
Chapter 4

Variability filters

4.1 Introduction

We have seen that stellar micro-variability will be an important noise source for space-

based planetary transit searches, and that it is vital to reduce its impact for Kepler

and Eddington to achieve their stated goals. The basic idea behind the variability

filters developed in the present chapter is the following: it is possible to disentangle

the planetary transit signal from other types of temporal variability if the two have

sufficiently different temporal characteristics.

The micro-variability simulator introduced in Chapter 3 provides us with the

means of illustrating and testing the effect of the filters we develop as solutions to

this problem. As an example, we use throughout the present section a light curve

simulated according to the planned characteristics of the Eddington mission, con-

taining stellar variability, planetary transits and photon noise. The light curve lasts

3 years and has a sampling time of 10 min. The transits were simulated using the Uni-

versal Transit Modeller (UTM) software of Deeg et al. (2001), while the photon noise

was simulated as Gaussian distributed noise with a standard deviation equal the

square-root of the expected photon count per integration given the collecting area

(0.764 m2) and throughput of the December 2003 Eddington baseline design1. The

light curve contains transits of a 2 R⊕ planet orbiting a G2V star (R! = 1.03 R"), i.e. a

radius ratio of 0.018, leading to a relative transit depth of 3.24 × 10−4. The planet’s

orbital period is 1 year, and its orbital distance 1 AU, leading to a transit duration of

∼ 13 hours. The epoch of the first transit is 1.5 day. The star’s age is 4.5 Gyr and its

apparent magnitude V = 13, leading to a photon count rate of 8.4 × 107 10 min

integration. In this regime, the photon noise in each integration is well approximated

by a Gaussian distribution with a standard deviation of 1.09 × 10−4.

1http://astro.estec.esa.nl/Eddington/Tempo/eddiconfig.html



112 Variability filters

Figure 4.1: Simulated Eddington light curve
for a V =13 solar-age G2V star orbited by
a 2 R⊕ planet with a period of 1 year. Top
panel: entire light curve. Bottom panel: first
30 days, with a transit 1.5 day after the start.
The flux values shown have been normalised
to a mean of 1.

Figure 4.2: Power spectrum of the light curve
shown in Figure 4.1 (upper grey line). Lower
grey line: stellar variability only. Lower black
line: transits only (3 transits). Upper black
line: photon noise. The power spectrum is
dominated by stellar variability at low fre-
quencies and by photon noise at high fre-
quencies.

The power spectra of the different components of the light curve mentioned

above are shown in Figure 4.2. Although the power contained in the transit signal is

small compared to both stellar and photon noise components (and would be even

smaller for the case of an Earth-sized planet), it retains significant power for frequen-

cies higher than ∼ 1 µHz, where the stellar signal starts to drop off steeply. As long

as the aforementioned condition that the planetary and stellar signal be sufficiently

well separated in the frequency domain is fulfilled (i.e. if the stellar variability occurs

on sufficiently long timescales), one should be able to separate and detect the tran-

sits. Furthermore, in the case of multiple transits, the regular period of the transits also

helps constrain the Fourier space occupancy of the transit signal with respect to the

stellar signal.

In the spirit of modularity adhered to throughout this thesis, the filters are de-

veloped as pre-processing tools, the output of which can be fed to a transit search

algorithm. This differs from previous publications on the topic (Defaÿ et al. 2001; Jenk-

ins 2002), which concern transit search algorithms specifically designed to detect sig-

nals buried in non-white noise. One advantage of our approach is that the filtered

light curves can be searched for any kind of short-timescale event, not only transits.
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The work presented in this chapter is the continuation of work carried out on this

issue at ESTEC (Carpano et al. 2003). The latter article was a detailed exploration of a

pre-whitened matched filter which we show in Section 4.2 to be closely related to a

Wiener filter. This filter is then generalised to be applicable to data with gaps and/or

irregular sampling in Section 4.3, while an alternative, the iterative non-linear filter, is

presented in Section 4.4. This marks the difference between our approach and that

of Defaÿ et al. (2001); Jenkins (2002) and Carpano et al. (2003): the filters are required

to be directly applicable to data with gaps and irregular sampling, a problem that

will affect any real dataset to some extent, whether ground- or space-based. Note

that Jenkins (2002) does address this issue, but in a different way: by developing a

method to effectively regularise the sampling before applying the algorithm. The

characteristics of the light curves after application of the two filters are compared in

Section 4.5, and their performance, particularities and potential improvements are

discussed in Section 4.6.

4.2 Wiener or matched filtering approach

Carpano et al. (2003) demonstrated how use of an optimal filter can simultaneously

pre-whiten and enhance the visibility of transits in data dominated by stellar variabil-

ity. The Fourier-based method presented there is also closely related to a minimum

mean square error (MMSE) Weiner filter. However, even for space-based missions un-

even sampling of the data will occur. In these real-life cases, standard Fourier meth-

ods are no longer directly applicable and a more general technique is required.

To gain some insight to the problem consider the general case of intrinsic stellar

variability, with the received signal x(t) is composed of the three components:

x(t) = s(t) + r(t) + n(t) (4.1)

where s(t) is the intrinsic time variable stellar light curve, r(t) is the transiting planet

signal, and n(t) denotes the measurement plus photon noise, which we can take

to be random (and Gaussian in the cases of interest here)2. Each component is

statistically independent, hence the expected power spectrum Φ(ω) of the received

signal is simply given by:

Φ(ω) =
〈
|S(ω)|2

〉
+

〈
|R(ω)|2

〉
+

〈
|N(ω)|2

〉
(4.2)

and in the case of random, or white, noise
〈|N(ω)|2〉 is a constant, hence guarantee-

2Strictly speaking, the 1st two terms in Equation (4.1) should be multiplicative, but in the limit of low
amplitude variability and shallow transits, an additive combination is a very good approximation.
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Figure 4.3: Top panel: Wiener filter con-
structed using the light curve shown in Fig-
ure 4.1 and a reference box-shaped transit
of duration 0.65 day . Middle panel: filtered
light curve. Bottom panel: idem, 1st 30 days,
with a transit 1.5 day after the start.

Figure 4.4: Top panel: matched filter con-
structed using the light curve shown in Fig-
ure 4.1 and a reference box-shaped transit
of duration 0.65 day. Middle panel: filtered
light curve. Bottom panel: idem, 1st 30 days,
with a transit 1.5 day after the start.

ing positivity of the right hand term. This also highlights in a natural way a justification

for the somewhat arbitrary constant in Equation (6) in Carpano et al. (2003) and how

its value is related to the expected noise properties (although it would be more nat-

ural to implement it as a lower bound). However, as outlined below there is a simpler

way to implement their technique without the need for the additional constant.

A standard MMSE Wiener filter attempts to maximise the signal-to-noise in the

component of interest, in this case r(t), by convolving the data with a filter, h(t), con-

structed from the ratio of the cross-spectral energy densities between observation

and target, such that:

x ′(t) = h(t) ⊗ x(t) X ′(ω) = H(ω) X(ω) (4.3)
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and (using ∗ to denote complex conjugate):

H(ω) =
〈R(ω)R(ω)∗〉
〈X(ω)X(ω)∗〉 =

〈|R(ω)|2〉〈|X(ω)|2〉 (4.4)

for a long enough run (a fair sample) of observations. In practice the only example

we have of x(t) is often singular, implying that the best estimate of the denominator

is simply the observed power spectrum Φ(ω), subject to the constraint of positivity

imposed by the implicit
〈|N(ω)|2〉 term. Such a filter is illustrated in Figure 4.3: the

top panel shows the filter, constructed using the Fourier transform of the light curve

shown in Figure 4.1 and a box-shaped reference transit of duration 0.65 day, and the

bottom two panels show the filtered light curve. Note that this filtering method does

modify the transit shape. In particular, it induces positive deviations either side of the

transit, which is effectively equivalent to removing some of the transit signal as well

as the stellar and noise signal. However, the transit signal-to-noise ratio is obviously

enhanced, and it becomes easily discernible even by eye.

This should be contrasted with the pre-whitened matched detection filter em-

ployed by Carpano et al. (2003), illustrated in Figure 4.4 (using the same layout as

Figure 4.3), and which can be written in the form:

X ′(ω) = H(ω) X(ω) =
X(ω)

〈|X(ω)|〉 〈|R(ω)|〉 (4.5)

and hence is equivalent to reconstructing the data using just the phase of the input

signal Fourier transform modulated by the amplitude spectrum from the expected

transit shape (see Figure 4.5). Viewing the problem in this way removes the need for

the additional constant in their Equation (6) and emphasises the two stage nature of

the filtering. The pre-whitening suppresses the stellar variability component, while the

matched filter is directly equivalent to the transit search algorithm case presented in

Section 2.2.2 with n = 1.

In practice, transit searching can be based directly on the output of the filter-

ing, or preprocessing can be used to decouple the stellar variation estimation from

the transit search phase, which then proceeds using algorithms optimised for white

Gaussian noise. (In either case, detailed investigation of the transit depth and shape

involves phase folding, unfiltered data, and local modelling.)

Either of these preprocessing filters works well in the case of regularly sampled

data with no gaps and with a reasonable separation between the signatures of

the Fourier components of the transits and the stellar variability. In Figures 4.3, 4.4 &

4.5, the transits are distinctly visible in the filtered light curve. The results in terms of

transit detection performance using either method are very similar. For simplicity, the
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Figure 4.5: As Figure 4.4, but the filtered
light curve was obtained by modulating
the phase of the Fourier transform of the
data by the amplitude spectrum of the
reference transit signal. The filter was omit-
ted as it is effectively identical to that
shown in Figure 4.4. Comparing, visually,
the amplitude, shape and timescale of
the variations in the filtered data with the
bottom two panels of Figure 4.4 confirms
that this gives very similar results to the
matched filter approach.

matched filter approach, rather than the Wiener filter, is used in the remainder of this

paper.

However, real data, even space-based, suffers from irregular sampling and the

presence of significant gaps. Fourier domain methods cannot be directly applied to

irregularly sampled data, but it is possible to treat regularly sampled data with gaps

as a series of n independent time series, and to filter them separately. To test this,

four arbitrarily chosen sections were removed from the light curve shown in Figure 4.1

(see Figure 4.6). The matched filter was then applied to the five unbroken intervals

separately, and the results are shown in Figure 4.7. Though the filtering is effective on

relatively long sections of data (bottom panel) it is not successful for short intervals

(middle panel), even if they are significantly longer than the transit duration. This

is because the power spectrum of the stellar noise is estimated from the data in

order to construct the filter. For this to be successful, the data segment needs to

be at least twice as long as the longest significant timescale in the star’s variability,

which is either the rotation period or the long end of the starspot lifetime distribution

Figure 4.6: Simulated light curve with data
gaps. Four arbitrarily chosen sections were
removed from the light curve shown in Fig-
ure 4.1. Note that the gaps were chosen
to avoid the transit regions.
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(Aigrain et al. 2004). In the case of the G2V star used in the simulations, the minimum

data segment length for which the filtering was successful was ∼ 60 days (last data

segment in Figure 4.7), consistent with a rotation period of ∼ 30 days for such a star.

It is therefore necessary to find other means of coping with this additional com-

plexity. We have investigated two alternative approaches: one based on a least-

squares generalisation of the Fourier filtering approach; the other based on a gen-

eral purpose iteratively clipped non-linear filter. In both cases we use the preprocess-

ing to attempt to remove the stellar signature, as much as possible, prior to invoking

the transit search algorithms developed in Chapter 2.

4.3 Least-squares fitting

For a long run of regularly sampled data, a discrete Fourier transform asymptotically

approaches a least-squares fit of individual sine and cosine components (see e.g.

Bretthorst 1988). This naturally suggests an extension of the approach described in

Section 4.2 to the case of irregularly sampled data. An analogous situation occurs

in the generalisation of the periodogram method to Fourier estimation of periodicity;

using generic least-squares sine curve fitting is a more flexible alternative (Brault &

White 1971). This allows the case of gaps in the data, or more generally irregular

sampling, to be dealt with in a consistent and simple manner.

The procedure is basically identical to that employed for the Wiener or matched

filters described in the previous section, but the calculation of the Fourier transform,

or power spectrum, of the received signal is replaced by an orthogonal decomposi-

tion of this signal into sine components whose amplitude, phase and zero-point are

fitted by least-squares. Each of the components has the form:

ψk(t) = ak sin (2πkt/T + φk ) (4.6)

where T is the time range spanned by the data. The number of components to fit

can be chosen such than the maximum frequency fitted is equal to some fraction of

the Nyquist frequency, but for this one must define an equivalent sampling time δt .

In the case of regular sampling with gaps, δt is simply the time sampling outside the

gaps. In the case of irregularly sampled data the definition of δt is more open ended.

However, provided that the sampling is close to regular, a good approximation will

be the average time step between consecutive data points – keeping in mind that

any significant gaps should be excluded from the calculation of this average. The

potentially highest frequency component should then have frequency ≈ 1/ (2δt),

although in practice a much lower frequency cutoff for the components is all that is
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Figure 4.7: Results of applying the matched
filter independently to the 5 unbroken inter-
vals of the light curve shown in Figure 4.6.
Top panel: entire filtered light curve. Middle
panel: 1st 30 days. Bottom panel: another
30 day section centred on the second transit
(at 366.5 days). See text for an explanation.

Figure 4.8: Top panel: “power spectrum”
(i.e. coefficients ak versus frequency) ob-
tained by the least-squares fitting method
for the light curve shown in Figure 4.1. Middle
panel: reconstructed light curve, obtained
by summing over the fitted sine-curves up
to a frequency of ∼1.8 cycles/day. Bottom
panel: 1st 30 days of the reconstructed light
curve.

required.

Note that the first (zero-frequency) component is effectively the mean data

value 〈x(t)〉 (which can be pre-estimated and removed in a robust way e.g. by taking

a clipped median). The presence of gaps in the data provides us with a natural way

of obtaining several independent estimates of 〈Xls(w)〉 by measuring it separately in

each interval between gaps, or alternatively provides a natural boundary for doing

independent light curve decompositions.

Figure 4.8 illustrates this least-squares fitting method, as applied to the light

curve shown in Figure 4.1. The top panel shows the “power spectrum”, i.e. the co-

efficients ak versus frequency, while the bottom two panels show the light curve re-
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constructed by summing the fitted sine-curves. Note that high frequency variations

are not reconstructed as only the first 2000 sine components were fitted (well below

the Nyquist limit, but amply sufficient for the purposes of following the long timescale

stellar variability).

The decomposition of the reference (transit) signal can usually be well ap-

proximated analytically. For example if a simple box-shaped transit of duration d

is adopted as reference signal, the k th coefficient is given by:

rk =
sin (πkd/δt)

πkd/δt
(4.7)

However, this decomposition can also be performed in the same way as for the

received data, for a reference signal of any given shape. The sets of coefficients

ak and rk then define the filter hk , which is equivalent to the filters of the previous

section:

hk =

〈|rk |2〉〈|ak |2
〉 or hk =

〈|rk |〉
〈|ak |〉 (4.8)

where the first expression corresponds to the standard Wiener filter, and the second

to the pre-whitened matched filter used in Carpano et al. (2003).

Figure 4.9 illustrates this filtering method. Using the second expression in Equa-

tion (4.8) (equivalent to Equation 4.5), a ‘matched filter’ hk is constructed from the

coefficients ak and rk (the latter computed according to Equation 4.7). The filtered

light curve, obtained by multiplying the ak by hk and reversing the ‘transform’, is

shown in the middle panel, with a zoom on the first 30 days in the bottom panel.

Figure 4.10 shows the results of the matched filter constructed using the least-

squares fitting method when the light curve contains gaps (as in Figure 4.6). The

performance of the filter is generally not affected by the gaps, though artifacts near

gap boundaries can sometimes be introduced.

The case of irregular sampling is not illustrated here, for practical reasons: if the

sampling was allowed to vary, say, by ±10 % of the normal sampling time in a random

fashion, the effect is not visible in plots of such long light curves. In any case, we have

found it to have negligible effect on the the least-squares filtering.

Note that the combination of the least-squares fitting method to construct

power spectra with the pre-whitened matched filter (RHS of Equation 4.8) will, for

conciseness, be referred to hereafter simply as ‘the least-squares filtering method’.
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Figure 4.9: Top panel: equivalent matched
filter constructed according to the 2nd ex-
pression in Equation (4.8), using the light
curve shown in Figure 4.1 and a reference
box-shaped transit of duration 0.65 day. Mid-
dle panel: filtered light curve. Bottom panel:
idem, 1st 30 days, with a transit 1.5 day after
the start.

Figure 4.10: As Figure 4.9, but the input light
curve is that shown in Figure 4.6, with 4 signif-
icant data gaps.

4.4 Non-linear filtering

If the timescale of the transits is shorter than that of the dominant stellar variations, it-

erative non-linear time domain filters can pick out short timescale events. A standard

median filter is a good starting point for this type of approach.

The data are first, if necessary, split into segments, using any significant gaps in

temporal coverage to define the split points. These gaps, defined as missing or bad

data points, or instances where two observations are separated in time by more

than a certain duration, can be automatically detected.

Each segment of data is then iteratively filtered using a median filter of win-

dow ∼ 2 to 3 times the transit duration, followed by a (small window) box-car filter
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Figure 4.11: Light curve with data gaps
filtered using the non-linear technique
(black curve). The input data was the light
curve shown in Figure 4.6. The window
of the iterative median filter used was 3 ×
0.65 days. The grey curve shows the same
data with the residual noise level after fil-
tering measured and artificial data with
Gaussian distributed noise of the same
standard deviation generated to fill the
gaps. This illustrates the fact that, after
non-linear filtering, the light curve (outside
the transits) is well approximated by a con-
stant level plus white noise.

to suppress level quantisation, which avoids excessive sensitivity to low-level dips (i.e.

potential transits). Irregularities in sampling within a given segment are ignored, the

filtering window being defined simply in terms of a number of data points. The dif-

ference between the filtered signal and the original is used to compute the (robust)

MAD-estimated scatter (sigma) of the residuals. The original data segments are then

k-sigma clipped (with k = 3) and the filtering repeated, with small gaps and sub-

sequent clipped values flagged and ignored during the median filtering operation.

The procedure converges after only a few iterations.

While applying this filter in the context of the COROT blind experiment (see

Chapter 6), we found that the results were improved by the addition of a pre-filtering

step, which consists in smoothing each interval using a median filter with a width of 2

or 3 data points before applying the iterative non-linear filter to construct the contin-

uum (though the continuum is still subtracted from the original, unsmoothed data to

give the filtered light curve). Because it smooths the sharp edges of the transits, this

pre-filtering reduces the amount of transit signal (which we want to preserve) that is

removed by the filter.

Break points and/or edges are dealt with using the standard technique of edge

reflection to artificially construct temporary data extensions. This enables filtering to

proceed out to the edges of all the data windows. The continuum obtained in this

manner is then subtracted from the original to obtain the filtered light curve.

The main advantage of using a non-linear filter is that the exact shape of the

transit is irrelevant and the only free parameter is the typical scale size of the duration

of the transit events. The main drawback is that the temporal information in the
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segments is essentially ignored. However, providing the sampling within segments is

not grossly irregular this has little impact in practice. This filter is also relatively fast due

to its simplicity: with the 512 MB RAM, 1.2 GHz processor laptop previously used to test

the box-shaped transit finder (see Chapter 2), the running time for a transit duration

of ∼ 0.5 day is 4 seconds per light curve, about the same as the time required for

the standard Wiener filter. The least-squares filtering method was significantly slower

(requiring approximately 30 s when 1500 frequencies were fitted).

Figure 4.11 illustrates the non-linear filter as applied to the light curve with gaps

shown in Figure 4.6. As with the indirect least-squares filtering, the high frequency

noise remains, but this does not impede transit detection. Given the simplicity of

this method and its good performance in the presence of data gaps, it appears

to be the most promising, as long as the sampling remains relatively regular (if the

sampling is significantly irregular, the least-squares filtering method, which takes the

time of each observation into account directly, is likely to perform better).

4.5 Light curve characteristics after filtering

Several factors are to be taken into account when assessing the performance of the

filters:

• How noisy is the filtered light curve?

• How Gaussian is the noise distribution in the filtered light curve?

• Has the transit shape and depth changed in the filtering process and how

much?

Comparing Figures 4.10 and 4.11, one can readily see that, while both filter-

ing methods suppress low frequency variations, the least-squares filtering method

enhances any variations on the timescale of the reference transit (including the real

transit) while suppressing high frequency noise. It also changes the shape of the tran-

sit significantly, as well as enhancing its contrast. On the other hand, the non-linear

filter does not affect any variations on timescales shorter than two or three times the

transit duration. This implies that, although the transit is more obvious to the naked

eye after application of the least-squares filtering method, the noise distribution is

close to Gaussian after non-linear filtering.

This is illustrated in a quantitative manner in Figure 4.12, which shows distributions

of the deviations from the median before and after filtering (note that the transits

were excluded from these distributions). In each case, a 1-D Gaussian was fitted to

the distribution. The respective half-widths of the fitted Gaussian were ∼ 6 × 10−4,

1 × 10−5 and 1 × 10−4. The least-squares filtering method therefore removes more
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noise. It also reduces the transit depth, though by a lesser factor: the approximate

transit depth in each case was 3.2 × 10−4, 1.4 × 10−4 and 3.2 × 10−4. The ratio of

the transit depth to the Gaussian width is thus higher after least-squares filtering than

after non-linear filtering. However, the distribution after non-linear filtering is much

closer to a Gaussian.

4.6 Discussion

The two filtering methods presented here share some advantages – both can be

applied to data with gaps – but they also have different properties.

The least-squares filtering method is capable of making use of the time informa-

tion in data with irregular sampling. It also allows a theoretically optimal filter (i.e. the

Wiener or matched filter) to be combined with a pre-whitening filter, although from

the point of view of detection, the matched filter is the main active component of

any maximum likelihood-based detection algorithm. It is designed to be the method

with the highest performance in terms of enhancement of the transit depth to noise

ratio. As a by product of the filtering, the stellar signal can also be reconstructed.

However, this is computationally intensive, particularly if one wishes to fit higher fre-

quencies. Its performance also depends quite critically on concordance between

the duration of the reference transit and that of any true transit. Its primary use in the

context of space-based transit searches will therefore be the detailed investigation

of borderline candidates, originally identified in light curves treated with the non-

linear filter: there will be few of these so that the computing time requirements do

not matter, and one will already have an idea of the approximate transit depth.

On the other hand, iterative non-linear filtering is simple to implement and fast,

and produces nearly Gaussian residuals. This is a very important point because transit

search algorithms in general – and in particular those developed in Chapter 2 – are

optimised for white Gaussian noise. It is also less sensitive to the choice of reference

transit duration, because it simply removes any signal on timescales longer than two

or three times this duration, rather than applying a Fourier domain filter which has a

complex structure over a wide range of frequencies. The non-linear filter is thus our

filter of choice for space-based transit searches, where the time sampling is regular

apart from the occasional data gaps. However, it ignores any local time information

(except for the long gaps which are detected automatically). This means that its

performance is likely to degrade if the sampling is seriously irregular, e.g. ground

based transit searches, where one will have to resort to the least-squares filtering

method.

Whatever the method used, there is a fundamental limit to what can be filtered
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out. Stellar variability can only be filtered out if an orthogonal decomposition of the

transit and stellar signal is possible, e.g. if the two signatures in the frequency domain

do not overlap too much. Therefore, very rapidly rotating stars where the rotation

period is close to the transit duration, or stars showing much more power than the

Sun on timescales of minutes to hours (e.g. higher meso- or super-granulation) will be

problematic targets – although perfectly periodic stellar signals, even if they have

large amplitudes and periods close to transit timescales, are easily removed using

e.g. the sine-fitting technique discussed in Chapter 6, Section 6.3.1.3.

Of course, these filters will not be used in isolation. The quantity we are really in-

terested in is the performance of the transit search algorithms when applied to their

output. This is the subject of the next chapter, where the filters are coupled with the

box-shaped transit finder from Chapter 2 and applied to the output of the simula-

tor from Chapter 3 for a wide range of input parameters, given the observational

characteristics of the Eddington, COROT and Kepler missions. The same combina-

tion is also tested on COROT data simulated on the basis of inputs from a number of

European groups as part of the blind experiment described in Chapter 6.



Figure 4.12: Distributions of the deviations from the median a) before filtering (in green), b)
after applying the least-squares filtering method (in red) and c) after applying the non-linear
filter (in blue). A Gaussian fit is shown in each case (black line). Obvious departures from
Gaussianity were excluded from the fits (grey hashed regions). c) shows all three distributions,
scaled and shifted so that each fit corresponds to a zero mean, unit variance, unit amplitude
Gaussian.




