particular

spectral lines. However, spectra alone cannot discriminate between variability caused by changes

in flux from accretion related thermal continuum sources, changes in emission line flux, and ex-

tinction from the inner disc. For example, an increase in the equivalent width of the Hα emission

line could be due to an intrinsic change in Hα line flux caused by an increase in accretion rate.

Conversely however, the same equivalent width increase of the Hα line could be caused by a re-

duction in the continuum flux caused by dust obscuration of the photosphere that does not effect

the Hα flux from wind emission. Flux calibration of the spectra is required to break the degeneracy

between these two very different physical phenomena.

Both slit and fibre-fed spectrographs suffer from losses at the slit or fibre aperture. Changes

102
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in the seeing and transparency vary the fraction of the light from the star that reaches the detector.

Thus accurate flux calibration of ground-based spectra is most simply achieved though obtaining

simultaneous photometry of the targets and using this photometry to correct the spectra for the

seeing losses and transparency variations. Simultaneous photometry also has the distinct advan-

tage that the optical SED can be characterised over a very wide wavelength range (in this study it

is from 3500 to 8000 Å), while monitoring a small region at higher resolution with the spectro-

graph. Whilst it is possible to monitor a wide spectral range at high-resolution for a single target

using some spectrographs (e.g. Echelle instruments), flux calibration across the wavelength range

is difficult and only one target may be measured at a given time. The advantage of my observations

is that I have been able to study a sample of 67 stars simultaneously, allowing analysis of a wide

range of variability behaviour across a range in mass, Teff and accretion rate.

In Chapter 3 I showed that monitoring on timescales of the rotation period is sufficient to

characterise almost all of the i band variability that we see in young stars. Thus this study monitors

YSOs in the Orion Nebula Cluster (ONC) over the course of seven nights. Typical rotation periods

for stars in the ONC range from two to ten days (Stassun et al. 1999; Herbst et al. 2002). Stars

of mass less than 0.25 M� and discless stars tend to have rotation periods at the lower end of this

scale. In those cases the monitoring will cover more that one full rotation of the star. Higher-mass

disc-bearing stars tend to have longer rotation periods and my seven nights will typically cover

greater than half of one rotation cycle.

The result of this monitoring is a large database of variability events in which I understand

the flux contributions to the lightcurve from the photosphere, accretion continuum and circum-

stellar extinction. This information, in combination with physical parameters from the literature

provides an opportunity to understand and characterise the underlying physical processes that drive

the variability.

4.2 Sample selection

The science goals demand a target sample of disc-bearing YSOs that exhibit a wide range of peri-

odic and irregular lightcurves covering a wide range of periods and amplitudes. The ONC contains

> 1000 variable disc-bearing stars with measured photometric lightcurves, showing rotation rates

in the range 2 - 10 days and with variability ∆ Ic of up to 2 magnitudes. Disc-bearing targets for

spectroscopy were selected using the optical variability catalogues of Rebull (2001) and Herbst

et al. (2002), as well as the near-IR catalogue of Wolk et al. (2014). I collected photometric vari-

ability data for ≈ 3000 stars in the ONC region, however the spectroscopic sample was much

smaller

The AF2/WYFFOS spectrograph uses 150 movable science fibres on a field plate at the

prime focus of the William Herschel Telescope. As the fibres may not cross and the positioning

buttons have a finite size, not all of the fibres may be placed on target stars in any given configu-

ration, thus limiting the actual number of targets to significantly less than 150 per field. The fibre

setup was configured to maximise the number of cluster members observed, whilst being weighted

toward stars with the highest amplitude variability. High amplitude variables are more rare, but are
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Figure 4.1: Literature variability parameters for all spectroscopic target stars. The left panel shows
a histogram of variability amplitudes measured in the optical catalogues of Rebull (2001) and
Herbst et al. (2002) and the near-IR catalogue of Wolk et al. (2014). Where a star appears in both
the optical and near-IR catalogues, its optical variability amplitude is used. The right panel shows
periods and variability amplitudes of stars in the spectroscopic sample where literature values
exist. Circles (green) are from Rebull (2001), crosses (blue) are from Herbst et al. (2002) and
diamonds (red) are from Wolk et al. (2014).

probably the most useful for studying the physics of YSOs. Thus this weighting scheme was used

to provide a sample which contained a higher fraction of high-amplitude variables than the general

population and provided effective sampling of the entire variability parameter space. Within these

selection constraints, the number of spectroscopic targets that I observed was therefore limited to

66, in-part due to the centrally condensed nature of the Orion Nebula Cluster. Once the science

target fibres had been configured, 22 spare unused fibres were placed randomly within the field

of view. These fibres were exposed concurrently with the science targets, allowing simultaneous

measurement of the spectrum of the sky. These sky spectra were later used to subtract atmospheric

emission lines from the science target spectra. Fig. 4.1 shows a histogram of literature variability

amplitudes (irrespective of periodicity) as well as the periods and amplitudes for known periodic

stars in the spectroscopic sample.

I wished to ensure that the monitoring cadence was less than 0.5 hours as the work de-

tailed in Chapter 3 suggested that this was the shortest timescale on which significant variability

behaviour might be seen. This cadence, when combined with the sensitivity of the spectrograph

determined that a brightness limit of V = 18 (I ≈ 15) was required for all targets. A CMD com-

paring the target stars with the whole ONC population is shown in Fig. 4.2.

To understand the spectroscopic veiling, luminosity excess and photospheric characteris-

tics of the disc-bearing stars, it was important that I also observed a selection of discless stars in

the ONC. Whilst providing an interesting sample in themselves, these stars also provided spectral

templates of approximately the same age, metallicity and surface gravity. Thus the disc-bearing

targets were supplemented with a sample of 21 discless stars in the field. The final field configu-



4.2. SAMPLE SELECTION 105

1.0 1.5 2.0 2.5 3.0 3.5

V−I

11

12

13

14

15

16

17

18

19

20

V

Figure 4.2: CMD comparing the positions of the spectroscopic sample (red circles) with the ONC
population (black crosses) in the photometric dataset used to select the spectroscopic targets. Pho-
tometry from Hillenbrand (1997).
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ration consisted of 67 stars. Details of these objects are shown in Table 4.1.

Table 4.1: Star ID numbers assigned in this study, stellar coordi-

nates and literature YSO classifications (from Megeath et al. 2012)

for all stars in the spectroscopic sample. N: Naked photosphere,

D: Circumstellar Disc, P: Protostar.

Star ID RA (J2000.0) Dec (J2000.0) YSO classification

hh mm ss.sss dd mm ss.ss

3 05 35 18.986 -05 37 36.76 N

4 05 35 20.294 -05 30 39.52 D

6 05 35 27.508 -05 35 19.47 N

8 05 35 35.602 -05 39 08.19 D

10 05 35 27.974 -05 29 31.10 D

13 05 35 44.311 -05 37 33.54 D

14 05 35 36.354 -05 31 37.87 D

20 05 36 00.305 -05 34 23.50 N

23 05 36 07.044 -05 34 18.27 D

24 05 35 30.277 -05 25 51.62 N

26 05 36 03.861 -05 30 18.81 D

30 05 35 54.628 -05 27 07.56 D

36 05 36 14.590 -05 25 49.83 N

40 05 35 44.845 -05 24 34.48 N

42 05 35 46.614 -05 22 24.32 D

45 05 36 08.688 -05 21 02.16 N

49 05 36 10.494 -05 19 44.91 D

50 05 35 35.289 -05 21 27.15 D

58 05 35 50.773 -05 16 29.18 D

59 05 35 26.169 -05 20 06.05 D

62 05 35 52.760 -05 12 59.01 D

66 05 35 46.123 -05 10 51.78 D

70 05 35 54.056 -05 04 14.76 D

71 05 35 32.443 -05 15 06.90 D

72 05 35 43.555 -05 05 41.46 D

74 05 35 37.686 -05 06 32.10 D

75 05 35 38.529 -04 59 41.15 D

77 05 35 25.231 -05 15 35.83 D

79 05 35 23.442 -05 10 51.78 N

81 05 35 12.819 -05 15 24.03 N

84 05 35 09.140 -05 06 47.16 N

85 05 35 06.828 -05 10 38.53 N

88 05 35 01.426 -05 09 32.61 N
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90 05 34 47.949 -05 04 55.01 D

92 05 35 04.762 -05 17 42.17 D

95 05 34 45.190 -05 10 47.65 D

98 05 34 54.941 -05 17 01.79 D

101 05 34 30.248 -05 11 48.20 D

104 05 34 29.260 -05 14 39.75 D

107 05 35 02.438 -05 20 46.58 N

108 05 34 07.316 -05 13 45.47 N

110 05 33 48.222 -05 13 26.21 D

111 05 34 42.958 -05 20 06.99 N

115 05 34 52.163 -05 22 31.95 N

118 05 33 44.719 -05 21 04.08 N

119 05 34 46.570 -05 23 25.61 D

121 05 33 41.675 -05 24 04.26 D

124 05 33 47.652 -05 25 48.58 N

126 05 34 28.520 -05 24 57.89 D

127 05 34 26.164 -05 26 30.40 D

130 05 35 00.468 -05 25 14.31 D

133 05 34 19.548 -05 30 19.86 D

134 05 34 17.485 -05 31 58.63 D

135 05 34 00.346 -05 35 43.45 N

137 05 34 03.003 -05 36 57.28 D

139 05 34 52.759 -05 27 54.58 D

141 05 34 47.894 -05 30 46.57 D

143 05 34 37.468 -05 34 51.95 D

146 05 34 27.852 -05 41 37.81 N

149 05 34 48.309 -05 37 22.82 N

150 05 34 45.875 -05 41 09.70 D

152 05 34 41.179 -05 46 11.64 D

153 05 34 49.098 -05 46 05.00 D

155 05 34 54.911 -05 46 43.93 D

157 05 35 06.445 -05 33 35.19 P

158 05 35 12.210 -05 30 32.91 D
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Table 4.2: Central coordinates in each field of view for INT pointings
Field No. RA Dec.

(J2000.0) (J2000.0)
1 05h35m26s.64 -05◦30

′

03
′′

.6
2 05h35m12s.48 -05◦15

′

39
′′

.6
3 05h35m31s.68 -05◦25

′

51
′′

.6

4.3 Data collection

Simultaneous photometric and spectroscopic observations were made using the 2.5-m Isaac Newton

Telescope (INT) and the 4.2-m William Herschel Telescope (WHT) respectively. Both telescopes

are located at the Observatorio del Roque de los Muchachos on La Palma and, importantly, co-

location practically guaranteed simultaneous temporal coverage of the targets. Observations were

performed on seven consecutive nights during 2013 November 7-13. Time-series photometry was

collected continuously for between 5 and 7 hours, on every night. Spectral time-series were col-

lected for ∼ 6 hours on the nights of November 11-12 and for 2-3 hours per night on the other five

nights.

4.3.1 Photometric observations

INT photometry was performed using the Wide-Field Camera (see Chapter 3 for details of the

instrument). RGO-U (centred at 3630 Å) and g, r and i broad-band filters with similar bandpasses

to the Sloan Digital Sky Survey (SDSS) filters were used. In addition, observations were made

with a 95 Å wide, narrow-band Hα filter centred on 6568 Å. I also observed using a 92 Å wide

narrowband filter centred on 6800 Å (n6800) which was entirely encompassed by the wavelength

range of the WHT spectra. This photometry allowed me to flux calibrate the spectra (see Section

4.3.8). The seeing thoughout the seven nights varied in i between 0.9 and 4 arcsec with a median

and standard deviation of 1.6 and 0.7 arcsec respectively. In g, the seeing varied between 1.1 and

6.1 arcsec with a median and standard deviation of 1.8 and 0.9 arcsec. The nights of the 7th to the

9th of November were affected by thin cirrus cloud, though typically extinctions were less than 0.5

magnitudes. The nights of the 10th to the 12th of November were photometric. The final night was

affected by cloud and so only n6800 and U observations were made when possible.

To cover the same field-of-view as the spectroscopic observations, I cycled between three

overlapping fields with the INT. The offsets between fields also provided coverage in regions

where gaps between the CCDs and bad pixel columns prevented data collection. Field centres

are detailed in Table 4.2. Each field was observed with the full set of broad and narrow filters

using the exposure times detailed in Table 4.3. The total observing time (including CCD readout

and filter changes) for each field was ≈ 20 minutes. Lightcurve cadence for a given star was then

determined by whether it fell in one, two or three of the INT fields, resulting in 20, 30 or 60 minute

mean cadence respectively. In addition to the time series monitoring, four fields in stripe 82 of the

SDSS were used as photometric standards and were observed on three different nights.
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Figure 4.3: 2MASS J-band image of the Orion Nebula Cluster region with my three INT WFC
fields of view overlaid. Fields 1, 2 and 3 are represented by black, blue and purple CCD mosaics
respectively. The positions of stars simultaneously monitored using the AF2/WYFFOS spectro-
graph are marked with red squares.

Table 4.3: Filters and exposure times used for each of the cycled INT pointings
Filter λcentral FWHM Exposure time

Å Å sec
U 3630 638 100
g 4846 1285 20
r 6240 1347 10

Hα 6568 95 100
n6800 6800 92 100

i 7743 1519 10
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4.3.2 Image reduction and optimal photometry

Bias subtraction, linearity correction, flat-field correction and bad-pixel masking were performed

as described in Section 3.2.2. Band specific twilight flat frames were constructed using frames

from each of 11 morning and evening flat field observations taken over the course of the 7 ob-

serving nights so that any outlier frames could be rejected though median combination. Due to its

short exposure time, the i band observations were not subject to de-fringing as the predicted fringe

amplitude based on analysis of library INT fringe frames was only ≈ 1ADU count.

The data were analysed using the cluster software package described in detail by Naylor

et al. (2002), Burningham et al. (2003) and Jeffries et al. (2004). Deep images for each field were

created using the individual n6800 images. This deep frame was then used for object detection

and the catalogues for each field were merged to create a single large ‘master catalogue’ in which

each star had its own unique ID number. The Two Micron All Sky Survey (2MASS; Cutri et al.

2003) was used to provide an astrometric solution for the deep catalogue. Deep frames were then

constructed for each individual filter and field using a median stack of the 10 frames with the best

seeing and transparency conditions. These deep frames were searched to detect object positions

and to provide a reference for measurement of pointing offsets in the individual frames. The

astrometric solution (again using 2MASS) and the photometry were both found to be improved by

calculating positions and frame offsets on a filter by filter basis, rather than using a single colour for

the positions. This is probably (at least in part) due to the relatively low number of detected stars

in the U, g and Hα filters. The IDs of the objects found in the individual field and filter catalogues

were then corrected through astrometric matching to agree with those in the master catalogue.

List-driven optimal photometry was then performed on the individual frames, providing a flux

for each object. The fluxes were then ‘profile corrected’, a process that is analogous to ‘aperture

correction’ in aperture photometry (see Section 4.3.3). The photometric measurements were then

adjusted for any difference in the airmass and transparency for each frame, by determining a

relative transparency correction from bright but unsaturated stars.

An additional statistical uncertainty was added to each measurement at this stage to ensure

that the distribution of reduced chi-squared (χ2
ν) for all stars was independent of signal-to-noise

ratio and close to unity. Mean χ2
ν is greater than unity in all filters due to the intrinsic variability

of the majority of stars in the field. The additional uncertainty ranged from 0.007 to 0.02 mag and

reflects errors in the flat-field and profile corrections.

4.3.3 Profile correction

A spatially varying profile correction was calculated so that I could combine data for each star

from different fields. The profile correction was also essential so that I could calibrate the photom-

etry using standard star observations. Profile corrections are usually calculated by fitting low order

polynomial functions that vary as a function of position on the CCD for a sample of bright un-

saturated stars. Unfortunately, the high optical depth of the background OMC-1 molecular cloud

resulted in a paucity of well distributed bright unsaturated stars in each field, particularly in the

U, g and Hα bands. Profile-corrections were instead derived by a semi-empirical model that as-
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Figure 4.4: The two principal elements of the profile correction model for the g band photometry.
Left panel: The relation between the square of the seeing (in pixels) and the measured profile
correction for all bright, unsaturated stars in all g band frames. The blue points represent the
difference in measured magnitude for a given star in a given frame using optimal and large-aperture
(10 pixel radius) photometry. The linear fit (solid black line) shows the derived relation of -
0.002501 mag/arcsec2. This seeing component is removed prior to the subsequent fitting of tilts
and radial aberrations. Right panel: The ‘tilted plane’ components of the four CCD chips in the
camera.

sumed the profile correction was caused by modification of the point-spread-function (PSF) by a

combination of the seeing, CCD non-coplanearity and tilt, plus radially dependent optical aberra-

tions. The optimal photometry was compared with aperture photometry (with an aperture radius

of 10 pixels) of all bright unsaturated stars in all exposures and in all fields. The combination of

these measurements provided a much larger sample over which to fit than using individual frames

alone. The parameter which made the largest contribution to the profile correction is the seeing.

Fortunately the profile correction shows a strong linear relationship with the square of the seeing,

and combination of all of the data allowed this term to be fitted and corrected. Fig. 4.4 shows the

linear relationship between the square of the seeing and the profile correction in the g filter. The

squared dependence is to be expected as PSF errors are likely to be 2D in nature.

Once the effect of the seeing was measured and corrected, residual profile corrections were

then fitted assuming that the PSF was being spread due to inclination of the CCDs with respect to

the focal plane (documented1 as being up to 20 µm) and optical aberrations. The optical aberra-

tions are assumed to act radially about the optical axis and be caused by a combination of field-

curvature and coma. These model elements are also illustrated in Figure 4.4.

4.3.4 Correction of lightcurve systematics

Despite the care taken to prevent field-to-field errors in the reduction, some systematic offsets were

seen between lightcurves for the same star measured in different fields. Typically the offsets were

. 0.1mag. These resulted from flat-field errors caused by scattered light in twilight flat frames and

residual errors in the profile correction, possibly due to physical effects that were not accounted

1http://http://www.ing.iac.es/Engineering/detectors/ultra_wfc.htm
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for in the empirical model.

To assess and correct these offsets, I compared lightcurves for each star taken in different

fields. First I selected the highest quality lightcurve for each star as a reference, based on highest

mean flux and minimum χ2 deviation. I then measured the nightly offset between the lightcurve

for each field and the reference. A χ2 analysis showed that the nightly offsets were statistically

indistinguishable from a single offset over all nights for each field for a given star. Thus each

star had a single correction applied for each field that normalised the lightcurves together onto the

baseline of its highest quality lightcurve. Where poor quality or lack of data meant that the offset

could not be confidently determined, no correction was applied and the lightcurve flagged.

4.3.5 Absolute calibration of photometry

Five standard star fields in the SDSS ‘stripe 82’ were observed at a variety of airmasses throughout

the night of the 10th of November. Conditions on that night were photometric. These fields were

particularly suitable as Bell et al. (2012) presented a catalogue of over 10 000 main sequence stars

in these fields with U, g, r, i and z photometry that is calibrated in the INT WFC system (note: not

the SDSS system). Comparison of stars that matched between my data and Bell et al. (2012) was

used to calculate magnitude zero-points and extinction terms for the U, g, r and i filters.

The standard star fields had not previously been observed using the narrow-band n6800 and

Hα filters. Tim Naylor provided predicted narrowband magnitudes for the standard stars based

on their broad-band colours and theoretical models. This was achieved by first predicting r - i,

r - Hα and r - n6800 colours for main sequence stars in the mass range 0.1 - 7 M� using interior

models by Siess et al. (2000) and atmospheres by Allard et al. (2011). Fig. 4.5 shows the derived

relations. These models were used to predict r - Hα and r - n6800 for the standard stars using

their measured r - i colour. Hα and n6800 magnitudes were then found by subtracting the predicted

colours from the r band magnitudes. Comparison between the predicted narrowband magnitudes

and those measured in the standard field observations allowed zero-points and extinction terms to

be calculated.

The final photometric catalogue for the ONC was generated by combining the magnitudes

and colours for each star from all observations made on the night of the 10th of November. These

were then corrected for the mean airmass of the observations (using the standard star coefficients)

to give the final colours and magnitudes. All magnitude zero-points are calibrated in the AB

system.

4.3.6 Spectroscopic observations

Spectroscopic observations were made using AF2/WYFFOS with the R1200R grating and the

Red+4 detector. This provided a spectral range of ≈1500 Å at a resolution of R ≈ 3500. The

spectra were centered at ≈ 7000 Å and covered a wavelength range that included Hα, the Li

doublet at 6708 Å and several sets of TiO bands. Pairs of science exposures were bracketed by

observations of a B0.5V ‘telluric standard’ star (θ1 Ori D). The smooth and featureless spectrum

of the B0.5V star allowed me to measure the strength of atmospheric (telluric) absorption (caused
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Figure 4.5: Theoretical relations for r - i vs. r - Hα and r - i vs. r - n6800 derived for main sequence
stars in the mass range 0.1 - 7 M�. Interior models are from Siess et al. (2000) and atmospheres
are from Allard et al. (2011).

by the presence of molecules such as O2 and H2O) as a function of wavelength and thus correct

for these in the target spectra. Differences in air-mass between observations of the targets and the

telluric standard star were minimised through regular observation of the standard throughout the

night. This was important as any difference in airmass between target and standard gives rise to two

main problems. Firstly the correction of telluric absorption features will be incorrect as the line

depths vary as a function of airmass. Secondly, when flux calibrating, the airmass difference will

apply a smooth error to the flux calibrated data which mimics the atmospheric Rayleigh and Mie

scattering. The scattering losses are corrected in the target spectra by multiplying the atmospheric

transmission function derived for La Palma by King (1985) by the difference in airmass between

the target observation and its telluric calibration frame. A histogram of the differences in airmass

between all target and telluric standard star observations is shown in Fig. 4.6. The mean difference

in airmass is 0.047.

The exposure time for each observation was 900 seconds. This exposure time was shorter

than ideal for some of the fainter stars in the sample. However it had the advantage of minimising

contamination from cosmic ray artefacts and also allowed for regular measurement of telluric

stars, thus improving the removal of telluric lines. Spectra for the fainter stars in the sample

which achieved lower SNR in individual frames could be improved by stacking several consecutive

observations together. On the nights of the 12th and 13th of November four observations were made

of regions of sky offset from the target positions by 3 arcsec to the N, S, E and W. A mean of these

‘offset-sky’ spectra were later used to estimate and subtract the contamination in the target spectra

caused emission from the nebula.

Bias and dark frames were observed on each night. Observations of neon and mercury arc

lamp spectra were made several times per night. Comparison of these spectra with spectra line

catalogues were used to provide wavelength calibration. Both a tungsten lamp and the smoothly

illuminated dawn sky were observed on each night to provide ‘flat-field’ spectra.
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Figure 4.6: Histogram of airmass differences between target and telluric star observations for the
entire set of spectra. The mean of the modulus of the difference in airmass is 0.047.

4.3.7 Reduction and wavelength calibration

All frames were bias corrected using a median stack of 10 bias frames taken throughout the week.

Target and telluric spectra were flat-fielded to remove pixel sensitivity variations by dividing target

spectra by tungsten lamp spectra. Sky-flat frames were used to trace the fibre positions on the CCD

and a standard extraction was performed using routines originally developed by Mukai (1990).

The neon lamp spectra provide many strong lines for wavelength calibration blueward of

7000Å. The mercury lamp spectra complement these well by providing many strong calibration

lines redward of 7000Å. However, a technical failure prevented the use of the neon lamp on the

nights of 10th and 11th of November. For these nights, nebular emission lines ([O I] 6300.2 Å, [N

II] 6548.1 Å, [N II] 6583.6 Å, [S II] 6717.0 Å) within the science exposures were used to supple-

ment the mercury arcs and provide wavelength calibration. Cosmic ray removal was performed

via a sigma-clipping routine, based on the rms flux variability characterised as a function of wave-

length for each star.

4.3.8 Flux calibration and removal of night-sky and nebular contamination

A model was created that simultaneously corrected for atmospheric absorption and provided a

relative flux calibration. The high temperature of the B0.5V telluric standard spectrum renders

it intrinsically smooth, exhibiting no metal lines in the wavelength region of interest. Thus any

absorption features observed in the region of H2O or O2 atmospheric bands are faithful measure-

ments of these features. Despite being free of metal lines, the B0.5V standard does exhibit strong

hydrogen and helium absorption lines. To construct the calibration model I removed the H and

He lines in each observed B0.5V spectrum through a spline interpolation. I then divided each

target spectrum by the closest (in time) instance of the calibration model to remove atmospheric

absorption features.
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A spectrophotometric model of a B0.5V star was then created by median combining B0V

and B1V spectra from the catalogue of Pickles (1998) calibrated in units of fν (erg s−1 cm−2 Hz−1).

All spectra in this study are calibrated in fν, to allow for direct comparison with the photometric

measurements which are calibrated in the fν based AB magnitude system. This allows them to

be plotted together on the same axes to create a combined spectral-energy-distribution (SED) for

each star at each epoch.

The spectrophotometric model was reddened based on its broad band colours (Ducati 2002)

and the reddening law of Cardelli et al. (1989). This model was then smoothed by fitting a power

law function (which describes the Rayleigh-Jeans tail of such a hot spectrum well) thus removing

the H and He lines as well as residual noise. The target spectrum was then multiplied by the

spectrophotometric model, resulting in a flux calibrated target spectrum. Sky fibres and offset sky

exposures were also fluxed by multiplying by the same spectrophotometric model.

A model night sky spectrum was created for each exposure by median combining all of

the placed sky fibre spectra from that exposure. Nebular emission is spatially variable and so is

subtracted separately. Thus in the model night sky spectra, the nebular lines were removed by

interpolation. The appropriate night sky spectrum was then subtracted from each target spectrum.

Nebular contamination was modelled for each star by first subtracting the appropriate night sky

spectrum (which was created as described for target spectra) from the offset sky spectra for each

star. The four offset sky spectra for each star were then median combined to create a nebular

spectrum for each star. A scaling for the nebular spectrum was then calculated for each exposure

based on the ratio of the nebular line strengths in the placed sky fibres compared with the offset

sky nebular model for the same placed sky fibres. A mean of the corrections calculated for the 22

placed sky fibres was determined for each exposure and this factor was used to scale all nebular

spectra in a given exposure. The appropriate scaled nebular spectra were then subtracted from the

spectrum for each star at each epoch.

At this stage the target spectra were roughly flux calibrated and corrected for non-stellar

contamination but were still affected by seeing and transparency losses. The final flux calibration

was performed by calculating the mean flux (weighted by the filter transmission function) in the

spectrum over the n6800 bandpass for each observation. The flux measured in the n6800 photometry

at the closest epoch to the spectrum was then divided by the mean flux calculated within the spec-

trum to create a normalisation factor. Any spectrum that did not have a photometric measurement

within 15 minutes was rejected as the validity of the flux calibration would be uncertain. The

entire spectrum was then multiplied by the normalisation factor to create a final flux-calibrated

spectrum. Examples of flux calibrated spectra are shown in Fig 4.7. An example of a single epoch

combined photometric and spectroscopic SED for a single star is shown in Fig. 4.8. The reduced

datasets described in this chapter form the basis for the analysis in Chapters 5 to 9.
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Figure 4.7: Examples of individual (single epoch) spectra collected using AF2/WYFFOS. Spectra
are flux calibrated using n6800 photometry. Important atomic and molecular lines are labeled. All
stars display the presence of lithium, evidence of their youth. Star 95 shows weak photospheric
absorption lines, broad Hα emission and strong He I emission, all indicators of accretion.
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Chapter 5

Young star multi-colour photometric
variability

5.1 Introduction

Young stars have long been known to be time-variable at all wavelengths, from x-rays to the infra-

red (e.g. Joy 1945; Montmerle et al. 1983; Bouvier et al. 1993; Herbst et al. 1994; Burningham

et al. 2005; Morales-Calderón et al. 2011; Cody et al. 2014; Rice et al. 2015). The impact of

this variability on the spread in luminosity of the pre-main-sequence locus in CMDs is unclear,

particularly in very young regions such as the ONC where a high fraction (80± 5% according to

Haisch et al. 2001) of stars still have dusty circumstellar discs. A two-epoch study of Cep OB3b

and σ Ori by Burningham et al. (2005) found that variability was insufficient to explain the age

spreads observed, however these clusters are likely to be older than the ONC (Mayne & Naylor

2008; Bell et al. 2013) and have disc fractions below 35%, significantly lower than the ONC (Allen

et al. 2012; Hernández et al. 2007).

I show in Chapter 3 that YSO optical variability ‘saturates’ on timescales of ∼ 1 week, so

this seven night study provides an opportunity to study the full extent of variability in the CMD

for a very young cluster. I have performed this analysis in the g, g− i CMD as this (and the similar

V , V − I ) are often used for determining the ages and age-spreads of young stellar populations by

comparison with pre-main-sequence isochrone models (e.g. Hillenbrand et al. 1995; Hillenbrand

1997; Mayne et al. 2007; Bell et al. 2013) .

5.2 Variability in g, g − i

To study the effect of photometric variability on CMD position, I have taken each of the spec-

troscopic target stars and calculated its g and g - i magnitudes at all available epochs throughout

the seven nights of observations. The number of fields that a star appeared in and the quality of

the photometry determined how many CMD position epochs there were for each star. Photome-

try was only used when both the g and i magnitudes were flagged ‘clean’ and had S/N >10. For

each g magnitude measurement, I found the closest i magnitude measurement in the lightcurve

118
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and rejected any pairings with time differences > 60 minutes. Fig. 5.1 shows the results for a

small subset of stars from the sample. It is immediately clear from these plots that photometric

variability is able to move the position of a star very significantly in the CMD. A variety of be-

haviour is observed, some of which is consistent with motion along extinction vectors, indicating

temporal variation in the line-of-sight column density of dust (e.g. star 40 in Fig. 5.1). The rapid

timescale on which these changes occur indicate that the extinction changes are most likely to be

occurring close to the star, and are perhaps associated with the inner regions of the circumstellar

disc. Variability is also seen in many stars which infrared studies indicate do not have an optically

thick disc circumstellar disc. For these stars, the amplitude of the magnitude and colour changes

implicate cool spots as the source of the variability. Typically in these cases (e.g. star 6 in Fig.

5.1) an increase in brightness is correlated with a blue-ward shift in colour. This behaviour is

well known from previous studies of spots on T Tauri stars (e.g. Bouvier et al. 1986b). Beyond

these simple cases, a wide variety of phenomena appear to move stars across the CMD in many

different ways. A motion that is similar to extinction but ‘flatter’ is often observed, particularly

for stars fainter than the principal PMS locus. A clear example of this behaviour is shown by star

14 in Fig. 5.1. I shall later explore the idea that this behaviour is linked with changes in accretion

luminosity. This hypothesis is tested further using the spectroscopic data in Chapter 8. Further-

more, some stars show behaviour which initially appears difficult to explain. For example, star 10

in Fig. 5.1 shows variability in g in excess of 2 mag, and the increase in luminosity corresponds

to a reddening of the star. This system does not appear in any literature to be an eclipsing binary

system, and indeed within this dataset there is no indication that this is the case. The data (includ-

ing spectroscopic veiling measurements) indicate that the most likely explanation is that this star

is an ‘AA Tau analogue’ (Bouvier et al. 1999; Alencar et al. 2010) and that at high inclination the

equatorial regions of the star are occulted by orbiting circumstellar material. Hot, blue regions of

the photosphere that are associated with accretion may lie close to the high-latitude magnetic poles

and thus escape occultation along our line of sight. This would explain the colour, magnitude and

spectroscopic changes observed. This star was not however identified by Morales-Calderón et al.

(2011) who used 3.6µm lightcurves collected using the Spitzer space telescope to identify some

AA Tau analogue stars in the ONC.

5.2.1 Variability trends

Using the photometric variability data for the entire population, I have searched for correlation

between variability and location in the CMD or other physical parameters such as accretion and

discs.

Fig. 5.2 compares the variability in the g, g - i plane with CMD position. The variability

for each star has been characterised by finding the mean CMD position for each star and fitting a

linear least-squares-fit to its locus of positions in this plane as a function of time. The length of the

line represents the rms displacement along the variability vector with respect to the mean position

for that star. The points are coloured to show whether they are in the accreting, non-accreting disc-

bearing or discless samples identified in Chapter 8. Discless stars in this case are those that are not

found to show an infrared excess by Megeath et al. (2012) and also have a membership probability
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Figure 5.1: g, g − i colour-magnitude diagrams for a selection of target stars showing how their
position varies in CMD space over the course of one week. The black points are the mean colours
and magnitudes for all stars with clean photometry in this study. The red (grey) points are the
positions at different epochs for the target star in question. The inset is a close-up of the positions
of the target star, coloured to represent the epoch and highlighting the photometric uncertainties.
Extinction vectors corresponding to AV = 1.0 are shown for RV = 3.1 and 5.5. A range of move-
ment is seen in this diagram, the physical nature of this is investigated in later sections of this
thesis.
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Table 5.1: Derived parameters for CMD variability for stars in the ONC. Each parameter has a
mean value quoted with its standard error. The standard deviations of each parameter across the
samples are also shown.

Classification 〈vectorlength〉 σ vector length 〈grad〉 σgrad 〈∆g〉 σg
Discless 0.085 ± 0.007 0.112 0.96 ± 0.05 0.76 0.057 ± 0.005 0.080

Non-accreting disc-bearing 0.092 ± 0.004 0.065 1.21 ± 0.06 0.90 0.062 ± 0.003 0.055
Accreting disc-bearing 0.145 ± 0.008 0.106 1.17 ± 0.06 0.81 0.098 ± 0.006 0.086

> 95% from Hillenbrand (1997). For the vast majority of stars, a linear fit to the variability in the

CMD plane is a good approximation of their behaviour, see examples in Fig. 5.1 and Appendix A.

Table 5.1 summarises the population-level mean vector lengths, gradients and g band vari-

ability. It is immediately apparent in this analysis that the accreting population exhibits signifi-

cantly greater variability in the CMD than the non-accreting disc-bearing or discless populations

(see Fig. 5.3). It is also apparent that the variability vectors do not lie parallel to either the red-

dening vectors or the pre-main-sequence locus. This indicates that the causes of the variability

are not simply variations in extinction (although this may play a role) and that variability will act

to broaden the pre-main-sequence locus. Broadening of the locus will add an apparent spread in

age that is not real. The measured gradients indicate that the accreting stars exhibit variability

in CMD space that is ‘flatter’ than the reddening vector and acts to move stars blueward away

from the PMS locus more effectively than for non-accreting disc-bearing stars. The gradients for

discless stars are even flatter than the accretors, although their relatively low amplitudes limit the

spreading effect about the PMS locus. It is curious that whilst the amplitude of the variability is

similar between the non-accreting disc-bearing stars and the discless stars, the discless variability

is much ‘flatter’, perhaps alluding to a reduced influence from the much steeper extinction vector.

5.3 What contribution does variability make to the ‘age spread’ in
the g, g - i diagram for the ONC?

5.3.1 Motivation

In Chapter 8 I will show that accretion luminosity can spread the positions of pre-main-sequence

stars in the CMD, emulating a spread in age. This effect appears to be the dominant source of

luminosity spread for accreting stars, however for the remaining non-accreting stars (both with and

without discs) there remains a luminosity spread that is broader than can be explained simply by

binarity and photometric measurement uncertainties. Photometric variability has long been cited

as a potential source of luminosity spread (e.g. Hartmann 2001), in the next section I examine

whether that variability could be responsible for luminosity spread that is observed in the non-

accreting stars.
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Figure 5.2: A comparison of variability vectors for disc-bearing (left panel) and discless (right
panel) stars in the ONC. Each circular data point marks the mean g, g - i position for a given star.
The line running through each data point is a linear fit through the variability locus for that star.
The length of the line represents the rms variability with respect to the mean position. The points
are coloured to show whether they are identified as being in the ‘accreting disc-bearing’ (blue),
‘non-accreting disc-bearing’ (red) or ‘discless’ samples as identified in Chapter 8. The discless
sample only shows stars which have membership probabilities > 95% from Hillenbrand (1997).

5.3.2 Analysis

The dataset provides temporally well-sampled photometric measurements for 411 non-accreting

stars in the ONC, 59 of which have Spitzer detected discs. These non-accreting stars all have

membership probabilities > 95% in Hillenbrand (1997).

To test whether the observed CMD spread is explained by variability, I have assumed that

the cluster is truly co-eval, created a synthetic sample of single and binary stars that fits the mean

PMS locus and then displaced these model stars by an amount based on the variability observed in

the real data from this study. Comparison of this variability-broadened synthetic population with

the real data tells us how much spread can be attributed to photometry variability. This method

implicitly includes the effects of photometric uncertainty. This method is very similar to that

employed by Burningham et al. (2005), though in that study all stars (including accretors) were

included.

I modelled the intrinsic pre-main-sequence locus as a linear relation between 1.5 < g − i <

3.5. Within this range the linear assumption appears true and the real pre-main-sequence is densely

populated for effective comparison. Stars with g− i < 1.5 are close to the radiative-convective gap

(Mayne et al. 2007) and the density of stars available for fitting is significantly reduced. Stars with

g − i > 3.5 are getting close to the sensitivity limit in g such that faint objects are not detected,

hence potentially skewing the analysis. The linear fit to the PMS was calculated by dividing

the real CMD into 0.25 mag wide bins in g − i and calculating a mean magnitude for each bin,

iteratively clipped at 1.5σ until no further stars were rejected. The sigma clipping reduced the

impact of extreme stars. The binned magnitudes were then least-squares-fit with a straight line

described by the function
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Figure 5.3: The amplitude of the variability vectors shown in Fig 5.2 are presented for the accreting
(top left), non-accreting disc-bearing (top right) and discless (lower middle) stars as a function of
CMD position. The diameter of each symbol corresponds linearly with the length of the variability
vector in Fig 5.2. In addition to the CMD position differences between the populations, it is clear
that the accreting population exhibits significantly greater variability. The non-accreting disc-
bearing and discless populations are indistinguishable.
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g = 3.125(g − i) + 9.027. (5.1)

This linear fit is shown in the left panel of Fig. 5.4, compared with the real data. A number

of synthetic stars (equal to the number of real stars in the sample) were then generated with a

uniform distribution in g − i and a magnitude defined by the PMS locus function. Stars were

then randomly assigned to a binary population (assuming a binary fraction of 0.5) and given a

magnitude randomly selected from a uniform distribution between the single-star sequence and

the ‘single-star sequence + 0.75 mag’ corresponding to equal-mass binaries. The single-stars plus

binaries model population may be seen in the centre panel of Fig. 5.4, compared with the real

data.

Each synthetic star in the model population was then displaced by an amount corresponding

to real variability in the dataset using the following process. Firstly the synthetic star was matched

to the star closest in mean magnitude in the real data. A point was then randomly selected from

the lightcurve of the matched real star. The difference in magnitude and colour between this

lightcurve point and the mean for the real star was calculated. This is the variability-induced

CMD displacement for the real star about its mean position. The calculated displacement was

then applied to the synthetic star. This process was applied to all synthetic stars. The catalogue

of stars from which variability was measured contained only non-accreting stars. The variability

broadened synthetic population may be seen in the right panel of Fig. 5.4, compared with the real

data. To compare the spread in the real and synthetic populations I then calculated the difference

in g − i colour between all stars (real and synthetic) and the model locus at each star’s given

magnitude. Fig. 5.5 compares histograms of the deviations about the mean locus for the real and

synthetic data sets.

It is immediately clear from Fig. 5.5 that the variability-broadened model sequence does

not describe the full spread that is seen in the real pre-main-sequence population. To quantify the

discrepancy I calculated the rms deviation in g − i for the real and synthetic populations. The rms

of the real data, ∆(g − i) = 0.376 mag. The rms of the synthetic data, ∆(g − i)Var = 0.114. As

sources of luminosity spread may be assumed to combine in an additive manner

∆(g − i) =

√[
∆(g − i)Var

]2
+

[
∆(g − i)Other

]2
, (5.2)

where ∆(g − i)Other is the spread caused by unknown sources other than binarity, variability and

photometric uncertainty. It then follows that

∆(g − i)Other =

√[
∆(g − i)

]2
−

[
∆(g − i)Var

]2
, (5.3)

and using the measured values of these parameters

∆(g − i)Other = 0.358, (5.4)

so the fraction of the CMD spread that can be attributed to variability fvar
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Figure 5.4: The synthetic model population, constructed and compared with the real data for
the ONC. The left panel shows the real ONC data (black circles) overlaid with the model locus
(red line). The central panel shows a synthetic model population of stars with binary fraction
0.5 displaced equally about the model locus (red dots). The real data is compared (grey dots).
The right panel shows the synthetic population dispersed by the variability measured from my
real lightcurve data (red dots) and compared with the real data (grey dots). It is clear that the
spread in the model population which simulates the effects of binarity, variability and photometric
uncertainties is insufficient to explain the full luminosity spread in the data.

fvar =
∆(g − i)Var

∆(g − i)Var + ∆(g − i)Other
= 0.24. (5.5)

Thus only ∼1/4 of the CMD spread that is seen appears to be due to variability or measurement

uncertainties when the effects of accretion luminosity (and its intrinsic variability) are removed.

This is strong evidence to support the findings of Jeffries (2007) who conclude that intrinsic radius

spreads (of a factor 2-3) are present in the ONC.

A comparison was made between the deviation in g from the locus described in Equation

5.1 for each star. The measured deviations were compared with literature v sin i and period data to

investigate whether any correlation was present. No correlations were seen.

5.4 Summary

The ages for individual YSOs (in contrast to population studies) are also often calculated based on

their position relative to model isochrones in the colour-magnitude diagram. (e.g. Palla & Stahler

2000; Drake et al. 2005; Güdel et al. 2007). These derived ages often have a significant influence
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Figure 5.5: Histograms to show the spread in g − i present in the model (blue) and real (green)
CMD data for the ONC. Each histogram is contracted by binning the deviations in g− i shown for
all stars in a sample about the model PMS locus. The real data is clearly spread more widely than
the model dataset, implying that a source of spread is present in addition to the binarity, variability
and photometric variability modelled in this analysis.
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on the conclusions drawn about other astrophysically important parameters such as the formation

time for planets or dispersal time for circumstellar discs (Boss et al. 1989). The variability that is

displayed by young stars in this study shows that an age derived for an individual star based on its

CMD position in single epoch photometry must be considered highly uncertain, particularly for

accreting stars. Ensemble ages for a given star forming region will be more robust as the error on

the mean stellar locus will be far more weakly influenced by variability.

The spread in luminosity caused by variability, binarity and photometric uncertainty has

been shown to be insufficient to explain the luminosity spread that is seen in non-accreting stars.

This implies that other mechanisms may be responsible, or that there is indeed an intrinsic spread

in age in a given star-forming region. Additional sources of luminosity spread that are unrelated

to age may include imperfect extinction correction or spot-induced radius variations (Jackson &

Jeffries 2014).



Chapter 6

Dust within the inner regions of YSO
discs

6.1 Introduction

Grain-grain collisions in circumstellar discs around young stars represent the first stage of planet

formation (Beckwith et al. 2000). These collision are thought to be much more frequent than in

the interstellar medium (ISM) and allow dust grains to grow beyond the sub-micron sizes charac-

teristic of the ISM. Despite its importance in the process of planet-building, observational data on

how fast grain-growth occurs around young stars and what the distribution of grain sizes might be

within the disc is sparse and contradictory.

The only observational metric of dust grain sizes is through the wavelength dependence of

extinction measurements. Grain growth is expected to increase the opacity at long wavelengths and

decrease the opacity at short wavelengths. The opacity is likely to become completely grey (con-

stant with wavelength) as the grain size becomes much larger than the wavelengths in question.

Throop et al. (2001) estimated grain sizes in the outer regions ( > 350 AU) of a resolved circum-

stellar disc in Orion by comparing the opacity of the disc against the background nebular emission

at Hα and Paschen-α wavelengths. They found that the extinction appeared ‘grey’ to a level of

∼5%. This suggests that grains are larger than ∼ 5µm, 25 to 50 times larger than typical ISM

grains. Shuping et al. (2004) used Brackett-α measurements to refine this result, concluding that

grains slightly larger than ∼4µm were present. Ricci et al. (2010) model observed mm-wavelength

SEDs for 21 isolated disc-bearing stars in Taurus. They conclude that grain growth occurs quickly

in YSOs, perhaps even during the protostellar stage, and present evidence that mid-plane grain

sizes have reached sizes of 1mm. In contrast, Watson & Stapelfeldt (2004) observe light scattered

by the disc of HH30 and compare these observations with models of disc geometry and grain size.

They conclude that the dust opacity in the scattering layers of the outer parts of the disc of HH30

is not grey between 0.44 and 2.04 µm, however it is less chromatic than in the ISM. This suggests

that moderate grain growth has occurred but that small grains still dominate the visible and near-

infrared opacity. This result and others at wavelengths where the disc is optically thick are not

able to observe dust within the mid-plane of the disc. Thus grain growth may be underestimated,

128
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particularly if larger grains preferentially settle toward the mid-plane.

As these previous studies have relied on resolving the disc to perform their measurements,

they are limited by instrument resolution to studying the outer regions. It is not clear whether dust

grains within the inner regions of the disc differ from those of the outer regions and whether this

has any impact on the formation of planetary systems. However, McGinnis et al. (2015) suggest

that dust grain growth has occurred within the inner regions of YSO discs based on the infrared

colour evolution of photometry of stars apparently exhibiting occultation by inner disc dust in

NGC 2264.

As well as understanding the evolution of dust grains in the disc, the colour dependence of

disc-extinction is important to the study of the evolution of young stars. Very often the photom-

etry of young stars is corrected for the effects of extinction and reddening before conclusions are

drawn about important astrophysical parameters (e.g. Hillenbrand 1997; Mayne et al. 2007; Bell

et al. 2013; De Marchi et al. 2013). The photometric corrections are based on models of inter-

stellar extinction measured along sight-lines within the Galactic plane (e.g. Cardelli et al. 1989;

Fitzpatrick 1999) where the chromatic dependence of the extinction is defined by

RV =
AV

E(B − V)
(6.1)

where AV is the extinction in V and E(B − V) is the difference in extinction between the B and

V bands. A value of RV ≈ 3.1 is that typically adopted when dereddening young stars, however

the direct measurements of circumstellar disc dust opacity indicate that this value is most-likely

too low for extinction in high inclination YSOs. If we under-estimate RV , the effect is to under-

estimate the luminosity of young stars when correcting for extinction based on measured colour-

excess.

There is strong evidence that the inner discs of YSOs exhibit significant vertical structure

(Bouvier et al. 2003; Alencar et al. 2010; Morales-Calderón et al. 2011; Cody et al. 2014). Material

within the inner disc orbits close to the star (. few stellar radii) with near-Keplerian velocity. In

systems that are viewed at high inclination, orbiting vertical structures occult the star, causing the

observed flux to rise and fall on timescales of a few days.

Multi-wavelength simultaneous photometry and spectroscopy provides a unique way of

probing the opacity (and hence dust grain sizes) within these occulting inner-disc regions. By

selecting disc-bearing stars which show variability in their SED which is unrelated to changes in

accretion luminosity or cool spots (constrained using the spectroscopic time-series data), I can

measure the wavelength dependence of opacity changes in the inner disc dust.

6.2 Extinction driven variables as probes of inner-disc dust

6.2.1 Selection of purely extinction variability stars

To identify a set of stars that exhibit variability which is simply driven by changes in extinction, I

compare the equivalent width (EW) of the TiO band at 7050Å (EWTiO) with the n6800 flux at every

available epoch over the seven nights of observations. If the brightness of the star is varying due to
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changes in the accretion luminosity then I would expect to see changes in the veiling of the spectral

lines that correlate with the changes in brightness. If instead, the veiling remains constant as the

brightness of the star changes, then the variability mechanism is most likely to be occultation of

the star by material within the circumstellar disc.

Fig. 6.1 shows plots of n6800 flux against EWTiO for four stars from my sample which show

significant brightness changes at constant EWTiO. In contrast Fig. 6.2 shows the same parameters

plotted for two stars that exhibit brightness changes due to accretion (verified through changes in

U band excess) and cool-spots (verified through lack of a circumstellar disc) respectively. The four

stars identified as varying in brightness at constant equivalent width also show variability in the

U − g, g− i diagram that is consistent with motion along extinction vectors. It is not inconceivable

that some residual accretion luminosity changes may be present within the lightcurves of these

stars, however the effects of these luminosity changes must be present at a level < 4% (see Section

6.2.2) except in the case that accretion changes are extremely well correlated with changes in the

extinction. Also, in Chapter 5 I show that the accretion luminosity vectors in the g, g − i CMD are

quite similar in gradient to that of the extinction vectors. Thus, a low level of accretion luminosity

contamination will simply amount to a small systematic error that under-estimates the derived RV .

As shown in Section 6.2.3, this has little effect on the conclusion that grain-growth is occurring

within the inner disc.

6.2.2 Analysis of variability in the SED

The multi-colour photometric time series described in Chapter 4 allowed me to construct a six-

band multi-epoch photometric SED time-series that covered the wavelength range ∼ 0.36 - 0.77

µm. Thus I could study how the optical SED for each star varied over the seven nights of observa-

tions. Each single epoch SED for a given star was constructed by taking a point in the r lightcurve,

finding the closest photometric measurement in each of the other bands and combining them into

a single SED. All of the measurements for a given single epoch SED were made within 0.5 hour

of the r measurement and most were made within < 10 minutes.

To identify the most important spectral contributors to the SED variability, I applied a

principal component analysis (PCA) to the SED time series. PCA identifies the smallest set of

independent spectra (that must be added to the mean spectrum) that account for the observed

variance in the time-series. The first step was to calculate the mean spectrum 〈S〉 and subtract

it from the individual SEDs. Next I computed the covariance matrix of the SED time series and

determined the eigenvectors (Ei) and eigenvalues (Λi) of the covariance matrix. Components were

then sorted by eigenvalue, and the contribution of each component to the overall variability was

determined by Λi/
∑

Λi where
∑

Λi is the sum of the eigenvalues for all components.

Individual spectra S (t) are re-constructed as

S (t) ≈ 〈S 〉 + c0(t)E0 + c1(t)E1 + . . . + ci(t)Ei (6.2)

where the series is truncated to include only components that contribute significantly above the

noise level. ci(t) is the projection of the principal component onto the individual S (t) − 〈S〉.
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Figure 6.1: n6800 flux plotted against EWTiO for four stars which show flux variability without
apparent changes in the EW of the photospheric lines. The blue points are the measurements for
the star at epochs over 7 nights of observations. The black dotted lines are vectors along which the
star should move if the line EW was ‘veiled’ by an amount corresponding to the change in flux in
the n6800 band. As these stars move vertically in this plot, the flux changes that we see are likely
to be driven by occultation/extinction of the star rather than changes in the accretion luminosity
or cool-spot coverage. Fig 6.2 shows the equivalent plot for two stars which show photometric
modulation that is attributed to changes in accretion luminosity and cool spots.
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Figure 6.2: For comparison with Fig. 6.1, the same data is plotted for a star that shows significant
accretion luminosity changes (left panel) and brightness changes that are attributed to change in
cool-spot area (right panel). They are clearly distinguishable from the stars in 6.1 as they show
significant changes in EWTiO as the n6800 flux varies. The black dotted lines are vectors along
which the star should move if the line EW was ‘veiled’ by an amount corresponding to the change
in flux in the n6800 band.

Table 6.1: Key parameters for stars which show variability in extinction. Ai is that measured in
Chapter 7 at a single epoch and varies from this value. Spectral types are from Hillenbrand et al.
(2013). The fraction of the SED variability described by the FPC is shown in column 6. In all
of these stars, the variability due to the FPC is dominant, comprising > 96% of the variability
observed.

Star ID RA Dec Ai Spectral type First PC fraction
hh mm ss.ss dd mm ss.s mag %

62 05 35 52.76 -05 12 59.0 0.25±0.25 K5-K6 98.7
66 05 35 46.12 -05 10 51.8 0.25±0.25 K7 97.5
133 05 34 19.54 -05 30 19.9 1.10±0.25 K5 96.8
158 05 35 12.21 -05 30 32.9 2.10±0.25 M0.5 98.5

For the four extinction modulated stars, just one principal component is required to recon-

struct > 96% of the variability in the SED time-series. This strongly implies that just a single

physical phenomenon is changing the luminosity of the star and the constant equivalent width of

the photospheric TiO lines is strong evidence that the variability is unrelated to changes in accre-

tion luminosity or cool spots. The first principal component (FPC) for each of the four stars are

compared with their mean SEDs in Fig. 9.7. The fraction of the variability that the FPCs describe

are shown in Table. 6.1.

6.2.3 Measurement of RV

To determine the wavelength dependence of the extinction, the mean scaled FPC for each star

was divided by its mean spectrum to derive the extinction curve. To eliminate the possibility of

variability due to seeing, chromospheric activity or wind emission spuriously influencing the result
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Figure 6.3: The mean spectrum (black) compared with the FPC (red) for each of the ‘extinction’
driven variable stars. In each case the FPC has been scaled by its mean amplitude from the seven
nights of observations. The FPCs describe almost all of the variability (> 96%) for each star. Each
FPC also appears to be essentially a scaled version of the mean spectrum, supporting the assertion
that extinction changes are driving the variability in these stars.
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I have not included the Hα photometry in this analysis. Both the mean spectrum and the FPC will

be reddened by the ISM between the star and the observer, however by dividing one by the other,

this effect is cancelled and any chromatic dependance is associated with a change in extinction

that has occurred on the timescale of hours or days.

To compare the extinction curves for each star against those published for the ISM, the

curves were normalised at the effective wavelength of the V filter (≈ 5500Å). Fig. 6.4 shows the

normalised extinction curves with ISM models from Cardelli et al. (1989). On comparison with

the models, it is immediately clear that the extinction for the stars is ‘greyer’ than that of the ISM.

To quantify this, I have calculated RV for each star. As the definition of RV is based on the Johnson

B and V filters (Bessell 1990), I have predicted the extinction AV and AB in these filters. I did

this by performing a simple linear interpolation between my extinction measurements which are

made at the effective wavelengths of the INT WFC filters. I then calculated RV as per Equation

6.1. The measured values are shown in Table 6.2. It is possible that increases in extinction that

are highly correlated with increases in accretion luminosity (particularly U band) could bias this

measurement toward a higher value of RV . Whilst this is possible it appears unlikely, as changes in

veiling should be observed if changes in accretion luminosity were occurring. Changes in veiling

are not seen, implying that changes in accretion luminosity are small.

The wavelength dependence of the extinction ranges from RV = 5.03 to 8.26. Thus the

circumstellar material being probed imparts a smaller colour dependent extinction than is typical

for the ISM (RV ≈ 3.1). This implies that typical grain size distribution is greater than that the

10−3 to 1µm distribution modelled for the ISM by Weingartner & Draine (2001). This range of RV

values also indicates that whilst dust grain-growth has occurred within the disc environment, the

typical grain size appears to be smaller than the ∼ 5µm grains found in the outer disc by Throop

et al. (2001). In practice, we are looking at a distribution of grain sizes and the behaviour observed

would be well modelled by simply increasing the fraction of grains larger than 1µm compared

with the ISM.

Table 6.2: Derived extinction parameters for ‘variable extinction’ stars. AV and AB are found
by linear interpolation of extinctions in the INT WFC filters. Note that all of the RV values are
‘greyer’ than that typically adopted for the ISM (RV ≈ 3.1).

Star ID ∆AV ∆E(B − V) RV

62 0.240 0.039 6.11
66 0.174 0.035 5.03
133 0.163 0.020 8.26
158 0.308 0.044 7.02
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Figure 6.4: Normalised extinction curves for the YSO variability are compared with ISM models.
The black points are the extinction curves calculated for each star, coloured lines are models of
extinction from Cardelli et al. (1989), using RV = 3.1, 5.0 and 7.0. It is clear that the circumstellar
extinction is ‘greyer’ than that typically seen in the ISM, implying that grain growth has occurred.
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6.3 Discussion

6.3.1 The location of the extincting material

The short timescale of the extinction changes that are studied strongly imply that the their origin

is within the inner regions of the circumstellar disc. Alencar et al. (2010) studied photometric

variability in NGC 2264 and found that 28 ± 6% of disc-bearing stars show photometric fading

consistent with periodic dust obscuration of the photosphere. Periods between 2 and 15 days were

found, the peak of the distribution being at ∼ 5 days. They interpreted these results as being due

to quasi-stable vertical structures within the inner disc, orbiting at close to Keplerian velocity,

analogous to the well studied AA Tau system.

If the extinction events that I have observed are due to AA Tau type phenomena, then given

the typical range of orbital periods observed and assuming Keplerian orbital motion about stars

with mass 0.1 < M? < 2.0M�, one can simply calculate the likely range of orbital radii over which

this material must occur. Fig. 6.5 shows the orbital radius dependence (in R�) of period and stellar

mass in a Keplerian system. In the case of extinction in an AA Tau analogue system, the material

will most likely lie between 5 and 30 R� (0.02 - 0.14 AU) from the star.

It may be that the extinction changes that I have studied are not actually related to the AA

Tau phenomenon and may instead be due to clumps of material located above the surface of the

disc within regions further from the star. The size of these clumps is constrained by the magnitude

and rate at which the variability occurs. I see flux changes of order two that occur on timescales of

a single night. For a clump to appreciably attenuate the star (along our line of sight) and assuming

that the clump is much closer to the star than it is to the observer, it must have a linear size (along

the orbital velocity vector) that is of the order of the diameter of the star. For the change in flux

to occur on timescales of a single day, we can infer the limit on the radial position of the clump

within the disc through a dynamical argument. The orbital velocity of disc material reduces as the

radial disc position increases by

V =

√
GM?

r
. (6.3)

Where M? is the mass of the star, G is the universal gravitational constant and r is the orbital

radius. The minimum line-of-sight crossing velocity for material occulting the star is

Vmin ≈
2R�
∆t

. (6.4)

So the upper-limit on the orbital radius of clump material that could cause the extinction changes

that we see is

r .
GM?∆t2

4R2
�

. (6.5)

Fig. 6.6 shows Equation 6.3 plotted for stars with masses of 0.1, 0.5, 1.0 and 2.0 M�. The

orbital velocity is calculated to a radius of 1000 AU. The minimum orbital velocity that is possible

to occult the star in 1 day is calculated using Equation 6.4 and is also compared in Fig. 6.6. This
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Figure 6.5: Calculated orbital radii of material in Keplerian orbits about stars with mass 0.1, 0.5,
1.0 and 2.0 M� as a function of period. The radii calculated are typical of quasi-static structures
in the inner-discs of ‘AA Tau analogue’ systems found in NGC 2264 by Alencar et al. (2010).

places limits on the maximum radial distance of clumps that could be causing the extinction that

is seen. The radial distance must be less than ∼ 20 AU for a star of 1M� and less than ∼ 1.5 AU for

a star of 0.1M�. These limits are conservative as the radius of a 1M� star is assumed to be ∼ 1R�.

In reality a PMS star will be of a larger radius that its equivalent main-sequence dwarf, thus the

minimum velocity limit will be higher and the outer orbital radius limit will be smaller. The inner

radial limit of extinction measurements made by Throop et al. (2001) and Shuping et al. (2004)

are ≈ 350 AU.

The extinction measurements made in this study are for dust that must be at least 1 - 2

orders of magnitude closer to the star than those made by resolved imaging studies. However, the

further away from the star that we consider these extincting clumps to be, the less likely it is that

we are able to observe them as the required inclination and range of possible inclinations becomes

much smaller. Thus, by a probabilistic argument, it is more likely that we are observing extinction

by AA Tau like structures than more distant clumps at up to 20 AU from the star.

6.3.2 Grain growth

RV values of between 5.03 and 8.26 are measured for extinction within the central regions of four

YSO discs. This suggests that moderate grain growth has occurred but that grains are smaller than

the 4-5 µm grains found by Throop et al. (2001) and Shuping et al. (2004) in the outer disc. It is

not possible to tell whether the grain-growth within the inner regions has been inhibited in some

way by the intense radiation from the star or by particle collisions, or whether smaller grains are

present due to reprocessing of material during accretion outbursts (Ábrahám et al. 2009).



6.3. DISCUSSION 138

10-2 10-1 100 101 102 103

Orbital radius [AU]

10-1

100

101

102

O
rb

it
a
l 

V
e
lo

ci
ty

 [
A

u
/y

r]

0.1M¯

0.5M¯

1.0M¯

2.0M¯

Formalhaut b

HD 217107b

GJ 436b

Figure 6.6: The Keplerian velocity of material orbiting stars of mass 0.1, 0.5, 1.0 and 2.0 M� as a
function of orbital radius (black solid lines). The black dotted line shows the lower limit of orbital
velocity required to occult a star of radius 1R� in 1 day. The dotted line places upper limits on the
orbital radius of clumps that could provide the variable extinction that I measure in Section 6.2.3.
For comparison Mercury, Earth, Jupiter and Neptune (black crosses) and some extra-solar planets
(labelled black circles) are shown. The inner radius of the measurement by Throop et al. (2001) of
outer disc dust is shown by the black dashed line, indicating the regions probed in this study are
between 1 and 2 orders of magnitude closer to the star.
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If this dust is indeed located within AA Tau like warped disc structures, the implications for

the mechanism of grain growth are profound. Models of YSO discs suggest that the ‘snow line’

(the radius beyond which temperatures are low enough for the formation of icy materials) is of

the order of an AU or greater (Sasselov & Lecar 2000; Kennedy & Kenyon 2008; Martin & Livio

2012). In the ISM, the mechanism that is invoked to explain differences in observed values of RV

is the addition of icy mantles on the surface of dust grains (Draine 2003). Within the snow line of

YSO discs it is too hot for such icy mantles to form, thus the implication is that the grain growth

observed here must be due to genuine coagulation of small dust grains to form larger grains. This

view is supported by the observations of McGinnis et al. (2015) who detect a difference in infrared

extinction slopes (the ratio A4.5µm/AR) between inner disc dust in AA Tau analogues in NGC 2264

and that seen in the ISM. In the ISM, the infrared extinction slope is quite insensitive to RV . The

discrepancy in A4.5µm/AR might therefore imply that in YSO discs, not only are the small grains

growing and hence influencing the optical extinction, but that a new population of grains have

formed at the large end of the size spectrum, beyond that normally seen in the ISM.

6.3.3 Photometric extinction correction

When correcting the magnitudes of stars for the effects of extinction, models usually assume RV ≈

3.1. If however, a significant fraction of the extinction for a given star is due to material in the

circumstellar environment rather than the ISM, the findings of this study indicate that the RV value

should be higher. If RV is systematically underestimated, then the extinction-corrected luminosity

of the star will also be underestimated. This would lead to a spurious radius determination and

CMD or Hertzsprung-Russell diagram derived ages would be over-estimated.

For the four extinction variable stars in this study, I can put some limits on the fraction

of the extinction that results from both the ISM and the circumstellar environment as the overall

extinction has been estimated using spectral fitting in Chapter 7. The mean extinction change due

to occulting inner-disc material has been calculated by multiplying the FPC i flux measurement by

the mean FPC amplitude from the seven nights of observations. As the mean extinction change is

a deviation from the mean spectrum and occurs in a positive and negative sense at some point in

the lightcurve, the peak-to-peak inner-disc extinction is twice the mean extinction change.

Table 6.3 compares the inner-disc extinction peak-to-peak amplitude (in the i filter) with

spectroscopically derived Ai values from Chapter 7. For two stars, the overall extinctions can be

entirely explained by the inner-disc circumstellar material. For the other two stars, ≈ 25% of the

observed extinction can be attributed to inner-disc circumstellar material, the rest being due to the

ISM or material within the outer reaches of the circumstellar environment.

The key outcome here is that for all stars in the sample, approximately 0.25 to 0.5 mag

of extinction in i is due to the circumstellar material rather than the ISM. Stars with relatively

low absolute extinctions will therefore have their Ai systematically over-estimated if it is based on

colour excess using RV = 3.1.

If we use the RV dependent extinction model of Cardelli et al. (1989), de-reddening an

extinction of Ai = 0.25 using RV = 3.1 rather than RV = 7.0 leads to an under-estimate of the V

band magnitude of 0.05. If the circumstellar extinction component is Ai = 0.5, the error becomes



6.4. SUMMARY 140

Table 6.3: Comparison of the spectroscopically derived Ai with the Peak-to-peak inner-disc ex-
tinction for the four ‘extinction variable’ stars. For stars 62 and 66, the overall extinction for the
star can be entirely explained by the circumstellar material. For stars 133 and 152, approximately
25% of the observed extinction can be attributed to inner circumstellar material, the rest being due
to the ISM or the outer circumstellar regions.

Star id Single epoch spectroscopic Ai Peak-to-peak inner-disc Ai

[mag] [mag]
62 0.25±0.25 0.38±0.2
66 0.25±0.25 0.28±0.14
133 1.10±0.25 0.24±0.14
158 2.10±0.25 0.5±0.28

0.1 mag in V .

6.4 Summary

Dust grain-growth is the first step toward building planets. Grain-grain collisions within circum-

stellar discs are thought to grow the grains toward the size where gravitational forces can begin to

assemble planetary cores. Previous studies have shown that dust grains present in the outer regions

of YSO discs (& 350 AU from the star) are 25-50 times larger than those in the ISM (Throop et al.

2001) and Shuping et al. (2004). Recently, McGinnis et al. (2015) has made the first suggestion

that larger grains are present within the inner regions of YSO discs and that dust evolution has

an impact on the wavelength dependence of circumstellar extinction. I have identified four stars

which show significant variability in their photometric SED whilst maintaining constant equiva-

lent width in photospheric TiO spectral lines. The obvious interpretation of this behaviour is that

the variability is due to variable extinction along the line-of-sight to the star. Comparison with

stars known to show variably due to accretion and cool spots as well as the similarity between

the variability SED and the mean SED support the ‘extinction change only’ explanation for their

variability. A principal component analysis shows that for each of these four stars, > 96% of the

variability can be explained by the addition of a single additional spectral component. The nor-

malised ratio of the first principal component to the mean spectrum for each star cancels the effect

of ISM reddening and allows the estimation of the chromatic dependence of the variable extinc-

tion (RV ). RV values are found to range from 5.03 - 8.26. This is significantly less wavelength

dependent than typical values for the ISM. This indicates that dust grains are larger than those in

the ISM and that grain-growth is occurring, however the wavelength dependence indicates that

some small grains must still be present.

The location of the material causing the variable extinction is determined from dynamical

arguments to be < 20 AU from the central star (assuming M? = 1 M�). In reality, it is likely that

it is much closer. If these stars are similar to AA Tau type stars (which Alencar et al. 2010, found

to be common in NGC 2664), the dust causing the variable extinction is likely to be < 30 R� from

the star. Either way, the dust is 1-2 orders of magnitude closer to the star than the larger grains
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(and ‘greyer extinction’) found by Throop et al. (2001) and Shuping et al. (2004).

Extinction of at least Ai ∼ 0.25 - 0.5 mag is found to be caused by circumstellar dust in

the four YSO systems. As RV is found to be greater for this material than than that assumed in

ISM models, extinction corrected V magnitudes will tend to be systematically under-estimated

by 0.05 - 0.1 mag for the four stars in this sample. If circumstellar extinction of this nature is

common, it is likely that measurements of stellar luminosity are under-estimated by 5-10% for

many disc-bearing stars, with resulting underestimates of radius and over-estimates of age in the

H-R diagram.



Chapter 7

Spectral typing, extinction and veiling
estimates for spectroscopic target stars

7.1 Introduction

Subsequent chapters in this thesis use the data described in Chapter 4 to understand the accretion

luminosity for young stars in the ONC. To perform these analyses, it is important that fundamental

parameters such as intrinsic photospheric colours, magnitudes, extinctions and veiling are well

defined. The spectra presented in this study for 67 ONC stars provide a powerful means to define

these parameters accurately for a representative sub-set of the population.

In accreting stars, veiling is often seen and reduces the equivalent widths of photospheric

lines. This veiling is principally caused by accretion luminosity, although there is evidence that

an additional source of veiling is present at wavelengths greater than ∼ 6000 Å which cannot

be explained by accretion shock models (Fischer et al. 2011). The veiling at 7000Å is typically

between 0.1 and 1, however in extreme cases it can be several times larger than the photospheric

emission (Hartigan et al. 1995; Fischer et al. 2011).

Hillenbrand (1997) and Hillenbrand et al. (2013) provide catalogues of spectral types, Teff

and extinctions for large (> 1000) numbers of stars in the ONC based on spectral indices from

low-resolution (R ∼1000) spectra. These spectral type catalogues make no estimate of the con-

tamination from optical veiling emission and thus the spectral type estimates (based on absorption

line depths) are systematically biased toward earlier classifications in accreting stars. As an exam-

ple, Hillenbrand (1997) states that an M2 star veiled with r5800Å = 1 would appear to be M0.5 and

r5800Å = 5 makes it appear as a K6 star. A similar bias is present in the catalogue of spectral types

by Da Rio et al. (2009) which are derived from narrowband-photometry of TiO bands. This bias

affects the subsequent determination of Teff , AV and H-R diagram derived age and mass.

The combined effect of veiling and reddening on the photometric colours of accreting stars

is both significant and degenerate. With photometry alone it is impossible to robustly define the

veiling and extinction without recourse to theoretical models which are known to be incorrect for

late-type PMS stars (see Bell et al. 2012, and references therein). Instead I have measured the

optical veiling for the accreting stars in this sample through comparison of the target spectra with

142
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non-accreting PMS template spectra. The higher resolution (R ≈ 3000) of my spectra compared

with Hillenbrand (1997) and Hillenbrand et al. (2013) aids in the precision of this task. 21 of the

67 spectroscopic targets are discless stars and almost all of these show no signatures of accretion in

their photometric colours. As these stars are likely to be broadly co-eval and of similar metalicity

and surface gravity to other stars in the ONC, they provide an ideal template sample.

Once a set of appropriate spectral type templates was established it was possible to perform

a fitting procedure which allowed the measurement of intrinsic g− i, extinction (A6800) and veiling

(r6800) at 6800Å. In Section 7.2 I show how template stars were selected and correct for the effects

of extinction and reddening of the templates. In Section 7.3 I describe the fitting procedure. In

Section 7.4 I present the results.

7.2 Discless templates

7.2.1 De-reddening of template stars - the TiO bandhead index vs. g− i for discless
stars.

The spectra collected for the discless template stars were first corrected for extinction and redden-

ing so that the template photometry and spectra represent the intrinsic SED of the stellar photo-

spheres. To achieve this I defined a relationship between the intrinsic de-reddened g − i colours of

the template stars and the strength of a temperature sensitive spectral index. My sample is biased

toward late-K and M stars. TiO is an effective temperature diagnostic in this temperature range

(e.g. Cruz & Reid 2002; Slesnick 2007) so the spectral index chosen was the ratio of flux in a

continuum region (7005 - 7035Å) to the flux in a temperature sensitive TiO absorption band (6750

- 6900Å). This spectral index is similar to that employed by Herczeg & Hillenbrand (2014) for

nearby T Tauri stars. Spectral indices are essentially unaffected by extinction and flux calibration

errors, providing the continuum and absorption bands used are similar in wavelength .

To avoid adding uncertainty through employing colour - Teff relations, I have chosen to

derive a direct relationship between the temperature sensitive spectral index and the observed de-

reddened g−i colour. As I simply wish to link an accreting star to its intrinsic photospheric colours

via the non-accreting templates, a direct estimate of Teff is not necessary.

The discless template stars are scattered throughout the ONC and the patchy nature of

the interstellar material in the region mean that they have a variety of extinctions. Fortunately a

proportion of the sample have very low extinctions. This allowed the relation between TiO spectral

index and intrinsic g − i to be derived from stars that have little or no reddening affecting their

photospheric colours. I identified the low extinction templates by selecting stars with AV < 0.05

from Hillenbrand (1997). As these stars were unaffected by accretion or discs, these extinction

estimates should be robust. Fig. 7.1 shows the spectral index plotted against g − i for all of the

template stars. A second order polynomial fit has been made to the positions of the low extinction

templates. This polynomial was used to predict the g − i colours of stars based on their measured

spectral index. Stars with extinctions > 0.05 exhibit a g − i excess (dotted lines) which was

assumed to stem from extinction reddening. Assuming an extinction colour-excess E(B − V) =

3.1, the measured reddenings allowed A6800Å to be calculated. A correction was then made to
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Figure 7.1: Relationship between TiO spectral index and measured g − i for discless template
stars. The (blue) circles are stars with AV < 0.05 according to Hillenbrand (1997). The black line
is a second order polynomial fit to these points. The (red) crosses are stars with AV > 0.05. The
dashed lines are the measured g − i colour excesses which are attributed to extinction-reddening.
Stars which show a g − i excess are corrected for extinction and reddening using the wavelength
dependent extinction relation of Fitzpatrick (1999).

the photometry of the extincted stars (using the derived extinctions) to bring them back to their

intrinsic magnitudes in all bands using the wavelength dependent extinction relation derived by

Fitzpatrick (1999).

7.2.2 Rejection of anomalous templates

Of the 21 discless stars, 11 were rejected for use in template fitting for the following reasons.

• Signs of accretion were seen in the photometric colours of two stars.

• Five stars had spectral index < 1.1 and hence fell outside of the usable range of the index.

• Three stars had spectral gradients which were inconsistent with their spectral index derived

colours, indicating binarity or incorrect extinction correction.

• One star had low membership probability based on proper motion measurements.
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Figure 7.2: The spectra of the selected discless template stars are shown, corrected for reddening
and normalised to 1.0 at 7000Å. The correlation between the depth of TiO absorption bands with
the gradient of the spectra (increasing with reducing Teff) is clear. The range of spectra shown here
correspond to 1.26 < (g − i)0 < 3.06.

The spectra selected for the final template set are shown in Fig. 7.2. They have been

corrected for the effects of extinction and for clarity have been normalised to a flux of 1.0 at

7000Å. The 10 spectra selected have 1.26 < (g − i)0 < 3.06.

The location of the template stars within the g, g − i CMD is shown in Fig. 7.3. The tem-

plates have been corrected for the effects of extinction and reddening based on the spectroscopic

analysis. The photometry is calculated using measurements taken over six consecutive nights,

thus the effects of variability will be ‘averaged’ over a timescale that is commensurate with (and

in some cases longer than) the rotation period. Despite this, the templates show a scatter in g of

approximately ±0.5 mag about a linear locus. This luminosity spread is probably real, consistent

with other studies of the ONC (e.g. Hillenbrand 1997; Da Rio et al. 2009) and is possibly due to

the spread in stellar radii identified by Jeffries (2007).

7.3 Deriving the fundamental parameters

The objective of the fitting procedure was to determine the g − i colour, veiling and extinction for

the accreting and disc-bearing stars within the ONC sample. Although I was unable to directly
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circles) compared with the rest of the ONC population (grey dots). The templates have been
corrected for the effects of extinction and reddening, based on their spectroscopic TiO index. The
black dashed line is a linear fit to the template stars.
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measure the intrinsic g − i colour for the accreting and disc-bearing targets, I was able to find the

closest spectral-match template by using a fitting procedure that measures the difference between

target and template spectra. The de-reddened SED of the best-fit template should closely match

the intrinsic photospheric SED of the target. An uncertainty in the estimated g − i for the target

is caused by the discrete nature of the template colours, however the wide and reasonably dense

sampling in g − i means these uncertainties are typically < 0.15.

A important by-product of this fitting process is the measurement of the veiling flux in the

accreting stars. In addition, as the spectra in this study are accurately flux-calibrated, I was also

able to use the depths of the spectral lines to estimate the extinction to the target.

All target and template spectra were mean-stacks of all spectra collected for each star

throughout the 7 nights of observations. Typically each comprises ≈ 50 spectra with a combined

exposure time of ≈ 12.5 hours.

7.3.1 Fitting procedure

The fitting procedure simultaneously fits for spectral template, extinction and veiling. The initial

step in the fitting procedure was to correct all templates and targets to a common reference radial

velocity scale so that spectral features matched in wavelength. The fitting procedure then em-

ployed a two part model, constructed using three free parameters. Firstly a template spectrum (as

described in Section 7.2) was selected and then scaled in flux by an amount corresponding to an

extinction A6800Å to create a model. The extinction scaling is wavelength dependent and defined

by the relation from Fitzpatrick (1999). The model was then subtracted from the target spectrum

to leave a residual which was assumed to be the veiling spectrum. I varied the template and the

extinction applied and examined the residuals using a χ2 test performed between the residuals and

(290Å boxcar average) smoothed versions of themselves.

The extinctions were sampled in the range -0.5 < Ai < 4.0 at a resolution of 0.1. Sampling

of negative extinctions seems at first-glance unphysical, however the intrinsic luminosity spread

in the templates (shown in Fig. 7.3) means that it is possible for a target star to be brighter than

its template. This does not mean that the spectral type derived is incorrect, instead it is simply

that the target star has a larger radius than the template. In the fitting analysis the Ai derived is not

actually simply an extinction term but is the extinction to the target minus the magnitude difference

caused by any discrepancy in radius. This will add an uncertainty to the derived reddening of the

target, however for the spectral fitting this effect will be small and will only be seen as a small

additional gradient on the residual. As the added gradient is very smooth (and small due to the

limited wavelength range) it will not influence the χ2 statistic or the outcome of the fitting process.

In Chapter 9 it will be shown that the uncertainty in the reddening caused by the luminosity spread

has some effect on the photometric SED.

Fitting was performed over the range 6800 - 7420 Å as this allowed the fitting to be driven

by molecular bands of TiO, CaH and VO as well as numerous singly-ionised metal lines. The

combination of these lines, plus the intrinsic spectral slope allowed the χ2 test to distinguish be-

tween spectral templates, even under the presence of veiling and extinction. Two short wavelength

regions were omitted for the calculation of χ2. The first (7062 < λ < 7070 Å) is a strong He I
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Figure 7.4: A grid of values showing the χ2 fitting statistic as a function of template and extinction,
(Ai) for one example star in my sample (Star 50).The y-axis shows the iterative step in Ai running
from -0.5 (top) to 4.0 (bottom). The x-axis corresponds to the template number, running from
hotter (left) to cooler (right). White areas show regions of the χ2 space that return negative veiling,
an un-physical situation that rules them out of the fitting. The colour scaling corresponds to
log10 χ

2. Visually this reduces the contrast between good and poor fits, however it is necessary
to illustrate the large range of χ2 values returned. The best-fit solution in this case is template 79
(g − i = 1.83), Ai = 0.3 and a veiling flux at 6805Å of 1.41x10−25 erg cm−2 s−1 Hz−1.

line that is associated with both accretion emission and nebular contamination. The second (7132

< λ < 7140 Å) is the strong forbidden line [Ar III] from nebular emission. The effect of varying

the smoothing length was assessed, it became clear that smoothing lengths significantly shorter

that that employed resulted in insensitivity to large molecular-band features as these could be

‘smoothed’ in the residual without penalty in χ2. The expectation is that the veiling is essentially

thermal emission and thus should be smooth, thus a longer smoothing length is preferable.

An example of the χ2 grid returned for an accreting star is shown in Fig. 7.4. The colour

corresponds to the χ2 value derived for each parameter combination. Obvious minima are seen for

several of the templates, corresponding to different values of Ai. In this case the best solution is

g − i = 1.83, Ai = 0.3 giving an r6805 = 1.41x10−25 erg cm−2 s−1 Hz−1. The value of Ai at which

minimum χ2 occurs is seen to be variable between templates. This is the result of the intrinsic

luminosity scatter already discussed. Examples of ‘best-fit’ solutions for two accreting stars and

two non-accreting disc-bearing stars are shown in Fig. 7.5.

As a verification of this technique, the discless template stars were tested using the same

procedure, albeit without allowing them to use their own spectrum as the template. The ‘best-fit’
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Figure 7.5: ‘Best-fitting’ models of template, extinction and veiling for four target stars. The dark
blue line is the target spectrum, the green line is the best-fit template spectrum. The light-blue line
is the residual (assumed to be the accretion spectrum) and the black line is the boxcar smoothed
residual against which χ2 is measured. The red line is the complete model spectrum, comprising
the extincted template plus the smoothed accretion spectrum. The top two panels show stars which
show optical veiling and also show accretion luminosity excess in their photometry (left panel -
star 14, right panel - star 50) . The lower two panels show stars with discs which do not have
photometric excesses consistent with accretion (left panel - star 62, right panel - star 155).
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parameters consistently returned the nearest blue-ward template in g − i, albeit with a slightly re-

duced value of Ai and a small veiling correction that allowed the line fluxes to scale correctly. The

error in Ai and addition of spurious veiling contribution was an expected and correct outcome as

the fits were not allowed to use their own spectra as a template and thus the closest match (without

negative veiling contribution) was that of a slightly hotter star with a small veiling contribution

and reduced extinction.

7.4 Results

The spectral fitting analysis was performed for a sample of 31 stars in two categories. The first

category analysed was stars identified as having optical photometric accretion signatures (see Sec-

tion 8.3). The second sample was a group of stars identified by Megeath et al. (2012) as having

circumstellar discs but that did not show signs of accretion in their optical photometry. Table 7.1

shows Ai, intrinsic g− i of the closest match template and the veiling flux in the n6805 filter derived

for each of these stars.

7.5 Summary

To provide a basis for further analysis in this thesis, basic parameters such as intrinsic SED, extinc-

tion and optical veiling must be known, at least for a representative sub-set of the stellar population.

To achieve this, a sample of ONC members without discs were selected as photospheric templates

to then use in measuring the veiling and extinction of stars exhibiting discs and accretion.

For low-extinction discless stars a relation was derived between the g−i photometric colours

and a spectroscopic index that was dependent on the depth of a temperature sensitive TiO band.

This allowed the accurate measurement of intrinsic colours of the discless photospheric templates

through the extinction-independent spectral index. This subsequently allowed the photospheric

templates to be corrected for extinction.

The templates were then used to construct a model that comprised a photospheric tem-

plate, an extinction and a smooth optical veiling spectrum. The model was compared with the

target spectrum and the ‘goodness-of-fit’ was measured using a χ2 statistic. Iteration of the free-

parameters and examining the resulting χ2 allowed the estimation of best fit intrinsic parameters

for the accreting and disc-bearing stars. This process was conducted without any recourse to theo-

retical models which could have introduced systematic errors. The use of templates from the ONC

population also mitigated biases in fitted parameters that could stem from differences in metalicity,

surface gravity and age. The results of the fitting procedure are presented in Table 7.1 and are used

in later chapters of this thesis.
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Table 7.1: Best-fit parameters determined for stars with discs in the ONC based on the spectro-
scopic fitting procedure. The last column defines the accretion status of each star based on U
band and Hα excess flux found in Chapter 8. ‘acc’ denotes accreting stars, ‘non-acc’ denotes
non-accreting stars.

Star id Ai Template g − i Veiling flux at 6805Å r6800 Accretion status
(mag) erg cm−2 s−1 Hz−1

8 3.4 85 8.88 x 10−28 4.62 acc
10 1.15 135 2.40 x 10−26 1.43 acc
14 0.35 85 8.84 x 10−27 1.30 acc
23 1.75 20 1.19 x 10−26 3.47 acc
26 0.75 85 2.85 x 10−27 0.36 acc
30 0.15 88 1.68 x 10−26 0.47 acc
49 -0.1 135 4.20 x 10−26 0.48 acc
50 0.3 79 2.70 x 10−26 0.28 acc
58 -0.3 135 3.52 x 10−26 0.23 non-acc
62 0.55 135 1.44 x 10−26 0.25 non-acc
66 0.55 135 1.26 x 10−27 0.02 non-acc
77 0.85 20 5.25 x 10−26 6.97 acc
90 0.0 88 9.95 x 10−27 0.37 acc
92 2.3 79 5.87 x 10−27 0.45 non-acc
95 0.35 20 2.43 x 10−26 2.03 acc
98 2.2 118 5.22 x 10−28 0.03 non-acc

104 0.6 118 8.71 x 10−28 0.01 non-acc
121 0.3 88 1.80 x 10−27 0.08 acc
127 0.85 135 1.85 x 10−26 0.86 acc
130 0.4 135 1.76 x 10−27 0.24 acc
133 1.1 118 2.22 x 10−26 0.87 acc
137 -0.5 118 0.0 0.0 non-acc
139 1.4 79 1.02 x 10−26 0.29 non-acc
143 0.6 135 5.53 x 10−26 1.51 acc
150 0.25 20 1.02 x 10−27 0.10 non-acc
152 -0.1 20 1.17 x 10−26 0.75 acc
153 -0.3 20 8.98 x 10−27 0.83 acc
155 0.3 118 4.00 x 10−27 0.02 non-acc
158 2.1 79 4.39 x 10−27 0.38 acc



Chapter 8

How does accretion affect the colours of
young stars?

8.1 Introduction

Studies such as those by Hillenbrand (1997), Palla & Stahler (1999) and Da Rio et al. (2010b) have

used the well populated CMD of the ONC to estimate the age, star forming chronology and mass

function for the cluster. Whilst is it not the purpose of this study to re-visit the age and apparent

age spread question, a critical analysis of the properties of stars as a function of CMD position

may help us to understand the limitations of these previous studies and help us to interpret their

findings. Isochrone fitting for age analysis typically assumes that all stars are fully visible (except

for a correction for inter-stellar extinction) and that their colours and magnitudes, measured at a

single epoch are characteristic of their ‘immaculate’ photospheres and provide a reliable proxy for

Teff and Lbol respectively. In reality, we know that T Tauri stars are messy, violent objects, where

surface temperature variations, accretion structures and circumstellar material act to alter the light

that our telescopes receive from the star.

This multi-band study provides an opportunity to explore the intrinsic properties of T Tauri

stars and compare them with position within the CMD. In this chapter I principally focus on

the effect of accretion luminosity. It has long been known that accreting T Tauri stars exhibit

excess blue luminosity which is associated with thermalisation of kinetic energy from in-falling

accreting material. Bertout et al. (1988) first proposed that truncation of the circumstellar disc and

channeling of the accreting material may lead to localised heating of the photosphere. Rotation

of the star then modulates the blue emission that we observe along our line of sight. As a result,

excess flux in U is an effective tool for identifying accreting PMS stars (e.g. Rebull et al. 2000;

Rigliaco et al. 2011; Venuti et al. 2014).

Accretion luminosity is not considered in PMS models, yet hot continuum contributions

many times brighter than the photosphere have been observed from veiling measurements in T

Tauri stars. Stout-Batalha et al. (2000) found that a hot-continuum flux 6.1 times brighter than the

photosphere was present at 6000 Å in RW Aur.

In this chapter I present my colour-magnitude diagram for the ONC. I then identify accret-

152
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ing stars using ultra-violet and line-emission indicators and investigate whether accretion lumi-

nosity affects the position of stars in CMD space.

8.2 The g, g − i colour-magnitude diagram

A g, g − i colour magnitude diagram of all stars in the observed fields is shown in Fig. 8.1.

Isochrones and evolutionary tracks are overlaid, constructed from the models of Bell et al. (2014),

using a distance modulus of 7.96 and mean E(B − V) = 0.4 (Mayne & Naylor 2008). The ONC

lies in front of the dense OMC-1 molecular cloud which Scandariato et al. (2011) found to exhibit

AV ≥ 6 and up to AV ≈ 30 in regions close to the core of the cluster. This effectively removes

almost all background galactic stellar contamination from our photometric sample.

In common with previous surveys by Hillenbrand (1997) and Da Rio et al. (2010b), the

cluster population appears to stretch across an age range of > 100 Myr. Many stars appear to be so

faint that they fall well below the zero-age main-sequence. The huge luminosity spread at a given

g − i colour is clearly incompatible with simple theoretical PMS models.

A foreground population of galactic field-stars is likely to be present, however the com-

paratively nearby nature of the ONC means that contamination from such sources is relatively

low. A proper-motion study by Jones & Walker (1988) concluded that ≈ 90% of stars within

20 arc-min of the ONC are cluster members. I rejected foreground stars by using only high-

probability members identified by Hillenbrand (1997). Membership probabilities are calculated

based on proper-motions, extinction, spectral line emission, variability, and infrared excess. Alves

& Bouy (2012) find that a foreground PMS population with age ≈ 4 − 5 Myr exists in front of

the ONC, centred around NGC 1980 which lies ≈ 30 arc-min to the south of the Trapezium stars.

They estimate that this foreground population may contribute 10-20% of the PMS stars observed

in the ONC and will bias estimates of age and age-spread. Whilst this foreground population is

important in determination of the age of the cluster, it has little effect on my analysis of T Tauri

variability, simply contributing an extra source of young-stars to study

8.3 Identifying accreting stars

I have used two photometric tools to identify accreting stars in the sample, U band excess and Hα

line-emission excess. I have also compared the relation between these two parameters to check for

constency and be sure that identified stars really are accreting.

Before I could determine an excess in either of these quantities, I needed to predict the flux

that I expected in these bands for a PMS star without any accretion signature. Broad-band fluxes

predicted by PMS atmosphere models do not generally agree well with observations, particularly

in U (see Da Rio et al. 2010b). In addition, accretion related Hα line-emission is thought to

originate from flows of optical thin material falling onto the star from the circumstellar disc. As a

result, emission line fluxes are not predicted by PMS models. Thus to predict the expected U and

Hα fluxes I defined a PMS locus in both the U − g, g− i plane and the r−Hα , r− i plane using an

empirical fit to non-accreting young stars. To be sure that the stars that I used for determining the
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Figure 8.1: g, g − i CMD of all stars in our field of view with clean photometry (unflagged and
S/N ≥10). The black (solid) lines show 1, 10 and 100 Myr isochrones from the models of Bell
et al. (2014). Red (dashed) lines show (from right to left) evolutionary tracks for single stars of
mass 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5 and 2.0 M�. The sample is limited at the faintest g
magnitudes by S/N and a the brightest magnitudes by saturation.
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PMS locus are genuine members of the cluster and that their colours are not modified by accretion,

discs or extinction, I identified candidate stars in the main catalogue that

• have no associated mid-infrared (disc) excess identified by Megeath et al (2012);

• have low extinctions from Hillenbrand (1997), 0 < AV < 1.0;

• have small photometric uncertainties ( < 0.1 mag and unflagged) in all bands;

• and are EITHER known ONC members (Hillenbrand (1997) membership probability ≥

98%) OR are periodic variables identified in the flanking fields by Rebull (2001).

These cuts yield a catalogue containing 262 candidates that I will refer to as the ‘non-

accreting discless stars’. Even using these cuts, it is clear that some of the selected stars exhibit

excess emission in U or Hα. These are possibly stars with unusually active chromospheres or

have incorrectly measured fluxes due to imperfect subtraction of the nebular background, which

in some regions of the ONC is both bright and highly structured. This contamination is more

prevalent in U, so the empirical fitting process is staged so that I can use the ‘cleaner’ Hα excess

measures to remove contamination from the U band fitting.

8.3.1 Hα emission line excess

The r −Hα, r − i colour-colour diagram may be used to identify Hα emission-line objects such as

young stars and estimate the flux within the Hα line (e.g. Drew et al. 2005; Barentsen et al. 2011).

Fig. 8.2 shows the data for the non-accreting discless sample (with photometry that is unflagged

and has S/N >10 in r, i and Hα) plotted in this plane. Accreting stars exhibit r − Hα colours that

are brighter in Hα than the non-accreting population at a given r − i colour and hence are easy to

identify once I have empirically defined the locus for non-accreting PMS stars.

To fit the non-accreting PMS locus, the non-accreting discless stars were binned in groups

of 20 in r − i, and each bin had a median r − Hα, and r − i colour determined. The r − Hα colour

was subject to a 2-σ clipping routine to reduce the influence of the outlying stars with significant

Hα excess or extinction. The median values were then fitted using a quadratic function to define

the locus of non-accreting stars. The locus for non-accreting stars is defined by the function

r − Hα = −0.0951(r − i)2 + 0.6697(r − i) − 0.0644. (8.1)

An excess r − Hα was then calculated with respect to this function for each of our target stars. It

should be noted that the photometry has not been subject to any dereddening, however as Fig. 8.2

shows, the extinction vectors in this plane lie almost parallel to the PMS locus and hence do not

significantly affect the calculated excess in r − Hα.

An offset was then defined which corresponds to the non-accreting locus plus an r − Hα

excess corresponding to an equivalent width of 10Å. The excess added is that calculated for dwarfs

by Barentsen et al. (2011). This 10 Å ‘buffer’ allows for particularly active non-accreting stars and

is a traditional (if perhaps slightly arbitrary) cut used between accretors and non-accretors. Forty
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Figure 8.2: r − i, r − Hα colour-colour plot for stars that are likely members of the ONC and that
do not exhibit Mid-IR evidence of an accretion disc. Black points (with error-bars) are all stars
in the sample. Red (light grey) diamonds are the median colours in 20 star wide bins in r − i. A
2σ clipping routine has been applied in r − Hα to reduce the influence of the few contaminating
stars that exhibit Hα excess or strong extinction. The solid line is a quadratic function fitted to
the median colour points and defines the locus for non-accreting stars. A (dashed) line shows the
expected r - Hα excess corresponding to an equivalent width of 10 Å above the non-accreting
locus.
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Figure 8.3: U − g, g − i colour-colour plot for stars that are likely members of the ONC and that
do not exhibit mid-IR evidence of an accretion disc or evidence of active accretion via Hα excess.
Black points (with error-bars) are all stars in the sample. Red (light grey) diamonds are the median
colours in 20 star wide bins in g − i. The solid line is a quadratic function fitted to the median
colour points and defines the locus for non-accreting stars.

eight stars in the non-accreting discless sample exhibit r−Hα above the 10 Å contour and thus are

suspected accretors. These stars are rejected from further analysis in characterising non-accreting

PMS fluxes, thus reducing the sample to 214 stars.

8.3.2 Ultraviolet excess

Fig 8.3. shows the remaining non-accreting discless sample plotted in the U − g, g − i colour-

colour diagram. Using the same method as the analysis in Section 8.3.1, I calculated a PMS locus

in U − g, g − i. The locus was fit using a quadratic defined by the function

U − g = −0.6445(g − i)2 + 2.738(g − i) − 0.3164, (8.2)

this model appears to fit the data well in the range 1.1 < g − i < 2.8. Outside of this range the

model will overestimate the photospheric U flux and lead to an underestimate of the U excess for

a given star. For the purposes of this investigation, this is acceptable as our final objective is to

identify accreting stars and an underestimate of U excess at the extremes of our sample would
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simply mean that some weak accretors were not identified. The U − g excess was then calculated

for each star by subtracting the model U − g at the correct g − i for each star from its measured

U − g colour.

8.3.3 Comparison of accretion diagnostics

My objective is to robustly identify stars that are accreting in the ONC. To be sure that stars

identified are bone-fide accretors, I compare the Hα and U excesses measured both for stars with

and without Spitzer identified circumstellar discs. As accretion is essentially impossible without

a reservoir of material in an orbiting disc, I can use the discless population to define thresholds

in the Hα and U excesses that correspond to accretion, and thus remove contamination caused by

chromospheric activity.

Fig. 8.4 shows the measured U − g excess plotted against r − Hα excess for discless

(left panel) and disc-bearing (right panel) stars. This plot clearly shows that the presence of Hα

emission is strongly correlated with U excess, a correlation that has attracted much previous study

(e.g. Hartigan & Kenyon 2003; Dahm 2008; Herczeg & Hillenbrand 2008; Sicilia-Aguilar et al.

2010). A small fraction of stars violate this correlation by showing an excess in either U − g

or r − Hα alone. Those which show an excess in U − g but not r − Hα are mostly foreground

main-sequence stars of higher Teff than the PMS population. These stars have a low-probability

of membership in Hillenbrand (1997). Stars which show an excess in r − Hα but not U − g are

most likely highly-reddened accreting objects. The reddening vector that influences the colours of

these stars may be seen in Fig. 8.4.

To determine colour-cuts for accreting stars I calculated the mean and standard deviation

in U − g and r − Hα excesses for the discless population. These results are shown in Table 8.1.

The mean values in both colours are very close to zero, indicating that the PMS loci defined in

Sections 8.3.1 and 8.3.2 are robust. The 1σ thresholds in the non-accreting stars has been adopted

as a nominal cut in both U − g and r − Hα. However to be identified as an accretor, the star must

exhibit colours that lie above these thresholds in both indices. To be considered in further analysis

as a non-accretor, a star must fall below the thresholds in both indices. Fig. 8.4 shows the derived

thresholds against the discless and disc-bearing populations. The quadrants corresponding to the

defined accreting and non-accreting samples are labelled. Any stars which fall into the other two

quadrants (i.e. fall above the accretion threshold in one colour only) are of ambiguous nature and

thus are rejected from all further analysis. The stars for which I have collected spectra as part of

this study are highlighted in Fig. 8.4. It is clear that I have good sampling over the full range

of accretion behaviour in the spectroscopic sample. Fig 8.5 shows a U − g, g − i colour-colour

plot showing the positions of the accreting and non-accreting samples. It is clear that the accretors

show significant U band excess.

It should be noted that this analysis indicates the presence of a significant population of

stars which have Spitzer identified circumstellar discs but that fall within the non-accreting region

of the diagram. A population of thick-disc stars without optical accretion indicators was noted by

Teixeira et al. (2012) in NGC 2264, comprising ≈ 15% of the population.

There is also an intriguing population of stars that are identified as discless stars within
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Table 8.1: Mean colour excess and 1σ limits for all discless stars in our sample

Colour Mean excess (non-discs) 1σ limit
U − g 0.03 -0.395

r − Hα -0.028 0.146
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Figure 8.4: U − g excess plotted against r − Hα excess for the discless stars (left panel) and
disc-bearing stars (right panel) identified by Megeath et al. (2012). The correlation between U
excess and Hα is strong, although scatter about this correlation is ≈ 1 mag in either colour. The
dotted lines show the adopted cuts made to identify accreting stars. The upper right quadrant is
the accreting star population. The lower left quadrant is the non-accreting sample. The other two
quadrants contain stars with ambiguous accretion status. The green points highlight stars for which
spectral time-series were collected. An extinction vector corresponding to RV = 3.1 is shown.

the Spitzer sample, that appear to exhibit optical accretion signatures. This is not the first time

that such stars have been identified, Littlefair et al. (2004) observed stars in ρ Oph that appear to

exhibit spectroscopic accretion signatures without associated near-infrared excess.
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Figure 8.5: A U − g, g − i plot comparing the positions of the accreting (red) and non-accreting
(blue) samples. The accreting stars show significant excess in U compared with the non-accreting
stars.

8.4 Accretion induced luminosity spreads in the CMD

Fig. 8.6 shows g, g − i colour magnitude diagrams that compare the distributions of stars within

the three sample groups. It is immediately clear that the accreting population is both more spread

in CMD space than the other populations and also shows a bulk offset in the sense that the pop-

ulation appears older against the isochrones. Whilst the non-accreting disc-bearing stars and the

discless stars appear to cluster between the 1 and 10 Myr isochrones, the accreting stars spread

as far blueward as the 100 Myr isochrone and beyond. This finding provides strong evidence that

accretion luminosity is responsible for much of the apparent ‘age spread’ that we see in optical

colour magnitude diagrams.

It is also notable that the non-accreting disc-bearing population does not show significant

luminosity shift or spread beyond that seen in the discless population. This implies that extinction

caused by the disc or remaining accreting envelope must move stars in the CMD in a direction that

is broadly consistent with the interstellar reddening vector. As that vector lies almost parallel to

the PMS, little spread about the isochrones is induced.

The fact that non-accreting disc-bearing stars are not spread blue-ward in a manner similar

to the accretors implies that the spread that we see in the accreting stars is caused by the accretion

luminosity itself (or directly related phenomenon) and is not simply caused by the presence by the

circumstellar-discs.
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Figure 8.6: g, g−i colour magnitude diagrams showing the samples containing only accreting stars
(upper left), non-accreting disc-bearing stars (upper right) and discless stars (lower). The discless
sample comprises stars with membership probability > 95% and AV < 1.0 in Hillenbrand (1997).
All stars in these diagrams have photometry which is unflagged and has S/N >10 in both g and i.
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8.5 What is the physical mechanism for this blueward shift?

Whilst it is clear that some mechanism linked to the accretion process is causing stars to be shifted

either blueward or downward in the CMD, it is not clear what this process might be. Possible the-

ories might include enhanced ‘grey’ extinction associated with circumstellar material in accreting

stars or a contribution from accretion luminosity that has a spectrum that is bluer than the stellar

photosphere.

8.5.1 ‘Grey’ extinction

Populations of stars that fall below the main population in the CMD have previously been ex-

plained by invoking a geometric argument, whereby disc-bearing systems are observed at high

inclination so that the outer regions of the flared circumstellar disc cause high levels of extinction

on the central star along our line-of-sight. Guarcello et al. (2010a) suggest this as the explanation

for the faint-blue population in NGC 6611. In Chapter 2 I found three anomalously faint stars in

the ONC that were associated with edge-on disc systems in Hubble space telescope images or high

extinction. Theoretical models also support the notion that a population of high inclination stars

should appear obscured by their own discs, this effect being more pronounced for Brown Dwarfs

which may exhibit proportionally greater disc scale-heights (Walker et al. 2004; Mayne & Harries

2010).

Whilst undoubtedly this scenario occurs in star-forming regions, two pieces of evidence

suggest that this is not the dominant mechanism behind the faint/blue stars in the CMD. Firstly the

non-accreting disc-bearing population in our study does not show a similar fraction of faint/blue

stars as the accreting population. Fig. 8.7 compares Spitzer IRAC photometry of the non-accreting

and accreting disc-bearing populations. The left panel of Fig. 8.7 is a histogram of the two

samples which compares the slope of the SED between 3.6 and 8.0 µm. This index (α IRAC)

was defined by Lada et al. (2006) and used to empirically classify the density and structure of

circumstellar discs. Whilst it appears that the non-accreting discs have a systematically lower

value of α IRAC, both populations peak strongly within the ‘thick disc’ regime. Virtually no stars

in either sample fall into the anaemic disc or naked photosphere categories. Thus if the discs

are apparently so similar in structure for both populations, it seems unlikely that the presence

of the disc is responsible for the faint/blue CMD positions of the accreting stars. Secondly, De

Marchi et al. (2013) analyses models of flared discs around T Tauri stars and shows that geometric

obscuration effects can only be responsible for a few percent of faint stars, a far lower number than

is seen in the ONC or NGC 6611.

8.5.2 Accretion luminosity

To investigate whether accretion luminosity can cause PMS stars to move blue-ward in the CMD,

I have used spectral types and extinctions measured for the spectroscopic stars in Chapter 7. For

each of the accreting stars with spectra, I have taken the de-reddened photometric magnitude and

colour of the best-fitting spectroscopic template star and have applied the extinction and reddening

(assuming RV = 3.1) that was measured for the accreting star. The resulting ‘extincted template’
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Figure 8.7: A comparison of the non-accreting disc-bearing and accreting disc-bearing stars based
on Spitzer IRAC colours. A histogram (left panel) compares the α IRAC index for the accreting
(blue-dotted) and non-accreting (red-hatched) stars. The histograms are normalised as a probabil-
ity distribution function so that the area under the curve equals one. The vertical dotted lines denote
the empirical disc classifications of Lada et al. (2006). NP: Naked photosphere, AD: Anaemic disc,
TD: Thick disc, FS: Flat spectrum, CI: Class I. The right panel shows a Spitzer colour-colour dia-
gram with the limit defined by Gutermuth et al. (2009) to classify Class II YSOs. Circles (red) de-
note non-accreting disc-bearing stars, Diamonds (blue) denote accreting disc-bearing stars. Faint
(black) dots denote all stars in Cep OB3b with Spitzer photometry. Data from Megeath et al.
(2012).
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shows the position in the CMD that represents the photospheric colours plus extinction for the

accreting star. The vector between the extincted template and the mean CMD position of the

accreting star corresponds to the accretion luminosity contribution (albeit also extincted by an

amount equal to that experienced by the photosphere). Examples of this process are shown in Fig.

8.8.

As the spectroscopic templates used are at discreet values of g− i, the colour of the intrinsic

photosphere for the accreting star has an uncertainty corresponding to half of the spacing in g − i

between the templates. The templates used also show what appears to be an intrinsic luminosity

scatter of up to ≈ 0.5 mag (see Chapter 7). Thus the CMD position of the accretion subtracted and

extinction-corrected target is defined by the green box which incorporates these uncertainties. The

spectroscopic extinction measurement is derived by comparing the fluxes in photospheric lines.

Thus it is actually the sum of the extinction plus radius discrepancy between the two stars. As the

radius discrepancy is accounted for within the extinction estimate, the uncertainty in magnitude of

the extincted template becomes small when the extinction is applied. Conversely the uncertainty

in g − i grows because the uncertainty in the intrinsic colour and magnitude of the accreting star

photosphere combine to add extra uncertainty to the absolute extinction and hence the reddening

too. The error box for the extincted template is shown by the blue region.

The remaining vector required to move the star from the extincted template position to

the mean measured CMD position cannot be explained by extinction, binarity or photometric

uncertainties. This vector is attributed to accretion luminosity. 21 stars in the sample have spectra

that allow this analysis to be performed. The accretion vectors for all of these stars are compared in

Fig. 8.9 and are consistent in explaining the blue-ward dispersion of the accreting stars. In Chapter

9 I show that in most accreting stars the SED of the accretion luminosity is consistent with that of

a black body with a temperature between 5000 and 10000 K. Thus these vectors appear consistent

with expectations based on models such as those by Calvet & Gullbring (1998). Fig 8.10 shows

that lengths of the vectors in CMD space are broadly consistent with the veiling measured for each

star.

8.6 Discussion

8.6.1 Ages of young star-forming regions

Much of the previous work to understand the age spread within the ONC has been performed

within the Hertzprung-Russell (H-R) plane rather than the CMD. Da Rio et al. (2010b) is the

most comprehensive study to-date and derives values for Teff using either low-resolution spectra

or TiO sensitive narrowband photometry. Lbol is calculated using V and I band photometry and

empirically derived bolometric corrections. Corrections for accretion luminosity, extinction and

distance are also made. The conversion into the H-R plane appears to mitigate the direct correlation

between accretor status and CMD position, a result shown by Jeffries et al. (2011) when comparing

H-R diagram ages of stars in the ONC with and without discs. Despite this, there still remains a

luminosity spread at a given Teff that has no observationally confirmed cause.

For the ONC the accretion driven spread of stars in CMD space has relatively little effect
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Figure 8.8: g, g−i CMDs for accreting stars with spectra. For each accreting star the CMD position
of the best-fit template star found in Chapter 7 is shown by the green box. The bounds of the
green box are defined by the discreet colours of the template stars and their intrinsic luminosity
spread. The extent of the green box defines the region in which we should find the intrinsic
‘photosphere only’ position for the accreting star. The blue box is the region in which a star
within the green box will reside once its photospheric colours have been subject to extinction and
reddening corresponding to the spectroscopically measured extinction of the accreting star. The
red diamond is the mean CMD position for the accreting star. Extinction and accretion-luminosity
vectors are shown with black arrows.
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on studies of its age and age-spread as there are comprehensive catalogues of stellar spectral

types (Da Rio et al. 2010b; Hillenbrand et al. 2013). This is a situation that almost unique to

the ONC. In contrast, most star forming regions are studied only using photometrically derived

colour-magnitude diagrams, because of the prohibitive amount of telescope-time that is required

to establish spectroscopically derived catalogues (e.g. Prisinzano et al. 2005; Mayne et al. 2007;

Guarcello et al. 2010b; Bell et al. 2013). In light of the bias that accretion luminosity is shown to

apply to both the apparent age and age-spread, studies that simply use photometry to derive these

parameters should be treated with caution in very young regions with heavily accreting stars.

One notable example where accretion luminosity may explain an anomalously blue pop-

ulation of young stars is in NGC 6611. Guarcello et al. (2010a) find a population of stars with

infrared excess that have colours much bluer than the bulk of the PMS population seen in this re-

gion. Comparison of the SEDs of these ‘blue with excess’ (BWE) stars with models by Robitaille

et al. (2006) lead Guarcello et al. (2010a) to conclude that accretion luminosity can only be re-

sponsible for a small fraction of the BWE objects. Importantly though, the models of Robitaille

et al. (2006) treat accretion luminosity with the models of Calvet & Gullbring (1998). Obser-

vations of near-infrared veiling by Fischer et al. (2011) as well as photometric measurements of

accretion spectra in this study add weight to the argument that accretion luminosity might actually

be on-average cooler and redder than these models suppose (see Chapter 9). This may explaining

the poor χ2 fitting statistics achieved by Guarcello et al. (2010a) for the BWE stars against the

accreting SED models.

Other regions where this effect may be important include NGC 6530 where Damiani et al.

(2006) find a population of stars with near-infrared excesses distributed closer to the ZAMS in

V,V − I colour-magnitude diagrams than the bulk of the X-ray identified members.

8.6.2 Angular momentum evolution

Littlefair et al. (2011) showed that a correlation exists between rotation rate and position in CMDs

whereby stars which lie above an empirically determined pre-main sequence locus rotate more

rapidly than stars which lie below this sequence. The result was confirmed in four young clusters,

Cep OB3b, NGC 2264, NGC 2362 and the ONC. This is an unexpected and curious result as low-

mass stars broadly evolve downward in the CMD as they contract along Hayashi tracks (Hayashi

1961) toward the ZAMS. Angular momentum conservation implies that we expect to see rotational

rates increasing as one moves downward in the CMD. The high-resolution spectroscopic study of

74 K-M stars in four young associations by Scholz et al. (2007) determine that angular momentum

conservation is indeed observed at ages > 5 Myr. At younger ages, angular momentum regulation

is primarily explained by disc-locking theories, where magnetic field lines connect the star to the

disc, forcing synchronous rotation between the star and the inner regions of the disc (e.g. Koenigl

1991; Bouvier et al. 1997).

The correlation that I see in Section 8.4 explains the Littlefair et al. (2011) results, as we

would expect to see the accreting (and hence disc-locked) slowly rotating stars shifted bluewards

in the CMD by contaminating accretion luminosity. To confirm that the effect that I see in Section

8.4 is not only limited to the ONC, Fig. 8.11 shows CMDs of Cep OB3b split into disc-bearing and



8.6. DISCUSSION 168

Figure 8.11: A comparison of V,V − I CMDs for YSOs in Cep OB3b. Disc-bearing stars (left
panel) are identified from Spitzer colours, Discless stars (right panel) are identified using Spitzer
colours and X-ray flux (Allen et al. 2012). Optical photometry is from Mayne et al. (2007), as
used in the Littlefair et al. (2011) study.

discless stars using classifications by (Allen et al. 2012). The disc-bearing stars are clearly shifted

blueward when compared with the discless population. This effect is also seen in young stars in

Taurus (Rees et al. in-prep). Littlefair et al. (2011) invoke several scenarios involving differences

in accretion history to explain their result. The observations presented here do not rule-out such

mechanisms, however their occurrence is not required to reconcile the observations with theory.

8.6.3 Correlations between Lithium depletion and apparent age

Palla et al. (2007) present results showing six stars in the ONC which appear to exhibit lithium

depletion ages > 10 Myr in conjunction with H-R diagram ages that appear similar. They cite these

as evidence for an older ‘evolved’ population of stars existing with the younger main population

in the ONC. Closer inspection of these stars indicate that the reason for their high apparent H-R

diagram and lithium ages may be accretion luminosity.

In Fig. 8.12 I show the position of these six stars in the CMD and in the U − g, g − i

colour-colour diagram. In the CMD it is clear that 5 of the six stars are shifted blue-ward from the

PMS locus, indicating either old age or increased accretion luminosity. Their positions within the

colour-colour diagram are particularly revealing in that all of the stars show a very large U excess,

indicating that they are some of the most extreme accreting objects in the ONC. The fact that they

show such large U excesses and thus very high accretion rates is unlikely to be compatible with

stars that are > 10 Myr old.

Palla et al. (2007) determine H-R diagram ages based on Teff and Lbol from Hillenbrand
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Figure 8.12: g, g − i CMD (left panel) and U − g, g − i colour-colour diagram (right panel) of the
six stars identified in Palla et al. (2007) (red points) as having H-R diagram and/or lithium derived
ages > 10 Myr. The CMD shows these stars compared with the general ONC population (black
dots) and isochrones at 1, 10 and 100 Myr from Bell et al. (2014). In the colour-colour diagram,
these stars are compared with the general ONC population (black dots) and the empirically defined
PMS locus. The position of these stars in the colour-colour diagram implies that they have a large
U excess and hence are heavily-accreting objects.

(1997). As discussed in Section 8.6.1 analysis of stellar ages using H-R diagrams will partly

mitigate the effects of accretion luminosity, however high levels of accretion luminosity will make

stars appear older in H-R space than they should. Thus, because of the extreme U excess shown,

the Palla et al. (2007) stars are highly likely to have systematically over-estimated Teff and thus

appear erroneously older against model isochrones.

The lithium derived ages are not immune from the problems of high veiling either. Palla

et al. (2007) account for the effects of veiling in the 6708Å lithium line by assuming that the veil-

ing spectrum is locally smooth and estimating its magnitude by comparing the equivalent widths

of nearby metal lines (Ni 6643 Å, Fe 6663Å, V 6625Å) with those in unveiled templates. As is

suggested in Chapter 9 and by Gahm et al. (2008) and Petrov et al. (2011), the assumption that the

optical veiling is a smooth continuum breaks down at high accretion rates as line-emission adds to

the smooth thermal component. The curves of growth of different species will then ‘infill’ spectral

lines by different amounts, rendering the lithium-abundance measurement highly suspect. Whilst

the smooth continuum assumption is generally reasonable at low accretion rates, the extreme veil-

ing suggested by the position of the Palla et al. (2007) stars in the right panel of Fig. 8.12 renders

their lithium derived ages highly uncertain.

8.7 Summary

The ages of PMS populations are often estimated by comparing the positions of stars against

model isochrones within the CMD (e.g. Prisinzano et al. 2005; Mayne et al. 2007; Guarcello et al.

2010b; Bell et al. 2013). I have identified accreting stars in the ONC from their optical emission,

and have compared the g, g − i CMD position of the accreting stars with those of non-accreting

disc-bearing and discless members. The population of accreting stars shows a significant blueward
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shift, compared with the non accreting stars. If naively measuring the age of this population by

comparison with PMS isochrones, one might conclude that the accreting stars are older than the

non-accreting stars. This effect would cause the age of heavily accreting (and likely the youngest)

stellar populations to be systematically over-estimated compared with (potentially older) more

weakly accreting populations. The accreting stars also show a greater luminosity spread than

the non-accretors. The similarity in CMD positions of the non-accreting disc-bearing and discless

populations show that the presence of a disc does not by itself contribute to a shift in CMD position.

Spectroscopic analysis of 21 accreting stars shows that this blue-ward shift is driven by accretion

luminosity along vectors that cut across the PMS locus.

This result may explain three outstanding problems in star-formation. Firstly, populations

of apparently ‘older’ stars in young regions such as NGC 6611 and NGC 6530 lie blue-ward of the

main PMS population and the close to the ZAMS. These stars may conceivably be explained as a

population of heavily accreting stars that have had their colours modified by accretion luminosity.

A comprehensive spectroscopic survey or a photometric U survey might determine whether this

is the case.

Secondly, Littlefair et al. (2011) found a correlation between rotation rate and position in the

CMD whereby fainter stars rotate more rapidly than brighter stars. This may simply be explained

by the slowly-rotating disc locked accreting stars being displaced blue-ward of the PMS locus by

their accretion luminosity. The implication of this is that no recourse to models of luminosity

spreads caused by episodic accretion is required.

Finally, a small subset of stars in the ONC are found by Palla et al. (2007) to have H-R

diagram and lithium ages > 10 Myr, and are used to argue that star-formation has been occur-

ring in the ONC for longer than this time. I find that this subset of stars are some of the most

heavily accreting objects in the entire ONC population. Accretion luminosity is shown to bias

spectroscopic estimates of Teff (using TiO band indices) toward hotter photospheric temperatures.

At a given luminosity, this makes a star look older than it really is. Accretion luminosity in stars

with extremely high accretion rates has also been shown to preferentially ‘fill’ some spectral lines

with emission, rendering estimates of veiling and hence element abundance highly uncertain. The

result of this is to make H-R diagram or lithium ages estimated from spectroscopic analyses of

heavily veiled stars highly uncertain and most-likely significantly overestimated.



Chapter 9

Comparing accretion diagnostics and
exploring the nature of veiling

9.1 Introduction

Whilst theoretical models of accretion luminosity (e.g Calvet & Gullbring 1998) approximate the

observed veiling in YSOs at UV and blue wavelengths (Gullbring et al. 2000) they often fail to

match observations of veiling in the red and near-IR for many stars (e.g. Folha & Emerson 1999;

Cieza et al. 2005; Edwards et al. 2006; Fischer et al. 2011). This is an important problem, as either

it means that the accretion luminosity models are wrong, or that there is an additional source of

veiling at longer wavelengths (beyond ≈ 6000 Å) that is currently unidentified. It may be that

the red and near-IR excess emission is entirely unrelated to the accretion signature on the stellar

surface. This is conclusion that is postulated by Fischer et al. (2011), who suggest that emission

from optically thin gas from within the dust-sublimation radius of the disc may be responsible.

McClure et al. (2013) suggest that instead the red and near-IR excess is the result of emission from

dust at the inner edge and surface of the disc. Ingleby et al. (2013) further suggest a composite

accretion luminosity model where hot, low filling-factor accretion spots are combined with cooler,

high filling-factor regions. This latter model is inspired by models of unstable accretion flows

which suggest that accretion-shock heated regions may be distributed over a much larger fraction

of the star than is normally supposed. Uncertainty in the source of the veiling at red wavelengths is

problematic as many authors use measurements of veiling to predict accretion rates (see Hartigan

et al. 1991; White & Basri 2003; White & Hillenbrand 2004, and Section 1.4.3). These predictions

rely on estimating bolometric corrections for the accretion luminosity based on the theoretical

models. If accretion luminosity is in fact more distributed and cooler than typically thought, these

models will over-estimate the accretion rates. Also, if the veiling emission is from a source that is

unrelated to the accretion luminosity, accretion rates will once again be over-estimated.

In this chapter, I use my simultaneous spectroscopy and photometry to investigate time

variability in the relationship between the three main accretion metrics, U band flux, Hα flux and

veiling at ≈ 7000Å. I then characterise the excess luminosity over the range ≈ 3500 − 8000Å for

a sample of accreting stars and use temporal variability to investigate whether the red excess is

171
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Figure 9.1: The accretion luminosity models of Calvet & Gullbring (1998) for a selection of stellar
masses, radii and accretion energy fluxes F . The dotted line is optically thin emission from the
preshock (plus attenuated post-shock emission), the dashed line is the emission from the heated
photosphere, and the solid line is the total emission.

physically linked to that seen in the range 3500 - 5000 Å.

9.2 The accretion luminosity model

The ‘benchmark’ model of accretion luminosity that is typically used in studies of young stars

is that by Calvet & Gullbring (1998). This model (shown in Fig. 9.1) describes the accretion

luminosity as an optically thick thermal emission spectrum from the heated photosphere below the

shock combined with optically thin emission from the preshock and attenuated postshock regions.

The optically thin emission dominates at wavelengths shorter than the Balmer discontinuity at

3646 Å. The heated photosphere is modelled as a discrete region at the foot of the accretion column

with temperature T ≈ 6000 − 10 000 K and covering an area of 0.1 - 1 % of the star.

9.3 Comparison of accretion diagnostics

Measurement of U band excess luminosity is thought to be the most robust diagnostic for accretion

rates in YSOs (see Section 1.4). However extinction by both interstellar dust and the atmosphere of

the Earth as well as contamination by nebular emission and poor observing conditions can make

U band photometric observations difficult, time-consuming and imprecise. Thus measures of
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Figure 9.2: Empirical relation between Lacc and LHα. From: Manara et al. (2012)

accretion rate that rely on other diagnostics such as Hα emission or photospheric veiling are often

used instead. The simultaneous observations of YSOs made in this study using spectroscopy and

U and Hα narrowband photometry offer an excellent and possibly unique opportunity to directly

compare these techniques and comment on their degree of agreement and efficacy as accretion rate

diagnostics.

9.3.1 U band flux vs. Hα

Ingleby et al. (2013) show that the relation between U band excess emission and Hα is much more

clearly defined if we consider the flux in the Hα line rather than its equivalent width. Thus for large

surveys, where flux calibration of large numbers of spectra would be difficult and time consuming,

Hα narrowband photometry is most effective as an accretion rate estimation tool. Manara et al.

(2012) define an empirical function linking the luminosity in the Hα emission line (LHα) and the

total accretion luminosity(Lacc)

log
(
Lacc

L�

)
= (1.31 ± 0.03) log

(
LHα

L�

)
+ (2.63 ± 0.13), (9.1)

using photometric data from Da Rio et al. (2009). The fit to the data is shown in Fig.9.2. Similar

relations have been described by Herczeg & Hillenbrand (2008), Barentsen et al. (2011), and

Ingleby et al. (2013).

Whilst the relation appears robust, there is a scatter of ≈ 1 dex in Lacc at a given LHα,

which corresponds to an uncertainty of similar magnitude in estimates of Ṁ. This scatter may

be caused by time-variable extinction (as extinction corrections are usually made based on single

epoch measurements) or by changing viewing geometry of the different emitting regions. I have

investigated how much of this spread is due to time variable processes, allowing an assessment of
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how closely coupled these diagnostics are in a given star. Fig 9.3 compares U band excess flux

with Hα excess flux for the 15 stars in the spectroscopic accreting disc-bearing sample that have

suitable high quality photometry in U and Hα. The Hα and U bands fluxes shown are the excess

remaining once the expected photospheric continuum contribution had been subtracted. This was

achieved by predicting the continuum flux in the Hα and U bands using the relations derived in

Chapter 8 (Equations 8.1 and 8.2) and subtracting the continuum contributions from the measured

fluxes at each epoch.

The data show that most stars vary in a manner that is not consistent with a monotonic

relation between U excess and Hα excess. Variability in U that is not matched by variability in

Hα appears to be the most common behaviour (e.g. Stars 10, 26, 158) although changes in Hα

at constant U are seen (e.g. Stars 50, and 95). Without performing any statistical analysis, it is

immediately apparent that the variability seen in Fig. 9.3 is able to explain the ≈1 dex scatter that

we see in the relation between Lacc and LHα.

It is pertinent to consider physical mechanisms which might explain this behaviour. The

U band excess is principally thought to result from discrete and inhomogeniously distributed hot-

spots on the surface of the star. Much of the Hα excess is thought to originate from infalling

material above the surface of the star with perhaps some contribution from wind emission. Thus

it would appear that modulation in the U excess that is independent of the Hα excess could be

due to changes in the area of these structures that are visible as the star rotates. Even if the hot-

spots and accretion flows are physically associated (the former being formed by the impact of the

latter), the spots on the surface will rapidly move in and out of view as the star rotates, whereas

the vertical extent of accretion columns as well as their quasi-transient nature might make them

visible for different parts of the rotation cycle. In addition, the hot regions may exhibit strong Hα

absorption features (as seen in main-sequence stars with spectral types of approximately F0 and

earlier), thus modulating the integrated Hα flux for the star which also includes contributions from

the chromosphere and an extended wind or outflows.

9.3.2 U band flux and veiling

I have measured the veiling at ≈ 7000Å as a function of time for stars within the accreting disc-

bearing sample. I wished to evaluate how well changes in the accretion veiling correlate with time-

domain changes in the observed U band excess flux. Unlike Hα emission, the veiling continuum

is often assumed to arise from the same physical regions as the U band excess, so we might expect

a better correlation between these parameters than we see between U band excess and Hα.

The veiling measurements were made by using the best fitting discless templates found for

each star in Chapter 7. The veiling measurement process was performed between 7000 and 7200Å

and used the same fitting procedure as that described in Section 2.4.2. Individual spectra with SNR

< 10 per 0.4 Å pixel were rejected from the fitting process. Veiling measurements were matched to

their (temporally) nearest U band excess measurement. Measurements that could not be matched

to a U band excess measurement within a limit of 0.5 hours were rejected, as variability in U

would add uncertainty to the flux measurement. The U band measurements have their predicted

photospheric component subtracted using the method described in Section 9.3.1, leaving just the
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Figure 9.3: A comparison of Hα and U band excess fluxes as a function of time for accreting disc-
bearing stars in the spectroscopic sample. The (red) crosses show measurements made at different
epochs over the seven nights for a given star. The black circles are mean measurements (over the
seven nights) for all available stars in the ONC dataset. The spread seen in the black circles is
comparable to the spread seen in single epoch data by Manara et al. (2012). An extinction vector
corresponding to AV = 1 is shown. No correction for extinction has been made.
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excess. Fig. 9.4 compares the measured veilings with the U band excess for the same 15 accreting

disc-bearing stars that were shown in Fig. 9.3.

The relationship between the two parameters appears in a few cases to behave as we might

expect. Stars 14 and 23 appear to show variability which shows a linear relationship (within

uncertainties). Thus in these cases, the measurements of the veiling might be expected to describe

the U flux. Conversely, other stars show changes in U flux that appear to be uncorrelated with

the veiling (e.g. Stars 10, 133 and 158). These probably indicate that changes in extinction or

possibly additional sources of veiling are present, that mask the true accretion luminosity. For

many stars, I see a combination of correlated and uncorrelated behaviours. It is notable that in

some stars, significant changes in veiling appear to occur at approximately constant U excess (e.g.

Stars 26, 50 and 158). It is possible that this behaviour is the result of a fortuitous combination

of increasing extinction combined with increasing accretion luminosity. However, given how

common this behaviour appears to be, this explanation seems unlikely. Changes in veiling that

do not correspond to changes in U excess might be evidence for variability in an additional veiling

source, such as emission from the disc, or cool distributed accretion luminosity that only weakly

contributes to the U band flux. Either way, it appears that predicting Lacc from bolometrically

corrected veiling flux measurements appears difficult for many stars.

9.4 Analysis of correlation between U excess and veiling

To further understand the nature of the luminosity excess and explore the temporal behaviour of

veiling at 7000 Å, in what follows I use the simultaneous photometric and spectroscopic data to es-

timate the mean SED of the luminosity excess across the optical bands for the accreting stars. This

has allowed me to do two things. Firstly, I have compared the mean SED of the excess emission

to the variability seen in the total SED of the star. Thus I could determine whether simple changes

in the magnitude of the luminosity excess were driving the observed variability or whether other

mechanisms such as extinction changes were responsible. Where the SED variability behaviour

was shown to be explained by changes in the magnitude of a single excess spectrum, it suggested

that the excess was produced through a single physical mechanism and the excess SED allowed

me estimate the temperature of the source.

I also wished to investigate whether the excess luminosity appears different in nature be-

tween the stars where changes in the U excess and the veiling are correlated and those where little

correlation is seen. To do this, I have selected two samples that represent stars exhibiting a mono-

tonic relation between U excess and the veiling and stars that do not show any relation. These

have been selected based on a Spearman’s rank correlation test which measures how well the rela-

tionship between two variables can be described using a monotonic function whilst assuming no

prior knowledge about the expected distribution of the data. The stars selected in the ‘correlated’

sample all have a ‘p-value’ (which describes the likelihood that a correlation is seen by chance

from a random uncorrelated sample) of < 0.001. Stars in the ‘uncorrelated’ sample have p-values

> 0.2. Table 9.1 lists the sample of ‘correlated’ stars, Table 9.2 lists the sample of stars which

show no evidence of correlation.
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Figure 9.4: A comparison of veiling and U band excess fluxes as a function of time for accreting
disc-bearing stars in the spectroscopic sample. The points show measurements made at different
epochs over the seven nights for a given star. Changes in extinction will move points vertically in
this diagram. No correction for extinction has been made.
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Table 9.1: Key parameters for stars showing correlated U excess and veiling behaviour

Star id 〈Ai〉 〈r〉
(mag)

14 0.35 1.23
23 1.75 3.86
77 0.85 5.84
90 0.0 0.38

Table 9.2: Key parameters for stars showing uncorrelated U excess and veiling behaviour

Star id 〈Ai〉 〈r〉
(mag)

10 1.15 1.41
26 0.75 0.35
133 1.1 0.90
153 0.0 0.83
158 2.1 0.39

9.4.1 Measurement of the luminosity excess spectrum

To measure the excess luminosity in accreting stars, I compare the photometric SED measured for

each accreting star with with that of its ‘best-fit’ photospheric template that I found through the

spectroscopic analysis in Chapter 7. The spectroscopic analysis also provided a measurement of

the mean extinction at 6800 Å (A6800) for each accreting star. This was achieved by measuring the

ratio of flux in the photospheric lines of the template spectrum to the flux in the photospheric lines

of the accreting target star. The reciprocal of this ratio, converted into magnitudes is the extinction

A6800.

The first step in measuring the excess luminosity for each star is to take the photometrically

measured SED of the ‘best-fit’ (low extinction) photospheric template and then apply the extinc-

tion that is measured for the target star. The resulting SED is assumed to represent the accreting

star without any excess emission. The extinction that is applied has RV = 3.1. There is evidence

that RV may actually be greater than this in the circumstellar environment around young stars (see

Chapter 6), however we have no independent method of measuring this parameter in stars where

the accretion luminosity is variable. Thus the template SED has an additional uncertainty after ap-

plication of the extinction which is calculated by applying the extinction with an alternative value

of RV = 6.0.

The discless template stars appear to show an intrinsic scatter in radius. This is shown by

the luminosity scatter seen in Fig. 7.3 and is supported by earlier work by Jeffries (2007). The

spread in radius does not affect their validity as spectral templates (log g differences are too small

to be of consequence), it does however have an impact on the estimate of A6800, as a contribution

to the difference in the flux within the lines between template and accreting star may stem from

radius difference rather than simply the extinction. The result is that uncertainity in the radius
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of the template star adds an additional uncertainty in the extinction A6800. Hence the predicted

magnitudes in filters other than the 6800 Å narrowband incur an additional uncertainty which

is the product of the uncertainty in A6800 and the chromatic component of the extinction. This

additional uncertainty is calculated and is shown in all SEDs assuming an intrinsic rms scatter

in luminosity of 0.3 magnitudes, this corresponds to ≈ 12% in radius (see Section 7.2). Fig.

9.5 compares the predicted photospheric SEDs with their measured SEDs for the 15 stars in the

accreting star sample. In all stars, the extincted template SEDs have smaller fluxes in all bands

than the observed SEDs for the accreting targets. Excess emission is seen in all stars, particularly

(as expected) at bluer wavelengths.

The next step was to subtract the photospheric template SED from the accreting star SED,

revealing the excess in each band. The resulting excess SED for each star was then corrected to

remove the effects of extinction and reddening based on the measured A6800 to reveal the intrinsic

SED of the excess emission. As this extinction correction is applied using an RV value that is the

same as that used when reddening the templates, the uncertainty on the SED of the luminosity ex-

cess caused by uncertainty on RV largely cancels, rendering uncertainty in RV unimportant. Thus,

the uncertainty on the final excess luminosity SED is driven by the uncertainty on the template

radii, A6800 and photometric uncertainties (of which the latter two are typically small in compari-

son).

Fig. 9.6 shows the derived luminosity excess SEDs for the sample of accreting stars. It

is clear that the SEDs show significant differences both in magnitude and colour dependence.

Fig. 9.6 also compares the luminosity excess to simple black-body models with temperatures of

5000 K, 7500 K, 10 000 K and 50 000 K. In some cases the luminosity excess flux appears to agree

reasonably well with that of a simple black-body (e.g. Stars 10, 23 and 30). However, some stars

(e.g. 90, 152 and 153) show a general trend in the luminosity excess that is too bright in the redder

bands to be explained by models which employ small (as fraction of the stellar surface) spots with

temperatures > 5000 K. This suggests that either another source of excess emission exists that

is much redder than the accretion luminosity, or that the accretion luminosity is (at least in-part)

cooler than is typically assumed.

9.4.2 Comparing the luminosity excess with SED time-variability

I have characterised temporal changes in the SEDs for the accreting stars using a principal compo-

nent analysis (PCA) that is identical to that described in Section 6.2.2. For the 15 accreting stars

analysed in this chapter, the number of principal components required to reconstruct > 95% of the

variability in the SED time-series is either one (for 10 stars) or two (for 5 stars). This implies that

just one or two phenomena dominate their broad-band variability. The first principal component

(which describes the largest fraction of their variability) for each of these stars is shown in Fig.

9.7 and is compared with the excess luminosity that I measured for each star in Section 9.4.1. The

first principal component spectrum has in each case been scaled by its mean flux over the seven

nights of observations. In Fig. 9.7 the excess luminosity has not be corrected for extinction and

reddening so that it can be directly compared with the results of the PCA.

For four stars (14, 23 77 and 95) the similarity between the first principal component and
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Figure 9.5: A comparison of intrinsic photospheric SEDs with observed SEDs for accreting stars.
The dashed black line is the extinction-free best-fit photospheric template SED found for each
star using the spectroscopic analysis in Chapter 7. The (black) circles represent the template
after application of the extinction measured for each accreting star in the spectroscopic analysis.
Uncertainties on the template SED caused by uncertainties in the adopted value of RV are indicated
by the black error bars, which are computed assuming RV = 6 rather than the nominal RV = 3.1.
Where error bars are not visible, they are smaller than the markers. The (grey) shaded region
represents the uncertainity on the photospheric SED due to uncertainty on the intrinsic radius of
the templates. The (red) diamonds represent the measured SED for each accreting star. The peak
in the SEDs at 6568Å is the flux measurement in the narrow-band Hα filter.



9.4. ANALYSIS OF CORRELATION BETWEEN U EXCESS AND VEILING 181

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 8

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 23

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 50

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 95

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 152

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 10

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 26

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 77

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 133

4000 5000 6000 7000 8000

λ [ ]

10-28

10-27

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 153

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 14

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 30

4000 5000 6000 7000 8000

λ [ ]

10-27

10-26

10-25

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 90

4000 5000 6000 7000 8000

λ [ ]

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 143

4000 5000 6000 7000 8000

λ [ ]

10-28

10-27

10-26

10-25

10-24

f ν
  
 [

e
rg

 s
−

1
 c

m
−

2
 H

z−
1
]

Star 158

Figure 9.6: The luminosity excess flux calculated as a function of wavelength for 15 accreting
stars in the ONC (red circles). The grey shaded region shows the uncertainty on the excess.
The dashed lines show black-body functions with temperatures of 5000 K, 7500 K, 10 000 K and
50 000 K, normalised to the data at the wavelength of the g band. The excess in the narrowband
Hα filter is omitted as it is likely that multiple sources of non-thermal flux are present and thus
any measurement of luminosity excess is considered unreliable.



9.4. ANALYSIS OF CORRELATION BETWEEN U EXCESS AND VEILING 182

the excess luminosity is remarkable. This similarity implies that the temporal changes that we

see in the SEDs over the seven nights are driven by the same mechanism that is responsible for

the excess luminosity. For other stars the correlation is not so clear. In three stars (8, 90 and

143) the variability and the luminosity excess do agree well, except for in the the U band and

Hα. This might imply that variability is driven by emission from ‘hot’ spots on the surface which

are not correlated with Balmer emission. For the remaining eight stars, the relationship between

the variability and the luminosity excess is not clear. This implies that other mechanisms (or

combinations) are responsible.

9.4.3 Comparing stars with ‘correlated’ and ‘uncorrelated’ U band excess and veil-
ing behaviour

Two samples of stars were selected in Section 9.4 which showed correlated and uncorrelated vari-

ability in U band excess and veiling.

The ‘correlated’ stars

The analysis has shown that three of the four stars with strong correlation between U band excess

and veiling are also highly veiled (1.23 < 〈r〉 < 5.84), and display variability in the PCA that

is dominated by a single SED which is almost identical to their calculated excess luminosity

spectrum (Stars 14, 23 and 77). Thus is seems highly likely that for these stars the variability

is dominated by changes in the magnitude of accretion luminosity. Each of these stars shows an

excess that appears to be hotter than a 5000K black-body, consistent with a Calvet & Gullbring

(1998) model. The fourth star in this sample (Star 90) appears to behave somewhat differently.

It shows variability in PCA that is redder than its mean luminosity excess. The mean luminosity

excess also appears to be quite red when compared with black body models in Fig. 9.6, apparently

displaying a temperature cooler than 5000K. As this cool excess appears to be correlated with its

U band excess, this star is a candidate for high filling-factor ‘cool’ accretion like that described by

Ingleby et al. (2013).

The ‘uncorrelated’ stars

Stars within the uncorrelated sample show a range of luminosity excess colours ranging from very

blue (e.g. Star 26) to very red (e.g. Star 133). The SED variability in PCA is slightly more

consistent across the sample, showing a first principal component that is almost always slightly

redder than the luminosity excess (Star 133 being the exception to this). The typical veiling in

this sample is considerably lower than that seen in the ‘correlated’ sample (0.35 < 〈r〉 < 1.41).

The combination of behaviours observed indicate that perhaps the variability in four of these stars

(Stars 10, 26, 133 and 153) are driven by changes in extinction. It is possible also that the presence

of cool spots may contribute to the modification of the SED, although the strong temperature

dependence of the flux contribution (L ∝ T 4) will limit the influence of spots that are significantly

cooler than the primary photosphere.
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Figure 9.7: Comparison of photometric SED variability with the excess luminosity for accreting
stars. The black points show the measured luminosity excess. The red points show the first
principal component. The excess luminosity SED had been normalised to the variability SED
at the n6800 wavelength to allow for comparison.
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Table 9.3: Estimated stellar masses and accretion rates for stars with extracted excess luminosity
SEDs.

Star id Template mass Accretion rate
(M�) (M�yr−1)

8 0.18 3.2 x 10−8

10 0.78 1.6 x 10−8

14 0.18 5.5 x 10−9

23 0.37 3.1 x 10−8

26 0.18 3.4 x 10−9

30 0.56 1.8 x 10−9

49 0.78 3.6 x 10−9

50 0.72 5.7 x 10−9

77 0.37 2.5 x 10−8

90 0.56 9.5 x 10−10

95 0.37 8.1 x 10−9

127 0.78 9.9 x 10−9

130 0.78 2.2 x 10−9

133 1.15 5.3 x 10−9

143 0.78 1.2 x 10−8

152 0.37 1.4 x 10−9

153 0.37 7.5 x 10−10

158 0.72 2.0 x 10−8

The behaviour exhibited by star 133 is curious and indicates that a red source of excess

is appearing within the system that is uncorrelated with U band excess emission. This may be

evidence for the presence of ‘warm’ disc emission similar to that suggested by Fischer et al.

(2011) or McClure et al. (2013).

9.5 Mass accretion rates

I have estimated accretion rates for the accreting stars using Equation 1.10. Lacc has been estimated

by integrating the luminosity excess across all bands. R? and M? are estimated from the g−i colour

of the best-fitting template, using the semi-empirical models of Bell et al. (2014) adopting interior

models by Dotter et al. (2008) and an age of 3 Myr. Fig 9.3 shows the estimated stellar masses

and the accretion rates derived. The range of rates measured agrees well with those measured for

stars in the ONC by Manara et al. (2012).

9.6 Summary

Accretion rates in YSOs are typically estimated using either measurements of excess luminosity at

UV or Hα wavelengths beyond that expected for simple photospheric models, or the presence of

continuum emission that ‘veils’ spectra lines. I have provided an analysis of the time-variability of

these measures and show that the ∼ 1 dex spread in predicted Lacc for a given LHα can be explained
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by decoupling of these parameters due to viewing geometry effects. The clear conclusion from this

is that estimates of Lacc from either LU or LHα will be significantly improved by time-averaging

several measurements made over a significant fraction of the rotational period of the star.

The relation between U band flux and veiling at wavelengths around 7000Å also appears to

be significantly variable, particularly at low veiling fractions where significant variability is seen

in the veiling with apparently constant U band excess. The variability in the relationship between

U band flux and Hα flux is perhaps not surprising as the sources of the luminosities are different,

but the apparent lack of strong correlation between U band flux and veiling is more difficult to

explain as the emission is often considered to be from the same ‘hot-spots’ on the surface of the

star. The clear conclusion from this analysis is that in most stars the veiling at 7000Å is not a good

measure for the calculation of the accretion rate.

Current theoretical models of accretion onto YSOs do not adequately explain the strength

of veiling that is observed in all stars at 7000Å. I have examined the excess luminosity in 15

accreting YSOs and have shown that in highly veiled stars, the excess luminosity is well explained

by accretion luminosity models such as that by Calvet & Gullbring (1998). However, I have

identified two stars which exhibit an excess of cool (or red) emission which may be consistent

with models of large cool accretion regions and contamination from the inner region of the disc

respectively.



Chapter 10

Long-timescale high-amplitude
variability

10.1 Introduction

In Chapter 3 I show that YSO variability generally lies within well defined limits on timescales

from 1 minute to ≈ 10 years. At a population level, there does not appear to be a significant

increase in variability on any timescale that is longer than a few days. This appears to agree

with the results of studies of smaller numbers of stars (e.g. Grankin et al. 2007; Costigan et al.

2012). These observations are at odds with theories that suggest that accretion rates might change

significantly on timescales much longer than the rotation period of the star. Dramatic increases in

accretion rate are predicted due to gravitational instability within the outer disc (Vorobyov & Basu

2005, 2015) and within shielded regions of the inner disc (Armitage et al. 2001). The evolution

and migration of giant planets may also cause large scale accretion outbursts (Nayakshin & Lodato

2012). These ‘episodic’ accretion theories and observational support for them are described in

detail in Section 1.5.

The dataset that is described in Chapter 3 contains ≈ 700 disc-bearing YSOs in Cep OB3b,

that have been photometrically monitored in the i band for ≈10 years. With this sample it is reason-

able to believe that we might be sensitive to accretion variability events that occur on timescales

of up to ∼10000 years. If accretion or other variability events occur on timescales less than this,

and cause changes with amplitudes greater than that seen on days timescales, then they should be

detectable in a structure function analysis.

One long-timescale high accretion rate object is already known in Cep OB3b. V733 Cep

(also known as Persson’s star) was found to appear in (Palomar Sky Survey) POSS II images

taken in 1984, but was absent in POSS I images taken in 1953 (Persson 2004). Reipurth et al.

(2007) performed an investigation of this object using 1 − 4 µm spectroscopy and concluded that

it was a FUor that had erupted between the two POSS epochs. Since 1994, the star has shown a

very slow decline in luminosity, consistent with other observed FUors (Peneva et al. 2010). In this

chapter, I have further studied the evolution of V733 Cep and have shown that it exhibits previously

unobserved deep ‘fading’ events. I have also analysed long-timescale structure functions for the

186
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rest of the YSO population in Cep OB3b and have identified three new variable stars which exhibit

variability behaviour that is similar to known EXor variables.

10.2 The evolution of V733 Cep

In this study V733 Cep (α = 22 53 46.544, δ = +62 34 58.24, J 2000.0) corresponds with source

2-336 in the numbering system of Littlefair et al. (2010). A CCD image of V773 Cep taken by

Reipurth et al. (2007) shows a nebulous star of R ≈ 17.3 apparently located at the edge of a

cavity in the L1216 cloud. Infrared Spitzer photometry indicates the presence of infrared excess

corresponding to a Class II source (see Fig. 10.14). Optical spectroscopy shows a well-defined Li

6708 Å line. Blueshifted absorption in the Hα and Na D lines indicates the presence of a massive

fast wind. An infrared 1-4 µm spectrum of V733 Cep shows strong water vapor features, very

similar to those seen in FU Ori. Assuming an intrinsic energy distribution similar to that of FU

Ori, V733 Cep has a luminosity of about 135 L� (Reipurth et al. 2007).

I have constructed the lightcurve of V733 Cep based on all i band observations described

in Chapter 3. Often FUor stars have been seen to be broadly stable in luminosity in their outburst

states, however in these data V733 Cep shows what appears to be a strong fade during the period

2004-2005. It recovers from this fade by ∼ 2 magnitudes in i over ≈ 3 years before fading back

to 2004 levels. This behaviour is seen both in my data and that collected by the IPHAS and SDSS

surveys. The lightcurve and example images of the star are shown in Fig 10.2. A much smaller

(but apparently similar in nature) fade is seen in 2009 by Peneva et al. (2010). In my 2013 epoch

data the star again appears to be in a faint state. U, g, r, i, z photometry of the star was collected

by the SDSS in 2003 and then by Bell et al. (2013) in 2007 at epochs which corresponds with a

change in brightness of ∼ 0.5 mag. The colour evolution of the SED appears to be colour-neutral.

The deep fading behaviour that I see in V733 Cep is similar to that seen in the FUor can-

didate V582 Aur (Semkov et al. 2013). Whether this behaviour is due to time-variable extinction

or a reduction in accretion rate back toward pre-outburst levels is unclear. Further photometric

and spectroscopic monitoring is required to answer this question. The photometry collected in

this study is combined with all available literature data to show the long-term evolution of the

lightcurve (Fig. 10.3).
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Figure 10.1: INT WFC images of V733 Cep (star 2-336) taken using the i filter. Image scale is
0.333 Å pixel−1. Upper left and right are taken in August and September 2004. Lower left was
taken in 2007 and lower right in 2013. The brightening event detected in the photometry is clearly
evident.
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Figure 10.2: The INT lightcurve (left panel) and SED (right panel) for V733 Cep (star 2-336).
The SEDs are from the SDSS and Bell et al. (2013), taken in 2003 and 2007 respectively.
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Figure 10.3: Long-term lightcurve for V733 Cep (star 2-336). Data is compiled from Reipurth
et al. (2007); Peneva & Semkov (2008); Abazajian et al. (2009); Peneva et al. (2010); Barentsen
et al. (2014). Measurements made by Abazajian et al. (2009), Barentsen et al. (2014) and this study
use a SDSS based filter bandpass which adds an additional systematic error of ≈ 0.3 magnitudes
when compared with photometry using the Johnson/Cousins filter systems of the other observers.
It is clear though that the large amplitude of variability seen means that this systematic does not
have any impact on conclusions drawn from these observations.

10.3 Detection of long-timescale variables

Fig. 10.4 shows the region of a combined structure function for disc-bearing stars where long-

period, high variability-amplitude stars would be seen. Five stars fall above the one magnitude

rms line in bins where τ > 1 year (note that all stars appear at each time-lag). On inspection of

the raw images, one of these appears to be a false-alarm, the photometry appears compromised by

very close proximity to the edge of a CCD. Another of these is V733 Cep which I have already

discussed. The other three appear to be bone-fide long-timescale variables which warrant further

analysis to determine their nature. No stars showed any increase in variability on years-timescales

in the discless sample. All four long-timescale variables are located close to the two ‘cores’ of the

Cep OB3b cluster. Their locations are shown in Fig 10.5 compared with that of the disc-bearing

population. The identification numbers used to refer to the stars are the CCD and star-id numbers

from Littlefair et al. (2010).

Images and lightcurves for each of the three new long-timescale variables are shown in

Figures 10.6 - 10.11. For each star a sequence of images are shown at different epochs. The

lightcurve is also shown for each star. Finally, the optical SED at two epochs (2003 and 2007) are

shown based on photometry from the Sloan Digital Sky Survey (Abazajian et al. 2009) and Bell

et al. (2013).
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Figure 10.4: Close-up of the region of the combined structure function where stars may show long-
timescale variability in excess of that seen on rotation timescales. The blue crosses are individual
points in the structure functions of all stars in the disc-bearing sample. On timescales &1 year,
a few stars exhibit variability that is greater than that seen on timescales of a few days where
variability saturates for most disc-bearing stars.
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Figure 10.5: SDSS r-band image showing the locations of the disc-bearing YSOs identified by
Allen et al. (2012) (red circles). The blue points show the location of the four high-amplitude
variables identified in Section 10.3. Star 2-336 is V733 Cep. Image created using Aladin (Bonnarel
et al. 2000).
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Figure 10.6: INT WFC images of star 1-3653 taken using the i filter. Image scale is 0.333 Å
pixel−1. Upper left and right are taken in August and September 2004. Lower left was taken in
2007 and lower right in 2013. The brightening event detected in the photometry is clearly evident.
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Figure 10.7: Lightcurve (left panel) and u, g, r, i, z, photometric SED (right panel) for star 1-3653.
The SEDs are from the SDSS and Bell et al. (2013), taken in 2003 and 2007 respectively.
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2004 Aug 2004 Sep

2007 Oct 2013 Nov

Figure 10.8: Images of star 4-4327. Details as per Fig. 10.6. The bright phase in 2007 is evident
compared with the other epochs.
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Figure 10.9: Lightcurve (left panel) and SED (right panel) for star 4-4327. Details as per Fig.
10.7.
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Figure 10.10: Images of star 4-7279. Details as per Fig. 10.6. The 2007 and 2013 epochs clearly
show the star in a brighter state.
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Figure 10.11: Lightcurve (left panel) and SED (right panel) for star 4-7279. Details as per Fig.
10.7.
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Star 1-3653

α = 22 54 15.955, δ = +62 33 43.80, (J 2000.0).

The lightcurve shows a 1.8 magnitude brightening in i, most of which occurred in ≈ 3 years. It

then shows a ≈ 0.25 mag fade before the measurements taken in 2013. The SED appears to show

the star getting redder as it brightens in i. It apparently shows excess flux in the U band at both

epochs, this effect strengthening whilst brightening in i.

Star 4-4327

α = 22 56 25.705, δ = +62 38 28.96, (J 2000.0).

The lightcurve shows a brightening and then a fade, with a peak-to-peak amplitude of ≈1.75

magnitudes. Data collected in 2003 by the SDSS shows the star to be two magnitudes brighter in i

than at the peak of the lightcurve in 2007. Thus is appears to be coming down from a previously

much brighter phase, dropping by ≈ 4 magnitudes over the 10 years between 2003 and 2013.

Whilst in its brighter phase, it appears to be redder than when fainter. There is however indication

that the flux in U increases at the bright epoch.

Star 4-7279

α = 22 56 16.467, δ = +62 43 01.68, (J 2000.0).

The lightcurve shows a rapid brightening between 2004 and 2007, followed by a slow rise to 2013.

The overall increase is the largest of the four stars at ≈ 2.7 mag. Whilst in its brighter phase, it

appears to be redder than when fainter. The large errors at both epochs preclude comment on U

flux behaviour.

10.3.1 What is causing the extreme variability in these stars?

The variability in CMD space for the long-timescale variables is shown in Fig. 10.13. Whilst the

INT WFC camera photometric system is intended to be similar to the SDSS system, slight differ-

ences in the filter bandpasses, instrument throughput and detector response mean that magnitudes

cannot be compared directly (see Bell et al. 2012, for details). Thus I have derived transforms to

convert the 2007 INT WFC photometry into the SDSS system. The transforms have been derived

in each filter by selecting 182 PMS members (taken from Bell et al. 2013) and comparing their

magnitudes in the SDSS and INT WFC systems (see Fig. 10.12). The zero-point corrections found

are gWFC - gSDSS = -0.253, iWFC - iSDSS = -0.035 and zWFC - zSDSS = 0.078.

Photometry for the four long-timescale variables at the 2003 and 2007 epochs (SDSS and

transformed Bell et al. 2013, respectively) is plotted along with the SDSS photometry for all stars in

Fig. 10.13. CMDs in i, g − i, i, i − z and g, g − i are shown. V733 Cep appears several magnitudes

brighter than the other long-timescale variable stars and its movement in CMD space is blue-

ward when brightening, similar to that observed in stars with variable extinction. The three new

long-timescale variables exhibit behaviour that is broadly similar to each other in the i, g − i and

i, i− z CMDs. Brightenings in the i band are accompanied by very large red-ward colour changes.

Notably, in the g, g− i CMD, two stars (1-3653 and 4-4327) exhibit variability vectors that are very
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Figure 10.12: Zero point corrections between photometry in the INT WFC system and SDSS for
182 PMS stars from Bell et al. (2013).

similar in direction to that seen in accreting stars in Chapter 8, albeit with much larger amplitudes.

Fig. 10.14 shows a Spitzer colour-colour diagram illustrating how the mid-IR SED compares

for each of the long-timescale variables. Again, V733 Cep appears to be different from the new

variables which apparently sit together in a region close to the border between Class II and Class I

sources. The difference in CMD behaviour and Spitzer colours imply that V733 Cep is a distinctly

different object from the new long-timescale variables.

The new variables show optical colours that are much fainter or bluer than typical PMS stars

when in their i band faint phase. Chapter 8 of this thesis shows that accreting stars have colours

that are systematically bluer than non-accreting stars. This, in combination with high-levels of

circumstellar extinction may explain the colours and magnitudes of these objects when in their

faint phase. In their i band bright phase, these three stars become significantly redder. Each object

displays a 2 - 3 magnitude change in i between the faint and bright state.

This combination of behaviour suggests that they are candidate EXor type erupting objects.

EXors (Named after the prototype EX Lup) are PMS stars which exhibit optical and near-IR

outbursts with durations of 1-2 years that have been explained by significant increases in accretion

rate (Hartmann & Kenyon 1996; Zhu et al. 2009). The mid-IR SEDs of known EXors span the

Class I/II divide symmetrically, with a peak in the ‘Flat-spectrum’ category (Giannini et al. 2009).

This agrees with the Spitzer colours of these three EXor candidates.

Some studies of young eruptive stars suggest that the flux changes of these systems are due

to the combination of two effects of comparable amplitude. An intrinsic brightening is related to

the appearance of new accretion-driven emission, whilst at the same time dust-clearing reduces

the extinction along the line of sight (e.g. Reipurth & Aspin 2004; Kun et al. 2011b). Lorenzetti

et al. (2012) explain the reddening of the source during outburst by an increase in emission from

dust within the inner disc which is heated by the increased accretion luminosity originating from

the surface of the star. Two of the three stars (1-3653 and 4-4327) show a corresponding excess of

flux in U during their i band bright phase, further supporting their candidacy as accretion-powered

eruptive stars. Fig. 10.15 shows photometry of 7 known EXor candidates and illustrates how

their magnitudes and colours change between quiescence and outburst. In common with the three
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Figure 10.13: SDSS i, g − i (left), i, i − z (right) and g, g − i (lower),CMDs of Cep OB3b. Black
points are all stars within the INT field of view that appear in the SDSS. The four long-timescale
variables have two epochs of photometry plotted (red points connected with lines) taken from
observations in 2003 and 2007 showing how they move in CMD space. Numbers correspond to
ccd number and ID for each star.
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Figure 10.14: A Spitzer colour-colour diagram comparing the mid-IR SEDs of the long-timescale
variables (yellow dots) with the Cep OB3b population. Star 2-336 is the FUor candidate V733
Cep. Green crosses are Class I YSOs (embedded protostars), blue crosses are Class II YSOs
(disc-bearing), black crosses are Class IIIs (discless). The red crosses are ‘transition-disc’ objects.
Photometry from Allen et al. (2012).
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new Cep variables (Fig. 10.13) some are very faint or blue in quiescence when compared with the

PMS. Four of the stars also show a broadly redward colour evolution when brightening. Lorenzetti

et al. (2012) suggests that the temperature of heated circumstellar dust will determine the colour

evolution.

10.4 Summary

In the disc-bearing sample, four stars exhibit significant variability on timescales longer than ro-

tational timescales. Three stars appear to show brightening events which appear consistent with

EXor outbursts with amplitudes between 1.75 and 2.7 magnitudes. A fourth star is a pre-identified

FUor candidate (V733 Cep) which in this study appears to show deep fade events which may

be indicative of extinction changes or may be an indication of the cessation of the FUor out-

burst. Further study of these stars is required to provide a more robust characterisation of their

behaviour. The four long-timescale variables comprise ≈ 0.5% of the disc-bearing sample. If the

long-timescale variability is driven by accretion change related events that all disc-bearing stars

undergo, these four events occurring in the sample of ≈ 700 stars over the observing interval of 10

years implies that a given star might exhibit a similar event on average every ≈ 2000 years. If this

phenomenon does not randomly occur in all stars but instead repeatedly occurs in a few stars, the

quiescent phase for most stars will be longer. This appears to agree well with the outburst inter-

vals predicted by the models of Vorobyov & Basu (2005) and Vorobyov & Basu (2015). Notably

though those models were for stars up to an order of magnitude younger than the likely age of Cep

OB3b.
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Figure 10.15: Photometry of previously studied EXors from the literature. The crosses (red) are
photometry of the EXor candidate showing the brightness and colour evolution from quiescence
to outburst. The stars V1118 Ori and V1647 Ori are compared with V , V − I photometry of the
ONC by Hillenbrand (1997). XZ Tau N is compared with photometry of Taurus by Kenyon &
Hartmann (1995). The other stars do not have available photometry of associated star forming
regions so the are compared with photometry of Cep OB3b from Littlefair et al. (2010) which
have been corrected to the distance modulus of each EXor. The (blue) ‘plus’ symbols are PMS
members in the associated regions. In Cep OB3b photometry these are those identified by Bell
et al. (2013). EXor Data are from Audard et al. (2010) [V1118 Ori], Kun et al. (2011a) [V1180
Cas], Kóspál et al. (2013) [V2492 Cyg], Kóspál et al. (2011) [VSX J205126.1+440523], Coffey
et al. (2004) [XZ Tau N], Kun et al. (2011b) [PV Cep].



Chapter 11

Conclusions and Future work

11.1 Conclusions

The aim of this thesis was defined in the introduction as

Aim: To explore poorly understood behaviours that are seen in colour-magnitude diagrams of

young star forming regions and use this new information to characterise the physical pro-

cesses that occur in the formation and evolution of young stars.

If we are to make use of CMDs as useful diagnostics of the underlying physical properties of

young stars, it is important to understand the various physical phenomena that we observe and

understand their effects on the position of stars in the CMD. It is also crucial that any limitations

and potential biases are fully understood. In this section I outline the principal findings of my

research and frame them in the context of optical CMDs.

11.1.1 Photometric variability

It has long been known that variability driven by several different physical mechanisms causes

some luminosity spread at a given colour in optical CMDs (e.g. Burningham et al. 2005). However,

the detailed characterisation of variability that is performed in Chapters 3 and 5 of this thesis place

strong constraints on their magnitudes and the timescales on which the contributions are made. I

outline my key findings on variability in the following paragraphs, ordered by increasing timescale.

‘Minutes’ timescale variability

On timescales . 15 minutes, almost no variability is detected (at levels greater than ≈ 0.2%) in

the i band for a sample of ≈ 700 disc-bearing stars in Cep OB3b. Variability on these timescales

is predicted by some accretion shock models, resulting from cooling instabilities in magnetically

confined post-shock gas. These results suggest that this variability it is either very weak or not

present. It may be that the emission from the accretion shock is simply too hot to contribute

significantly in the i-band, or it may be that the quasi-periodicity that is predicted in the oscillation

of the shock-front is in some way disrupted (e.g. Matsakos et al. 2013). Alternatively, it may be

201
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that all of the gas in the shock region is optically thin and thus any quasi-periodic emission from

the shock-heated gas is emitted in the Balmer continuum and lines.

Two discless stars do show variability on minutes timescales, these are individual events

that appear to be ‘flare’-like activity. Given the sample and observing parameters detailed in

Chapter 3, these two flare events imply a flare rate of 0.0036±0.0014 per hour (roughly 1 every 12

days per star). In the sample of two flare events seen in Cep OB3b, the duration of the brightenings

range from ≈ 10 minutes to 1 hour. The amplitudes of these events are 0.6 and 0.25 magnitudes

respectively.

‘Hours to days’ timescale variability

On hours to days timescales the optical variability in most stars is well described by a simple

power law

a ∝ f −k (11.1)

where a is the amplitude of the variability, f is the frequency (in days−1) and k is the power law

exponent. This power law is valid up to a certain timescale (tmax) at which point the variability

amplitude reaches a plateau and does not increase any further. Whilst as expected, the disc-bearing

stars show greater variability amplitudes than the discless stars it is notable that the other key

parameters, the variability timescale and power spectrum exponent are remarkably similar. Disc-

bearing and discless YSOs, exhibit median values of k of 0.85± 0.02 and 0.95± 0.03 respectively.

tmax is found to be 1.50 ± 0.07 days and 1.41 ± 0.10 days for disc-bearing and discless stars

respectively. The quoted uncertainties are the standard error on the median. In the structure

function analysis this timescale was found to correspond to approximately 1/4 of the rotational

timescale of stars with literature periods. This implies that the magnitude of the variability is

driven by the physics of the underlying process, but that the timescales are instead driven by

geometric effects. The stars with the the highest amplitude variability in all bands are those that

exhibit strong accretion related excess emission in U and Hα. Accreting stars often appear to vary

in the CMD along lines that correspond to changes in accretion luminosity.

Burningham et al. (2005) performed an analysis of the impact of variability on positions of

stars in the CMD. In Chapter 5, I performed a similar analysis, however I was able to remove the

influence of the accretion driven variability. Even stars with no accretion show a spread, and of

that, only a quarter of their spread is explained by variability.

Variability on timescales longer than the rotational period.

Four disc-bearing stars (approximately 0.5% of the disc-bearing sample) in Cep OB3b show ex-

treme variability on timescales of years. One known example of the FUor class is present which in

this study shows large amplitude variability which may be related to deep extinction events. The

position of this FUor in the CMD both in its bright and faint states is not inconsistent with other

PMS stars in the cluster. The three other long-timescale variables exhibit broadband optical pho-

tometric variability and mid-IR SEDs which are constant with EXor accretion-driven outbursting



11.1. CONCLUSIONS 203

stars. These stars are previously unknown EXor candidates. The CMD behaviour of these stars is

extreme, and in their i band faint states they fall several magnitudes below the PMS locus. Their

CMD behaviour is very different to the short-timescale accretion driven variability seen in Chapter

5, as brightening events are accompanied by a large redward change in colour. Thus the mech-

anism for these luminosity changes appear entirely different to those seen on shorter timescales.

If the long-timescale variability is driven by episodic accretion events that all disc-bearing stars

see, then these four events occurring in the sample of ≈ 700 disc-bearing stars over the observ-

ing interval of 10 years implies that a given star might exhibit a similar event on average every

≈ 2000 years. For the EXor candidates, these long-timescale changes have a dramatic effect on

their CMD position. However their small numbers mean that the overall impact on the CMDs of

young associations is small.

The combined effect of variability of the CMD

It is clear from this analysis that variability on timescales of the rotational period and shorter will

add a significant spread in luminosity at a given colour. As a result a considerable uncertainty

will be present on age estimates of individual stars that are calculated by comparison with PMS

models. The magnitude of this uncertainty will depend on the age of the star forming region,

becoming more significant in older populations as the isochrones bunch closer together. This

problem is particularly acute in accreting stars as their variability is considerably greater than

in non-accreting stars. However, it should be noted that the ages of ensembles of stars will be

unaffected due to the random temporal nature of this short to medium term variability.

Conversely, long-timescale variability in EXor accreting outbursters will place PMS mem-

bers in a part of the CMD where they might be interpreted as being much fainter or older than they

really are. This is probably due to a combination of excess accretion luminosity and very high

(possibly colour neutral) extinction.

11.1.2 Other physical processes that influence CMDs of young stars

The conclusions described so far provide a detailed description of the variability behaviour of

young stars and their impact on the CMD. However, it is clear that there are further significant

physical mechanisms that affect the positions of YSOs in the CMD. The remaining sections de-

scribe the investigation of these mechanisms and summarise what we can learn from them about

YSO systems.

Accretion histories

In Chapter 2, I showed that the spread in luminosity seen at a given Teff in the ONC and NGC2264

could not be explained by episodic accretion at high-rates occurring within the protostellar phase of

YSO evolution. Models predict that early lithium depletion should accompany any intrinsic radius

change that is caused by episodic accretion at high rates (Baraffe & Chabrier 2010). However, our

failure to find any lithium depletion in the sample of 168 stars observed in the ONC and NGC 2264

places limits on cold accretion models. Burst accretion rates of Ṁ ≥ 5 × 10−4 M� yr−1 must occur
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in less than 0.5 % of 0.3 ≤ M? ≤ 1.9 M� stars. Analysis of accretion luminosity in Chapter 8

shows that five stars in the ONC which were previously identified as depleted in lithium (by Palla

et al. 2007) were almost certainly simply subject to extremely high accretion veiling that is hard to

correct. Thus it appears that CMDs are not a useful diagnostic for study of the accretion histories

of YSOs.

Inner disc dust and extinction correction

Extinction by dust within the inner regions of YSO discs was investigated in Chapter 6 and was

shown to differ from that seen in the ISM. Typically the wavelength dependence of the extinction is

seen to be of order RV ≈ 5 - 8, compared with the value of RV ≈ 3.1 that is typically adopted in the

literature for sight-lines within the galactic plane (e.g. Cardelli et al. 1989; Fitzpatrick 1999). The

interpretation of this observation is that grain growth has occurred. The location of this material

within the ‘snow line’ implies that refractory grains have actually coalesced rather than simply

gaining an ice mantle which is thought to be the cause of grain growth in the ISM (Draine 2003).

This is evidence for the beginning of planetary formation.

The effect of the high value of RV on the CMD is to add additional uncertainty to photo-

metric measurements that have been corrected for the effects of extinction. For example, for a star

where a contribution of AV = 0.5 comes from circumstellar dust, if the RV value of 3.1 was used

then the V magnitude will be under-estimated by ≈ 0.1 mag. This would lead to an under-estimate

of stellar luminosity of ≈ 10%. As extinction contributions from the inner disc are likely to be

significantly different depending on the structure and inclination of the disc, this effect will add

a spread in magnitude to the photometry. As good statistics on the number and distribution of

these parameters does not exist, it is impossible to quantify the effect on an ensemble of stars in

the CMD, however it is likely that this effect is smaller than luminosity spreads caused by other

mechanisms described in this thesis. In Chapter 2, I discuss some stars which appear to be viewed

at high inclinations and thus are significantly more faint then the PMS locus due to occultation

of the star by their disc. There is little evidence from the main variability analysis that this is a

common scenario.

Accretion luminosity

In Chapter 8, I showed that the dominant factor in the luminosity spread seen in CMDs of young

associations appears to be contamination by accretion luminosity. Stars which exhibit significant

excess flux in optical accretion indicators such as the U band or Hα are significantly displaced

in CMD space. The direction of the displacement vector derived by analysis of the spectroscopic

sample is a significant blueward shift in colour accompanied by a modest brightening in the g, g− i

CMD. The gradient of the accretion luminosity vector is typically less than the PMS locus, result-

ing in a luminosity spread (or more accurately a colour spread) as stars are displaced blueward

below the PMS locus.

This effect is not seen in disc-bearing stars that do not exhibit excess in U or Hα. Curi-

ously, the influence of accretion on CMD position was investigated by Littlefair et al. (2011) and
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no evidence found for the influence of accretion luminosity. Unfortunately, this study only consid-

ered stars with measured rotation periods, which significantly biased the sample against accreting

objects. Also the study focussed on only the brightest (I & 14) stars in the ONC and NGC 2264.

However as models calculated by Da Rio et al. (2010b) show, the colours of the brighter (and

hence hotter) stars will be far less affected by accretion luminosity than cooler PMS members.

Whilst we can see that accretion luminosity systematically changes photometric colours

in a broadly consistent manner in the CMD, it is impossible to predict the intrinsic colours of

accreting stars with photometric data alone. In Chapter 9, I extracted the underlying accretion

luminosity spectrum for 15 accreting stars and showed that the colour temperature of the emission

excess is not consistent across the sample. Thus to quantify the effect of accretion luminosity on

CMD positions, large numbers of moderate resolution spectra would be required.

It is pertinent to consider whether accretion luminosity may systematically bias estimates

of PMS ages that are calculated through comparison of ensembles of stars with model isochrones

(e.g. Mayne et al. 2007; Guarcello et al. 2010a; Bell et al. 2013). The evidence from this study

suggests that indeed a bias toward older ages may exist in the youngest clusters where larger

populations of accreting stars still exist. A simple mitigation for this would be to exclude disc-

bearing stars from the analysis, or alternatively to use indicators such as U or Hα excess to exclude

accreting objects. This is only likely to be a significant issue for lower mass objects in the very

youngest clusters, as beyond & 5 Myr the stellar populations are dominated by discless stars and

the discs that do remain exhibit dramatically reduced accretion rates.

To fully assess the effect of accretion on stellar colours, luminosities and structure, precise

metrics of accretion rate are required. In Chapter 9, I showed that both U and Hα flux vary

independently by ≈ 1 dex on timescales shorter than the rotation period of the star. This implies

that single epoch measurements of these parameters will add an uncertainty of ≈ 1 dex on the

derived accretion rate. The decoupled behaviour of these two accretion rate diagnostics is most

probably a viewing geometry effect. The key message from this is that accretion rates derived from

either U or Hα excess should be calculated from a mean of several photometric measurements,

separated by significant fractions of the rotation period of the star.

The relation between U band flux and veiling at wavelengths around 7000Å also appears

to be significantly variable, particularly at low veiling fractions where variability is seen in the

veiling with apparently constant U band excess. The clear conclusion from this analysis is that

in most stars, the veiling at 7000Å is not a good measure for the calculation of the accretion

rate. Through examination of the excess luminosity in 15 accreting YSOs, I have shown that in

highly veiled stars, the excess luminosity is well explained by accretion luminosity models such

as those of Calvet & Gullbring (1998). However two stars within my sample exhibit an excess

of cool (or red) emission which may be consistent with models of large cool accretion regions or

contamination from the inner region of the disc.

Other mechanisms

Despite providing a detailed characterisation of phenomena that influence the positions of YSOs

in the CMD, there exists some residual luminosity spread at a given Teff that cannot be explained
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by variability on any timescale, extinction uncertainties or accretion luminosity. This is best il-

lustrated by the CMD of the discless spectroscopic template stars shown in Figure 7.3. These

stars have had any variability averaged by the seven nights of observations, they exhibit no disc

or optical accretion indicators and their (intrinsically small and ISM driven) extinctions have been

corrected using spectroscopically derived measurements. Despite this, they appear to show an

intrinsic luminosity discrepancy of up to ±0.5 magnitudes in g about an empirically defined locus.

Jeffries (2007) measured a spread in radii for stars in the ONC. However in that study no

correction is made for the effects of accretion, whereas in my data I have managed to remove the

potentially significant effects of accretion luminosity. The fact that a luminosity dispersion remains

is strong evidence toward their being a further mechanism that is adding luminosity dispersion

within the cluster. Star-spots are such a candidate mechanism. Star-spots that are cooler than

the surrounding photosphere, are thought to be ubiquitous in pre-MS stars (Jackson & Jeffries

2012), and the lower luminosity of the cooler regions may potentially reduce the luminosity of the

star. In main-sequence stars, the need to radiate the energy from the core causes the presence of

spots to drive an increase in radius, in brown dwarfs it instead reduces their luminosity and slows

their contraction (Chabrier et al. 2007). Fully convective pre-MS stars will most likely behave

in a similar way to brown dwarfs, with varying spot fractions driving a scatter in luminosity. In

addition, the presence of high fractions of spot coverage is predicted to slow the contraction and

progress of the star down Hayashi tracks (Jackson & Jeffries 2014). This effect, seen across an

entire coeval population may lead to a systematic under-estimate of the age of the cluster.

11.2 Further work

11.2.1 Exploring ‘old’ stars in young clusters

Populations of apparently ‘older’ stars are found amongst younger populations of PMS stars in

some very young regions such as NGC 6611 and NGC 6530 (Prisinzano et al. 2005; Guarcello

et al. 2010a). The evidence for their older age is that they lie blueward of the main PMS population

and close to the ZAMS. These stars may conceivably be explained as a population of heavily

accreting stars that have had their colours modified by accretion luminosity in a similar manner

to that seen in the ONC. A comprehensive spectroscopic survey or a deep photometric U band

survey is required to determine whether this is the case.

11.2.2 Searching for ‘minutes’ timescale accretion shock variability

The results of the variability analysis in Chapter 3 were very clear that minute timescale variability

was not present to sub-percent levels. Given the predictions made by theory, this was a challenging

result. This result agrees with previous smaller scale studies by Drake et al. (2009) and Günther

et al. (2010) who looked at X-ray and optical variability respectively. One explanation is that

the photosphere at the base of the accretion streams (where the accretion energy is themalised)

has a cooling timescale that is long compared to the timescale of the accretion instabilities. As

a result, the variability in the observed optically thick emission would most likely be of little use
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in probing the dynamics of the much more transient accretion flows themselves. However, the

thermal timescale of the optically thin accretion flows is thought to be of order minutes. So if the

optically thin flows either reprocess the accretion luminosity, or as the above models suggest are

responsible for it, it is likely that emission from these regions will be uniquely sensitive to any

high frequency changes in the accretion process. Considering the temperatures involved and the

observational limits, the obvious solution to this problem is to look for high frequency variability

in the U band which is sensitive to changes in the optically thin Balmer continuum emission,

shortward of 4000Å. A robust and comprehensive search for minute-timescale variability in the

Balmer continuum emission has been performed. Time-series U-band observations of stars in the

ONC with a cadence of 1 minute were made in 2014 using the Canada France Hawaii Telescope

and its MegaCam wide field camera. These data are yet to be analysed but will tell me whether

variability is present on timescales between 1 minute and 1 hour in Balmer continuum emission.

Identification of U band variability on minute timescales would allow me to measure parameters

that constrain accretion models and to learn about the dynamics, homogeneity and shock physics

of the infalling material. Conversely, a null result might be even more important as it would imply

much smoother accretion processes than currently predicted and challenge theorists to explain how

accretion occurs without the expected strong variability.

11.2.3 Long-timescale episodic accretion

On timescales of years and longer there is a significant contradiction between theory and obser-

vations of YSO variability. The dramatic increases in accretion rate that models of disc instability

and planet formation predict should be seen as episodic outbursts in the lightcurves of YSOs. The

current statistics on this kind of behaviour are sparse and subject to many biases, rendering them

poor for characterising the frequency and nature of such outbursts.

The recent launch of GAIA (Eyer et al. 2013), with observations of the entire sky every '30

days for five years offers an outstanding opportunity to study a large sample of YSOs. Further-

more, as an optical survey it is biased towards older systems in their planet-forming epoch (ages

'5Myr) when compared to IR surveys. Although GAIA will tell us that an object has changed

in brightness, it will not tell us why. In addition to accretion-rate changes, variable obscuration

also produces variability in YSOs. It is crucial, therefore, that the GAIA data is complemented by

ground-based follow-up observations that will measure changes in accretion rate that occur during

these events. I have been allocated time on the Liverpool Telescope to perform such observations.

These data will allow me to determine the duty cycle and accretion rate amplitudes of a large

sample of YSO accretion burst events. Over ∼ 104 known YSOs are within the range of GAIA,

but an order of magnitude more will be detectable in outburst. Given the fraction of outbursting

stars seen in Chapter 10, a significant number (perhaps 5 - 50 per year) of outbursting stars should

be detected. Thus, a unique window exists to undertake a statistical study of accretion variability

events that occur with duty-cycles of ∼ 104 and perhaps up to ∼ 105 years, whilst the planets are

forming. Importantly, this information would allow me to determine whether most of a star’s mass

is accreted smoothly over long timescales or instead in shorter episodic bursts between quiescent

periods. This information will feed back into theory and allow us to improve our understanding
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of the structure of circumstellar discs, with important implications for the planet formation and

migration occurring within.

11.2.4 The effect of spots on PMS evolution

To test whether star-spots significantly change the luminosity of pre-MS stars, I have collected

medium resolution (VLT/GIRAFFE) spectra for a sample of K-type discless YSOs in two clusters

of different ages and dispersions in luminosity. I intend to measure the spot coverages for these

stars and compare them with position in the CMD. Magnetically active K-stars are sufficiently hot

that their photospheres should be free of TiO absorption, however their cool-spots mimic M-star

atmospheres with their distinctive TiO bands. By modelling their total spectrum as the sum of

template K-type and M-type stars, the spot area and temperature is recovered (Neff et al. 1995).

I observed discless stars as they are still contracting toward the main sequence but have very

little spectral contamination from circumstellar discs and accretion, though the technique is robust

against contaminating accretion flux (Webb et al. 2002).

A significant correlation between luminosity (at a given colour) and spot coverage would

offer strong support to the idea that star-spots are responsible for some luminosity spread and

could potentially affect pre-MS ages. If instead, large areas of spot coverage are ubiquitous across

all stars in the pre-MS, it might mean that clusters appear considerably younger (as a fraction of

their nominal ages) than their true age. Finally, if we find a systematic difference in spot coverage

between the cluster of different ages, it would imply that the correction to the ages is itself age

dependent.
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Appendix A

The variability of spectroscopic target
stars in CMD space

This appendix contains g, g− i colour-magnitude diagrams for all spectroscopic target stars show-

ing how their position varies in CMD space over the course of one week. The black points are

the mean colours and magnitudes for all stars with clean photometry in this study. The red (grey)

points are the positions at different epochs for the target star in question. The inset is a close-up

of the positions of the target star, coloured to represent the epoch and highlighting the photomet-

ric uncertainties. Extinction vectors corresponding to AV = 1.0 are shown for RV = 3.1 and 5.5.

A range of movement is seen in this diagram, the physical nature of this is investigated in later

sections of this thesis.
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