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The picture on the previous page is a composite of images taken during the transit

of Venus on 8 June 2004 with the Solar X-ray imager (SXI) on the GOES-12 spacecraft.

It was produced by the US National Oceanographic and Atmospheric Administra-

tion (NOAA) and downloaded from www.solarviews.com. It points to one of the

main difficulties in detecting transits of a terrestrial planet: the intrinsic variability of

late-type stars, a major part of which is due to magnetically induced photospheric

features at the base of the X-ray bright coronal loops visible here.



Summary

Most of the 130 or so exo-planets (planets orbiting a star other than the Sun) known to

date, were detected via the radial velocity (RV) method, which relies on the spec-

troscopic detection of changes in the parent star’s radial velocity as it orbits the

star-planet system’s centre of mass. Another promising method relies on the detec-

tion, in stellar photometric time series, of the periodic dips caused by planets as they

cross the disk of their parent star: planetary transits.

Many ground-based transit search projects have been operating for several

years and are expected to come to fruition soon – a handful of planets detected

via their transits have been confirmed already. From the ground, both transit and RV

methods are limited to giant planets. Several space-based transit search missions are

thus planned to probe the terrestrial and habitable planet regimes. The preparation

of data analysis tools for these missions, in particular COROT and Eddington, has

been the focus of my PhD, with potential application to ground-based data as a

secondary objective.

I first developed and tested an algorithm for the automated detection of tran-

sits in white noise, a challenge due to the rare, brief and shallow nature of the transits.

One of the most important noise sources for future space-based missions is the intrin-

sic low-amplitude variability of the parent star on timescales of tens of minutes to

weeks. I constructed an empirical model of this ‘stellar micro-variability’ to simulate

realistic light curves for a variety of stars, and developed filters to remove micro-

variability. Monte Carlo simulations were used to test the performance of these tools

alone and in combination, and to identify which types of stars make the most promis-

ing targets for Eddington & COROT.

The algorithms’ performance was tested against that of others by participating

in the COROT transit detection blind exercise, in which a number of groups from

across Europe applied their algorithms to a set of simulated light curves of content

known only to a game master. A transit search was also performed in 5 nights of

data obtained in 2003 by the UNSW transit search team using the 0.5 APT telescope

in Siding Springs Observatory in the field of open cluster NGC 6633. and a handful of

transit candidates with depths below 50 mmag were identified.
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was done in collaboration with others, as detailed below:
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work.

• Chapter 3
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• Chapter 4
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• Chapter 5
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• Chapter 6
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place my work in context. The contents of Section 6.1 are the result of discus-

sions between all the participants. The contents of Section 6.2 are primarily the

work of others except for Subsection 6.2.3 which describes two sets of stellar

light curves, one simulated by myself and one by A. Lanza. Section 6.3 con-

tains work carried out by myself in collaboration with M. Irwin, except for Sub-

section 6.3.2, which summarises the methods used by the other participating

teams for comparison. The contents of Sections 6.4 and 6.4.3.1 are essentially

my own although they benefited from discussions with M. Irwin.
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