
Chapter 2

Transit detection algorithms

The present time is an exciting one for the transit searching community. After a

few years of tuning both observation and data analysis techniques, the first ground-

based programs (in particular the Optical Gravitational Lensing Experiment, or OGLE)

are now yielding detections, albeit in smaller numbers than expected (Konacki et al.

2003a; Bouchy et al. 2004). Is the heralded ‘landslide’ of extra-solar planets detected

via transits really just around the corner? Will the planned space missions really de-

liver as expected? Their success hangs, at least partially, on our ability to automati-

cally search huge datasets for tiny, repetitive signals deeply buried in noise. The work

presented here represents an attempt to contribute to this challenging task.

At the time of starting the present thesis in 2001, there was no widespread

agreement as to the best approach for planetary transit detection. However, a

small number of papers dedicated to the problem (see e.g. Jenkins et al. 1996; Doyle

et al. 2000; Gilliland et al. 2000; Defaÿ et al. 2001) provided a natural starting point

from which to develop new methods, or improve on existing ones. By contrast, at the

time of writing, the number of published articles devoted to or dealing with this prob-

lem has vastly increased (see e.g. Aigrain & Favata 2002; Jenkins et al. 2002; Kovács

et al. 2002; Koen & Lombard 2002; Street et al. 2003; Aigrain & Irwin 2004). The refer-

ences listed here are by no means exhaustive, but provide a good overview of the

variety of techniques commonly used today or under investigation for future missions.

The first comparative studies (Tingley 2003a,b, see also Chapter 6) represent an

attempt to synthesise and sort through this zoo of methods. One subject on which

there is widespread consensus, is that a diversity of available algorithms is a better

guarantee of success than a single, uniformly used approach. Not only is it likely that

different methods will perform better in different circumstances, but the independent

detection of a given event using two algorithms might improve the confidence level

in the detection. On the other hand, most published algorithms are based on the

same underlying maximum likelihood principles. Clarifying this common case helps
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to understand the apparently disparate menagerie in terms of a family of closely

related siblings, differing mostly in their implementation details – which affect speed,

robustness, and adaptability to specific circumstances.

The algorithms presented in this chapter were conceived primarily with upcom-

ing space-based planetary transit search missions in mind, such as COROT, Edding-

ton and Kepler , but they are equally applicable to data from ground-based pro-

grams. Both types of datasets, despite the differences highlighted in Chapter 1,

place very similar requirements on the detection algorithms.

The space missions are expected to produce 10 000’s of light curves per tar-

get field, each containing 100 000’s of individual observations, as the time sampling

is high and a single field is observed for months or even years. Most small aperture

ground-based programs have similar fields of view, or larger fields of view but brighter

magnitude limits, leading to similar numbers of stars per target field. While the num-

ber of observations of each field is much less than for the space missions (100’s or

1000’s), is it usual for a number of fields to be observed in a given observing season,

thereby leading to similar sized datasets in a given year.

The time sampling of the data from the space missions is expected to be reg-

ular, and the duty cycle very high (up to ≥95 % for Eddington and Kepler), though a

number of data gaps, e.g. due to telemetry losses, cannot be avoided. In ground-

based data the sampling is, of course, very irregular, with interruptions between

nights and between observing runs, as well as due to weather or technical prob-

lems. In order to keep the algorithms as general as possible, they were designed to

be applicable to data with irregular sampling. In some cases regular sampling could

allow for small alterations to the code, leading to slight gains in computing time.

To tackle the enormous databases involved, speed and automation are vital.

This leads, at least at the detection stage, to a single motto: the simpler the bet-

ter. This is consistent with maximising the statistical efficiency (see Section 2.1.1.3).

The present chapter reflects a learning process in this respect, in that the first algo-

rithm investigated, a Bayesian approach, is more sophisticated, and for detection

purposes less effective, than the second, a stripped down version where the use of

Bayesian priors was dropped and the assumptions about the shape of the transit sig-

nal further simplified. This does not mean that sophisticated methods, incorporating

as much prior knowledge about the sought-after signal and the noise characteris-

tics as possible, should be discarded, but they are expected come into their own at

the characterisation, rather than detection stage – though that stage is beyond the

scope of the present work.

Section 2.1 describes the Bayesian algorithm, together with performance tests

which were carried out on simulated light curves affected by photon noise as ex-
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pected for Eddington. Section 2.2 describes the simpler, but derivative, box fitting

algorithm.

2.1 A Bayesian, step-function based algorithm

Transit detection algorithms based on a Bayesian approach, already investigated in

the context of the COROT mission (Defaÿ et al. 2001), constitute an interesting alter-

native to more conventional approaches, e.g. matched filters. They maximise the

use of whatever information is available on the phenomenon one is trying to detect,

and are relatively flexible, allowing the seamless incorporation of new information

into the detection process as it becomes available. While a global ‘marginalised’

statistic can be used for the detection, information is directly available to recon-

struct the detected signal if wanted, therefore providing a tool to discriminate be-

tween planetary transits and other types of periodic signals (Defaÿ 2001), as well as

directly measuring additional parameters such as the planet’s radius.

After a brief investigation of the method of Defaÿ (2001), a decision was made

(for reasons outlined below) to develop a novel algorithm, based on the GL method

of Gregory & Loredo (1992) (hereafter GL92), which was also the starting point for

Defaÿ et al. (2001). The GL92 method was developed for the search of periodic

variations in emission from pulsars in X-ray data.

The approach of Defaÿ et al. (2001) was based on the expansion of the light

curve into a truncated Fourier series. C. Defaÿ kindly provided a coded implementa-

tion of this method, but experiments with this code showed that performing the de-

tection in the Fourier domain made the algorithm computationally sensitive to data

gaps and discrete sampling rates. The direct space approach investigated here is

expected to be more robust, though it does not have the advantage of providing a

direct means of reconstructing the shape of the detected signal.

The GL method was initially developed for Poisson noise dominated light curves

(as is the case for X-ray pulsars) and later extended to the Gaussian noise case (Gre-

gory 1999, hereafter G99). At the flux levels of interest for transit searches, the photon

shot noise per detection element (which is Poisson distributed) can be very well rep-

resented by Gaussian noise. The original formulation of the GL method made no as-

sumptions about the shape of the variations, the model consisting of a step-function

with m even duration, arbitrary level bins. The new algorithm was developed to be

as ‘general purpose’ as possible, but makes intrinsic use of prior knowledge of the

expected signal, by allowing one of the bins to have a variable width, to represent

the out of transit constant signal level. This formulation also permits the phase of the

transits, or epoch (start time) of the first transit, to be identified, a task the original GL



44 Transit detection algorithms

p

e

flux

m=5

t = 0 time t
fluxflux

time tt = 0

p

e d

flux

n=4

Figure 2.1: Schematic illustration of the type
of model used in the GL method. There are
m equal duration bins per period p. The
(arbitrary) epoch e is defined as the time
elapsed between the start of the light curve
and the end of the first bin.

Figure 2.2: Schematic illustration of the type
of model used in the modified GL method.
There are n in-transit bins of duration d/n plus
1 out-of-transit bin of duration p − d per pe-
riod p. The epoch e is defined as the time
elapsed between the start of the data and
the start of the next transit.

method is not suited for (see Section 2.1.1.1). The fitted parameters are the period,

duration and phase of the transit. The shape of the transit can then be reconstructed

from the phase-folded light curve.

The new algorithm, referred to hereafter as the modified GL method, is derived

from the GL method in Section. 2.1.1. Using simulated light curves, the modified

GL method is compared to the original in Section 2.1.2, and its performance in the

presence of photon noise evaluated in Section 2.1.3. Section 2.1.4 then outlines tests

on light curves containing, in addition to simulated photon noise and transits, solar

micro-variability.

2.1.1 Derivation of the algorithm

2.1.1.1 The models

In GL92 and G99, the periodic hypothesis is represented by a class of periodic step-

function models, resembling a histogram, with m equal duration bins per period (see

Figure 2.1). The model level in each bin is allowed to vary, giving these models the

ability to describe light curves of unknown shape. A given model Mm, with a given

value of m, has m + 2 parameters: period p, epoch e (or phase φ) and m bin levels

R = {r1, r2, . . . , rm}.

This periodic hypothesis is contrasted with aperiodic and constant hypotheses,

which are special cases of the periodic model, both having a period equal to the

total duration of the light curve and the latter having m = 1.
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In the case of transit searches, some information about the shape of the sought

after signal is available. The model should therefore consist of a long flat section

followed by a dip. A family of models similar to those of the GL method but where

one bin is much longer than the others (see Figure 2.2) is therefore used. There are

now n + 1 bins, n being the number of in-transit bins. A given model Mn, with a given

value of n, has n + 4 parameters: period p, transit duration d, epoch e, and n + 1 bin

levels R = {r0, r1, . . . , rn}. Models with lower n will incur a lower Occam penalty factor,

as emphasised in G99.

Only two hypotheses (transit, denoted by HT and constant, denoted by HC)

are considered: the constant hypothesis is a special case of the transit hypothesis

with a period equal to the full duration of the light curve and n = 0, but the adopted

model is not suited to aperiodic variations. The special case where the period is

equal to the total duration of the light curve corresponds to a single transit, which is

considered to be part of HT.

2.1.1.2 Bayesian analysis

Just like any signal detection problem, transit searching consists in hypothesis testing.

Bayesian analysis provides a framework for the a posteriori incorporation of new or

additional information in a detection process. Given the rate at which our knowl-

edge of the characteristics of extra-solar planets is increasing, such an approach

has distinct advantages. Already, one can directly incorporate into the detection

the fact that transits are rare events due to the low alignment probability. One can

also incorporate the fact that this alignment probability is lower for the more distant,

i.e. longer period planets, by setting the a priori probability distribution for the period,

or period prior, to be lower for longer periods.

An excellent discussion of Bayesian detection and parameter estimation is given

in GL92. However, given the fact that Bayesian methods are relatively rarely used in

the present field, the process is described below in some detail.

The hypothesis under test is that the light curve X = {x1, x2, . . . , xN}, contains

(periodic), short and shallow dips against an otherwise constant background. This

global transit hypothesis will be referred to as HT. It is generally relatively straight-

forward, under given assumptions about the noise characteristics of the data, to

compute a likelihood for HT, that is a measure of the extent to which HT predicts

X , P (X |HT) (see Section 2.1.1.3). But the quantity of interest is P (HT|X), the posterior

probability for the model. The relationship between the two is governed by Bayes’

theorem (Bayes 1764):

P (HT|X) =
P (HT)

P (X)
× P (X |HT) , (2.1)
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where P (HT) encompasses a priori information about hypothesis and the underlying

physical processes, measurement effects, etc., and is consequently known as a prior,

and P (X) is a normalisation constant.

In the case of transit searches, the prior for HT, P (HT), represents any a priori

information as to the probability that the light curve contains transits. In the range of

planetary radii already probed by other methods, its value could be deduced from

the frequency of planets observed to date, as well as from the alignment probability

of the orbit with the line of sight (requiring some assumption about the distribution of

orbital inclinations). This would require a relatively complex integration over several

parameters, and the possibility that other variations in the light curve might dominate

over any transits would still need to be accounted for. At first glance however, the

alignment requirement alone suggests that P (HT) ≤ 0.1.

P (X), the normalising factor, is given by:

P (X) =
∑

i

P(Hi |X) × P(Hi). (2.2)

where the Hi represent each of the hypotheses under test. The need to evaluate

P (X) is circumvented by comparing the hypothesis under consideration, HT, to that

for another, null hypothesis. In the present context, the null hypothesis consists of a

constant light curve, and is referred to as HC. One computes the odds ratio, or ratio

of the posterior probabilities for the two hypotheses:

O =
P (HT|X)

P (HC|X)
=

P (HT)

P (HC)
× P (X |HT)

P (X |HC)
, (2.3)

If O is greater than 1, there is evidence for transits in the light curve. If, as in the

example above, P (HT) = 0.1 (and assuming all light curves correspond to either HT

or HC), then P (HT) /P (HC) = 0.11.

In practice, one does not compute a likelihood for HT as a whole, but rather for

a single member Mn of the class of models represented by HT, with a particular value

of n, and for a particular set of parameters (period, duration, epoch, shape) repre-

sented by the (n + 4)-element vector V . Likelihoods are computed for each value

of V , and combined through a marginalisation process. Given a multi-dimensional

array of likelihood values P (X |Mn, V ), unwanted parameters are marginalised over.

One marginalises over each parameter vi in turn by multiplying the likelihood by a

one-dimensional prior for that parameter and integrating over (or summing over all
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sampled values) of vi :

P
(
X |Mn, V ′) =

vmax
i∑

vi=vmin
i

{P (vi |Mn) × P (X |Mn, V )} , (2.4)

where V ′ is the (n + 3)-element vector of all parameters contained in V except vi .

The choice of prior depends on pre-existing knowledge about each parameter. For

example, in the case of transits the prior for period might be chosen to reflect the

orbital period distribution observed to date. Specific forms of prior can also reflect

common sense, for example a logarithmic prior in period or frequency ensures that

the results are the same whether one works in period or frequency (see GL92 and ref-

erences therein). The marginalisation is repeated until no parameters remain (in that

respect n can be treated as a parameter), and the left hand side of Equation (2.4) is

the global likelihood for HT. After computing the likelihood for HC, one then obtains

the global odds ratio O.

If O > 1, i.e. there is evidence for the transit hypothesis, it is natural to ask which

set of transit parameters best describes the data. A transit detector must provide

some information about the location of the transits in the light curve to be useful, at

least the period and epoch. The posterior probability distribution for each parame-

ter vi is obtained from the one-dimensional likelihood function, marginalised over all

other parameters (including n), using Bayes’ theorem:

P (vi |X ,HT) =
P (vi |HT)

P (X)
× P (X |HT, vi) . (2.5)

Given that P (X) is constant with respect to V , the best trial value of vi is that which

maximises P (vi |X ,HT) × P (X) = P (vi) × P (X |HT, vi).

2.1.1.3 Likelihood calculation

The calculations are given below in sufficient detail to allow the reader to repro-

duce the algorithm, but some lengthy derivations which were taken from G99 have

not been reproduced. The original GL method was implemented in parallel to the

modified version to provide a benchmark for test purposes, but with the same simpli-

fications as the modified method, that is no noise scale parameter. The large number

of parameters in the original GL method is its very weakness: each of them implies

a dilution of the likelihood function (whose peak is spread over more dimensions of

parameter space). This leads to larger variances in the estimated parameters, and

hence to smaller statistical efficiencies.
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Each data value xi , corresponding to time ti , is decomposed as

xi = ri + ei , (2.6)

where ri is the value predicted by the model at time ti and ei represents any varia-

tions in the data not accounted for by the model. In the present context ei will con-

tain, apart from true variations not accounted for by the model, a photon shot noise

contribution, well approximated by a Gaussian distribution for high photon counts,

plus other instrumental and astrophysical noise of unknown distribution. According

to the Central Limit Theorem, the most conservative assumption for the distribution of

ei is a Gaussian.

The treatment of errors has been simplified relative to G99: we assume the noise

standard deviation for each data point xi has a known value σi . This assumption is

justified in the context of transit searches where the noise characteristics should be

well determined from the large numbers of simultaneous high-precision light curves,

and removes the need for the rather confusing noise scale parameter b of Gregory

(1999).

The likelihood for a given value of n (i.e. model Mn) with a given set of n + 4

parameters (p, d, e, R) is then given by a product of Gaussian probability distributions

(assuming the data points are independent):

P (X |Mn, p, d, e, R) =
N∏

i=1

{
σ−1

i√
2π

× exp

[
− (xi − ri)

2

2σ2
i

]}
, (2.7)

where N is the total number of data points.

Before calculating this likelihood one must determine in which bin j of the model

a given data point falls:

j(ti) =

{
tmod
i : if 0 < tmod

i ≤ n

0 : otherwise
, (2.8)

where

tmod
i = int

(
(ti + p − e) mod p

d/n
+ 1

)
, (2.9)

n is the number of bins per transit, int(y) is the nearest integer lower than or equal to

y and a mod b is the remainder of a divided by b.

As a small aside, it is interesting to compare this expression with Equation (6)

of Gregory (1999), which corresponds to the original set of models with m equal

duration bins:

j(ti) = int {1 + m [(ωt + φ) mod 2π] /2π} , (2.10)
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where the angular frequency ω = 2π/p and φ is a phase parameter representing

“the position of the first bin relative to the start of the data” and running from 0 to

2π. The definition and range of this parameter are inconsistent, unless one bin can

somehow be identified as the first, which is not the case given the unknown shape

of the model. As Gregory (1999) employed a uniform prior for φ, this inconsistency

has no effect on the detection, and the period and shape determinations, which

were the quantities of interest in that paper. However it explains some of the results

presented in Section 2.1.2.

The likelihood can now be expressed in terms of the n + 1 bins of the model:

P (X |Mn, p, d, e, R) =
n∏

j=0

(2π)−(nj/2) ×
 nj∏

i=1

1

σi

× exp
(
−αj

2

) , (2.11)

where nj is the number of data points in bin j, and

αj =

nj∑
i=1

(
xi − rj

)2

σ2
i

, (2.12)

rj being the model value in bin j. For all purposes except the determination of the

light curve shape inside the transit, the individual rj’s do not matter. It is therefore

desirable to marginalise over the rj’s, that is to compute a combined likelihood for all

possible values of the rj’s within a range set a priori. According to Bayes’ theorem,

this is done by multiplying the likelihood by a prior and integrating over the range of

rj :

P (X |Mn, p, d, e) =
n∏

j=0

(2π)−(nj/2) ×
 nj∏

i=1

1

σi

×Rj

 , (2.13)

where

Rj =

∫ rmax

rmin

drj P
(
rj |Mn

)
exp

(
−αj

2

)
, (2.14)

rmin and rmax being the minimum and maximum value of the rj’s, respectively. The

distinct advantage of step-function models is that, as shown by Gregory, it is pos-

sible to perform this marginalisation analytically. Using a uniform prior for the rj’s:

P
(
rj |Mn

)
= (∆r)−1 where ∆r = rmax − rmin, and following the derivation of G99, we
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obtain

P (X |Mn, p, d, e) =
(

1√
2π

)N (
1
∆r

)(n+1) (
π

2

)( n+1
2 )

(
N∏

i=1

1

σi

)
exp

−
n∑

j=0

χ2
Wj

2


×


n∏

j=0

W
1/2
j

[
erfc(yjmin) − erfc(yjmax)

] ,

(2.15)

where the quantities Wj , χ2
Wj

, yjmin and yjmax are taken directly from Equations (11)

to (16) in G99, and erfc(y) is the complementary error function. In fact, it is shown

in Section 2.2.2.1 that the bin levels are not independent parameters, and are fully

determined by the data. This fact is exploited by the improved method that was

later derived from the one presented in this Section.

2.1.1.4 Choice of priors

Following G99, we use a Jeffreys prior for the period:

P (p|Mn) =
1

p ln (pmax/pmin)
, (2.16)

where pmin and pmax are the limits of the period-space explored and ln (pmax/pmin)

is a normalisation constant to ensure that
∫ pmax

pmin
P (p|Mn) dp = 1.

As pointed out by G99 (see references therein), this prior arises naturally from

considerations of invariance with respect to changes in time scale and ensures that

an investigator working in terms of p with this prior would obtain the same results as an

investigator working in terms of frequency ν with a 1/ν prior. In the present context it

also reflects (though in a qualitative rather than quantitative fashion) the lower transit

probability for longer periods that arises from geometric alignment considerations.

As already mentioned in Section 2.1.1.3, we use a flat prior for the rj’s, intro-

ducing only a normalising factor 1/∆r . Similar priors are also used for epoch and

duration.

Provided the results of the individual likelihood calculation (Equation 2.15) are

stored, the period and duration priors could be changed at a later date, for example

once the observed distributions for these parameters in the case of planetary transits

are better known.

Finally, all values of n are considered equally likely a priori, bearing in mind that

higher values of n are automatically affected by an implicit Occam’s razor penalty

factor, as discussed by GL92.
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2.1.1.5 Weighting factor to compensate for uneven distribution into the bins

When the number of periods is low such that one bin might be represented four times

while another only three times, or if there are gaps in the data which may not be

evenly distributed over the bins, GL92 noted that some of their initial assumptions may

fail, leading to the appearance of an erroneous trend in the posterior probability for

the period.

In an appendix to GL92, a solution to this problem was proposed. A weighting

factor sj is applied to each bin:

sj =

(
njm

N

)−nj

. (2.17)

It is important to note that this factor was derived in the context of Poisson statistics.

Despite the low number of periods in our light curves, we found that no weight-

ing factor was required in the benchmark algorithm that reproduced the GL method

identically. However, it is clear that the problem is more acute in the modified algo-

rithm. The ‘out of transit’ bin contains many more data points than the others, and

therefore has a much larger effective weight. A weighting factor is required to com-

pensate for this problem. The expression given above for sj is only appropriate in the

photon count context in which it was derived, not in the Gaussian noise case rele-

vant here. A different weighting factor can be heuristically derived by considering

Equation (2.12). The contribution of each model level to the likelihood is a χ2 sum.

The variance of a χ2 distribution is equal to twice the number of degrees of freedom

N . In each bin there are nj data points and npar parameters to adjust (in the mod-

ified GL method npar = n + 4). As nj & npar, N = nj − npar ' nj . Weighting each

bin by a factor 1/nj is therefore equivalent to weighting proportionally to the inverse

variance. In practice this is achieved by maintaining the expressions for χ2
Wj

, yjmin and

yjmax given in Gregory (1999) in terms of xi and σi , but replacing Wj by Wj/nj .

This modification was implemented in our algorithm and found to give more

robust results.

2.1.1.6 Minimising the computing time

For a given set of parameters, the calculation of the likelihood involves summing over

each element in each bin. The time required to compute the likelihood for a given

set of p, d, e therefore scales linearly with the number of points in the light curve. It

also increases with the number of bins, but this is a slow increase. It does not depend

on the individual parameter values.

The overall computing time also depends, of course, on how tightly the param-
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eter space is sampled. It is necessary to minimise the number of trial values for each

parameter without missing potentially localised likelihood maxima. Because of the

relative sharpness of the peak in the posterior probability for the period, the period in-

crement needs to be kept fairly small (typically once or twice the time step between

data points). Attention was therefore concentrated on what increment was suitable

in terms of epoch. The results are not significantly worsened by increasing the posital

phase φpos
1 increment from 1/p (i.e. shifting the model by 1 sampling time at each

increment) to d/2np (i.e. shifting the model by half the duration of an in-transit bin

at each increment). Further increase leads to sharp steps in the posterior probability

distribution (analogous to Shannon’s sampling theorem).

However, the computing time is inversely proportional to the increment, and a

posital phase increment of d/2np is still prohibitively expensive. In practice, steps in

the posterior probability distribution that result from a larger increment can be ef-

fectively removed by dividing it by the equivalent distribution for an entirely flat light

curve with the same duration, sampling and data gaps as the light curve. We call

this dividing function the ‘window function’ 2. We therefore use a posital phase incre-

ment of d/2p and perform the division before analysing the results. As the window

function only needs to be calculated once per period and duration, this is much

faster than using a smaller increment (see Section 2.1.3).

Note that due to the use of this window function one should not strictly speak-

ing use the word ‘posterior probability’ when talking about the output of the algo-

rithm. Hereafter, we will refer to ‘modified posterior probability’ to mean ‘posterior

probability distribution divided by the window function’. This also implies that the

global odds ratios mentioned in Section 2.1.1.2 cannot be used to directly measure

the ratio of the probabilities for a periodic model compared to a constant model.

Instead, we use bootstrap simulations (see Section 2.1.3.1) to set a threshold value of

the detection statistic above which a detection is accepted.

2.1.2 Comparison with the original GL method

In order to establish a reference point and to gain a preliminary estimate of the mod-

ified algorithm’s performance, some qualitative tests were run on both the original

and the modified version.

For this purpose light curves containing transits and photon noise were gener-

ated with the parameters of the Eddington mission in mind. We describe below a

reference light curve simulated with one particular set of parameter values. Each

1φpos = φ/2π.
2This also has the advantage of ironing out any residual effects of the uneven bin duration not re-

moved by the weighting factor.
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parameter was then varied in turn over a small but representative range.

All light curves have a sampling time of 15 minutes. The total light curve dura-

tion is 4 months. To simulate the transit signal from a planet in a 1 year orbit observed

for 3 or 4 years without the computational expense such a duration would imply, a

1 month orbital period was used.

Given the presence of limb darkening in stellar photospheres, planetary tran-

sits are not perfectly ‘flat bottomed’ (nor are they, strictly speaking, truly grey). To

simulate transits in a realistic way, we use the Universal Transit Modeller (UTM) soft-

ware written by H. J. Deeg (Deeg et al. 2001). UTM can simulate light curves from

any number of luminous or dark objects, including stars, planets, rings and moons.

Circular orbits are assumed, and a linear limb darkening law is adopted for the stars.

We used limb darkening coefficients from Van Hamme (1993). The dark objects –

planets, rings and moons – are assumed to have zero albedo, i.e. no reflected light

is included. This is justified because, in white light, the amount of light reflected by

planets is expected to be small compared to any transit signal. Even a large close-in

planet (0.05 AU) with the size and albedo of Jupiter ( ∼ 30 %3) would reflect approxi-

mately 8× 10−6 of the light of its parent star, while it would cause transits of ∼ 1 % (for

a Sun-like star).

The reference light curve corresponds to a 1 RJup planet orbiting a 1 R$ star

with V = 10, resulting in a transit depth of ∼ 14σ. The chosen orbital distance of

a = 15.3 R$, for a 1 month period, results in 4 transits lasting ∼ 15 hours each, the

ingress and egress lasting approximately 3.3 hours each. The posital phase was set

to 0.25.

The level of photon noise in the light curve was computed from the photon

counts expected for a G2V star, based on the throughput and aperture of the

Eddington baseline design as described in Favata & the Eddington Science Team

(2000), i.e. a collecting area of 0.6 m2 and a total system throughput of 70 %. Such

an instrument would detect ' 50 photons per second from a V = 21.5 G2V star.

The photon noise for each point in the light curves is then simulated by independent

draws from a Gaussian distribution, with a standard deviation equal to the square

root of the expected photon count per integration for that star.

Both versions of the algorithm were run on the reference light curve described

above and the modified posterior probabilities were plotted as a function of period

and as a function of phase. The number of bins used was m = 10 in the case of the GL

method, and n = 4 in the case of the modified method. In order to sample the transit

as well with the GL method as with the modified method, a much higher value of m

3http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
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Figure 2.3: Comparison of the GL and
modified GL methods for the case of a Jo-
vian planet transiting across a 10th magni-
tude star, with a period of 30 days (a) and
a posital phase of 0.25 (b). Solid line: mod-
ified GL method. Dashed line: GL method.
Both methods successfully detect the pe-
riod of the transits although the peak is
sharper with the modified method. The GL
method is unsuccessful in the phase do-
main (the GL phase results are folded over
the 10 bins). Note that the probabilities are
expressed in arbitrary units.

would need to be used, but this would be too computationally expensive. Instead

the values of m and n were chosen such that the computing times were similar. The

results obtained for this benchmark case are shown in Figure 2.3.

Each of the parameters (be they associated with the light curve or with the

model) was then varied over a small range of representative values. These one-off

tests on a small parameter space confirmed some expected trends.

• For a given light curve duration the detection is less precise for longer periods

as the light curve contains fewer transits.

• As expected, the original GL method is not well suited to detecting the phase,

as there is no natural way of labelling one particular bin as the first one. On the

other hand the phase is very successfully recovered with the modified version.

• The larger the value of m (GL method), the sharper the detection. However,

m = 10 appeared sufficient for our purposes.

• Increasing the value of n (modified method) does not necessarily improve the

detection ability since one starts to fit the noise inside the transits, which is not

periodic. When fitting Gaussian profiles it is standard to require a minimum of 2

bins per FWHM. The shape of the transit is not Gaussian but it is relatively simple,

hence we multiplied by a safety factor of 2, leading to n = 4 in further calcula-

tions. However when dealing with a particular value of d it is advantageous to

choose n so that d is a multiple of it to avoid introducing extra noise by splitting

individual data points across bin boundaries.

• Although the modified method should in principle allow us to determine the

duration of the transit, in practice this is not successful. The program may be

fitting a much wider region than the transit itself. In the GL method, as there
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are only 10 to 20 bins per period, with p of order several hundred sampling

times or more, the bin in which the transit falls is much larger than the transit

itself. We have seen that the loss of information this implies does not prevent the

detection of the period by the GL method. The modified algorithm is likely to

overestimate the transit duration because fitting a region larger than the transit

does not significantly reduce the likelihood. For now the duration of the transit

was simply marginalised over; once the presence of a transit is asserted and

its period known, phase folding should allow a fairly quick determination of the

shape and duration;

• For a given set of parameters, with m = 10 and n = 4, such that both algorithms

have similar computing times, the detection peaks are much sharper with the

modified version.

2.1.3 Performance evaluation in white Gaussian noise

2.1.3.1 Method

As mentioned in Section 2.1.1.6, the use of a window function to remove the effects

of under-sampling in the phase domain, while minimising the computing time, rules

out the possibility of direct computation of a global odds ratio, whose value could

be used to determine whether or not a given light curve contains transits. Instead, to

evaluate the performance of the algorithm, it was run on simulated light curves with

similar noise characteristics, some containing transits and some not, and the results

were compared.

This method was previously used in a similar context by Doyle et al. (2000). For

each set of trial parameters the algorithm was run first on a set of one hundred sim-

ulated light curves containing only Gaussian noise and no transits. Subsequently it

was run on another set of one hundred simulated light curves containing Jovian-type

planetary transits with the characteristics described in Section 2.1.2, with the same

level but different realisations of the photon noise, and with uniformly distributed ran-

dom phases

For each simulation, the modified posterior probabilities were plotted versus

period and the value of the maximum was noted. This maximum is our ‘detection

statistic’, on the basis of which we wish to determine whether there is a transit or not.

We then plot a histogram of the detection statistics measured for all the light curves

with transits and one histogram for all the light curves with noise only. In other words,

one histogram corresponds to the cases where the transit hypothesis is correct and

one to the cases where the null hypothesis is correct. Ideally, the two histograms

should be completely separated, with no overlap, and choosing a detection thresh-
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Detection statistic S

N(S)

threshold

false
alarmsdetections

missed

noise
only + noise

transits Figure 2.4: Schematic diagram
of the performance evaluation
method. Solid line: detection
statistic distribution for the light
curves with transits. Dashed
line: idem for the transit-less light
curves. Vertical solid line: thresh-
old. Hashed area: missed detec-
tions. Filled area: false alarms.

old located between the two histograms would guarantee a 100 % detection rate

and a 0 % false alarm rate. In practice, for the cases of real interest, close to the

detectability limit, the two histograms will overlap. A compromise has to be found

by choosing a threshold which minimises a penalty factor designed to take into ac-

count both false alarm and missed detection rates. This is illustrated in Figure 2.4.

Depending on the circumstances, it may be more important to minimise the

false alarm rate than the missed detection rate. This is the approach followed by

Jenkins et al. (2002), on the basis that detections from space experiments are hard

to follow-up from the ground. An alternative view is any real transit that is rejected is

a loss of valuable scientific information. As long as the false alarm rate is kept to a

manageable level, further analysis of the light curves will prune out the false events.

We have opted here for an intermediate position, and our penalty factor is simply

the sum of the missed detection rate NMD and the false alarm rate NFA:

Fpenalty = NFA + NMD. (2.18)

After marginalisation over the other parameters, the detection algorithm yields

modified posterior probabilities as a function of period and as a function of phase.

The simultaneous use of the two detection statistics Sper and Sph (plotting 2–D rather

than 1–D distributions) increases the discriminating power of the algorithm, (as long

as the two distributions do not have secondary maxima in 2–D space). This is shown

when comparing the false alarm and missed detection rates obtained from period

and phase information separately and together. The threshold in the 2–D case takes

the form of a line: Sph = a + b × Sper. Here the optimal values of a and b were found

by trial and error, although standard discriminant analysis techniques could be used

to determine them automatically.
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2.1.3.2 A preliminary test case

In Defaÿ (2001), analysis performed on the basis of 200 bootstrap samples for the

COROT observations of a star with V = 13 and an Earth-sized planet, containing 6

transits lasting 5 hours each, yielded a probability of true detection of ' 0.3. We

performed the simulations described in Section 2.1.3.1 for a similar case: an Earth-

sized planet orbiting a K5V type star with V = 13, a period of 30 days and a transit

duration of 5 hours. The sampling time was 15 minutes. The noise was different from

the COROT case, as we concentrate uniquely on the photon noise expected for

Eddington.

Figure 2.5: Detection statistic distributions
for an Earth-sized planet orbiting a V=13
star with a 30 day period (light curve du-
ration 120 days). Solid line: light curves
with transits. Dashed line: transit-less light
curves. Vertical solid line: threshold. a)
Detection statistic obtained from the mod-
ified posterior probability distributions as a
function of period. b) Idem as a function
of phase. Over 100 realisations there were
no false alarms and no missed detections.

The results are shown in Figure 2.5 for period and phase separately. As the dis-

tributions for the noise only and transit light curves are completely separated, each

parameter alone is sufficient to determine a threshold ensuring null false alarm and

missed detection rates.

2.1.3.3 Finding the magnitude limit of Eddington for Earth-like planets

Given that the key scientific goal of Eddington in the field of planet-finding is the

detection of habitable planets, the performance of the algorithm was extensively

tested for habitable planets at (or close to) the noise limit of Eddington. The case of

an Earth-sized planet orbiting a K dwarf in a habitable orbit was used as benchmark.

The light curve was simulated for a system with the following parameters:

• K5V star (R! = 0.8 R$) with a range of apparent V–band magnitudes V = 14.0,

14.5 and 15.0;
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• Earth-sized planet (Rp = R⊕) with an orbital period of 4 months, orbiting the star

at a distance of 0.64 A.U. (leading to a transit duration of ∼ 10.5 hours);

• light curve duration of 16 months;

• sampling time 1 hour.

An example of a light curve is shown in Figure 2.6. The resulting transit event has

a depth ∆F/F = 1.4×10−4. For the Eddington baseline collecting area a star at V = 14

will result in a photon count of 1.8 × 108 per hour, so that the Poisson noise standard

deviation will be 1.34×104. The S/N of the transit event in each 1 hour bin will thus be

1.88. Following the same reasoning for the V = 15 case, the S/N of the transit event

in a single one hour bin is 1.19. As there are 4 transits lasting 10 hours each in the light

curves considered, the overall transit signal has a S/N of
√

40 × 1.19 ' 7.5.

With the results of the simulations, an example of which is shown in Figure 2.7,

the analysis described in Section 2.1.3.1 was performed for all three magnitudes,

confirming that the combined use of the two statistics improves the results. This is

illustrated for the V = 14.5 case in Figures 2.8 & 2.9 (for this particular case 1000 rather

than 100 runs were computed to improve precision).

As illustrated in Figure 2.10, a mean error rate (the mean of the false alarm and

missed detection rates) < 3 % can be achieved down to V = 14.5. This magnitude is

therefore taken as the performance limit for the algorithm for an Earth-sized planet

around a K5V-type star. However this analysis is not complete enough to allow a

precise determination of the magnitude limit. First the noise treatment is incomplete,

photon noise only being considered. Second, one would need more runs per simu-

lation to compute meaningful errors on the false alarm and missed detection rates.

Sets of 1000 runs, as was done for the limiting V = 14.5 case, should be computed for

all cases.

The asymmetric shape of the distributions shown in Figures 2.5, 2.8 & 2.9 implies

that, even though the thresholds are chosen to minimise false alarms and missed

detections equally, the optimal threshold results in more false alarms than missed

detections. This could easily be avoided, if needed, by replacing Equation (2.18) by:

Fpenalty = A × NFA + NMD. (2.19)

where A is a factor greater than 1. Alternatively one could keep the penalty factor

unchanged but set a strict requirement on the maximum acceptable false alarm

rate.

As in any unbiased search for periodicity in a time-series, the inclusion of a

larger range of periods in the search will lead to a higher chance of finding a spurious

(noise-induced) period signal in the data. The simulations used here to assess the



2.1 A Bayesian, step-function based algorithm 59

transit

Figure 2.6: Example light curve containing
4 transits of an Earth-sized planet orbiting a
K5V star with V=14.5. a) Full light curve. b)
Portion around a transit. c) The four transits
co-added.

Figure 2.7: Example detection statistic distri-
butions arising from the light curve shown in
Figure 2.6 (arbitrary units). a) Period – real
value 2912 hours, error -2 hours. b) Phase:
real value 0.885, error 0.005.

Figure 2.8: Detection statistic distributions
for an Earth-sized planet orbiting a V=14.5
star with a 4 month period (light curve
duration 16 months). Solid line: light
curves with transits. Dashed line: transit-
less light curves. Vertical solid line: thresh-
old. a) Period: 190 false alarms and 185
missed detections over the 1000 realisa-
tions. b) Phase: 27 false alarms and 14
missed detections over the 1000 realisa-
tions.
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Figure 2.9: a) Contour plot and b) 3–D representation of the two-dimensional (period &
phase) detection statistic distribution for an Earth-sized planet orbiting a V=14.5 star with
a 4 month period (light curve duration 16 months). Black: lightcurves with transits. Grey:
transit-less light curves. Solid line: threshold: Sph =42.47−1.191×Sper, yielding 29 false alarms
and 9 missed detections over the 1000 realisations.

Figure 2.10: Evolution of the algorithm’s
performance (in terms of fractional error
rates) with magnitude (period 4 months,
light curve duration 16 months) a) using
the period statistic only, b) using the phase
statistic only and c) combining the two
statistics. Dotted line: false alarm rate.
Dashed line: missed detection rate. Solid
line: mean error rate.
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algorithm’s performance are based on a search through a relatively small range of

periods. In practice, lacking any a priori knowledge of the possible periodicity of

planetary orbits around the star being observed, one will want to test a large range

of periods, ranging from a few days (the physical limit of the period of planetary

orbits) all the way to the duration of the data set (searching for individual transit

events).

2.1.3.4 Data gaps

Any realistic data set will suffer from gaps in the data. While the orbits of both Edding-

ton and Kepler have been chosen to minimise gaps, 100 % availability is not realistic,

and gaps will be present due to e.g. telemetry dropouts, spacecraft momentum

dumping manoeuvres, showers of solar protons during large solar flares, etc. . . For

this reason, any realistic algorithm must be robust against the presence of gaps in

the data, showing graceful degradation as a function of the fraction of data missing

from the time series.

We have therefore tested the algorithm discussed here using simulated light

curves with 5 %, 10 % and 20 % data gaps, randomly distributed in the data, i.e. 5 %

of the points in the time series are selected randomly with a uniform distribution and

removed from the light curve. The gaps will probably not be randomly distributed

in reality, but as the typical gap duration is expected to be of order 1 or 2 hours,

simulated random gaps can already be used to test the algorithm’s robustness. For

reasons of computing time, to avoid having to recalculate the ‘window function’ at

each run, the distribution of the data gaps is the same for all runs of a simulation. As

the gaps are chosen one by one there are rarely gaps of more than two consecutive

time steps, i.e. 2 hours. Note that e.g. the Eddington mission is designed to produce

light curves with a duty cycle ≥ 90 %, so that the case with 20 % data gaps represents

a worst case scenario.

The results are shown in Figure 2.11. There is visibly very little degradation up

to 20 % data gaps. When using Sph alone or the two statistics combined there is no

perceptible difference. We can therefore say this this algorithm is robust at least for

data gaps of the type likely to occur due to e.g. telemetry dropouts, which last only

a few hours. One would also expect the algorithm to perform well in the presence of

longer gaps: the effect of gaps is to render the number of samples per bin uneven,

and this is already the case for this particular method with no gaps at all.

Note that the impact of gaps was tested using a configuration closer to the

detectability limit (V = 14.5) with the second algorithm, the box-shaped transit finder

(see Section 2.2.4).
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Figure 2.11: Evolution of the algorithm’s
performance with data gaps (period
4 months, light curve duration 16 months,
V=14.0) a) using the period statistic only, b)
using the phase statistic only and c) com-
bining the two statistics. Dotted line: false
alarm rate. Dashed line: missed detection
rate. Solid line: mean error rate.

2.1.3.5 Number of transits in the light curve

The planetary transits detection phase of the Eddington mission is planned to last

3 years with a single pointing for the entire duration of that phase. There will therefore

be three or four transits in the light curve for a typical habitable planet. However,

other missions such as COROT are planned with shorter (5 months) pointings and

it is of interest for this type of mission to study the degradation of the algorithm’s

performance as the number of transits in the light curve reduces. If the algorithm

performs well with 2 or less transits, in the context of Eddington it may also allow the

detection of ‘cool Jupiters’, i.e. Jupiter-sized planets with orbits more similar to those

of the gaseous giants in our solar system. This would be of relevance to the question

of how typical our solar system is.

Sets of 100 runs with the characteristics specified in Section 2.1.3.3 for a star

with V = 14.5 were computed for light curve durations of 4, 8, 12, 16 and 20 months,

containing between 1 and 5 transits. The results are shown in Figure 2.12. The degra-

dation only becomes significant when less than three transits are present. However,

even mono-transits could be detectable for larger planets at that magnitude.

Defaÿ (2001) compared a matched filter approach with a Bayesian method

based on the decomposition of the light curve into its Fourier coefficients. Their results

suggest that the performance degradation in the low number of transits case is faster

for the Bayesian method than for the matched filter. This is because the matched

filter makes use of assumptions about the transit shape. It is also shown that when

the Bayesian method fails to detect a transit, it can still reconstruct it if the detection

is performed using a matched filter. Our algorithm has not been directly compared
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Figure 2.12: Evolution of the algorithm’s
performance with the number of transits in
the light curve (period 4 months, V=14.5)
a) using the period statistic only, b) using
the phase statistic only and c) combining
the two statistics. Dotted line: false alarm
rate. Dashed line: missed detection rate.
Solid line: mean error rate.

to a matched filter. Its very design is based on the search for a short periodic signal

in an otherwise flat light curve, which is itself an assumption about the shape of the

signal. The matched filter makes use of more detailed knowledge of the transit shape

and is therefore likely to perform better in the low transit number limit. However our

algorithm with n = 1 may provide already a very good approximation to the relatively

simple shape that is a transit, and may therefore perform nearly as well.

2.1.3.6 Differences in the two statistics

The two a posteriori probabilities show a different behaviour. In general the phase

statistic is far more discriminatory than the period statistic. This is illustrated by coun-

tour plots of the likelihood as a function of trial period and posital phase, as shown in

Figure 2.13. The period statistic’s lesser effectiveness may be explained in the follow-

ing way. If the phase is wrong, even if the period is right, it is likely none of the transits

will be matched. If the phase is right, whatever the period, at least the first transit

will be matched by the model. First we consider the likelihood distribution as a func-

tion of phase, normalised over all periods. For an incorrect phase the contribution

from the correct period is nil as all transits are generally missed, but for the correct

phase all trial periods produce a non-negligible contribution (the correct period of

course contributing most). The likelihood distribution as a function of phase is there-

fore sharply peaked. Then we consider the likelihood distribution as a function of

period, normalised over all phases. The contribution from the correct phase is non-

negligible whatever the period. When the period is correct, the contribution from
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Figure 2.13: Example contour plot of the likelihood as a function of trial period and posital
phase for a simulated 16 month light curve containing photon noise as for a V = 14.5 star
with 1 hour sampling and transits of a 1 R⊕ planet with a period of ∼ 4 months (121.33 days).
Left: full parameter space explored. Right: zooming in on the true posital phase, which is
0.209. The diagonal lines correspond to pairs of trial periods and phases where at least one
of the four transits is matched by the model.

the correct phase is washed out by the contributions from all the incorrect phases.

The likelihood distribution as a function of period is therefore less sharply peaked.

Additionally, the range of periods explored was, for computational reasons, kept

relatively small, so that only a small region of parameter space is covered in that

direction.

However, the combined use of the two parameters is more successful than the

phase statistic alone. The reason for this is illustrated in Figure 2.9: in 2–D space the

two distributions are aligned on a diagonal, such that no single value cutoff is optimal

in either direction, compared to the line shown. The global odds ratio described in

Section 2.1.1.2 could be used for such a purpose. We have noted in Sect. 2.1.1.6 that

the global odds ratio for a given light curve cannot be used as an absolute statistic

in the context of the present method. It can however be used as relative detection

statistic, like Sper & Sph, combined with bootstrap simulations.

The algorithm described in Section 2.2, which was derived using the lessons

from the present one, directly combines phase and period information into a single

statistic.
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2.1.3.7 Discussion

Efficient data processing is one of the challenges for the upcoming generation of

large scale searches for exo-planets through photometric transits. While radial ve-

locity searches concentrate on limited number of stars, transit searches will inves-

tigate simultaneously large numbers of stars, and produce large amounts of data

(photometric light curves) for each of them. A computationally efficient and robust

algorithm for the processing of these data sets is necessary to make transit searches

feasible. It is likely that the photometric time series which represent the observa-

tional product of the transit searches will be analysed in different stages, using more

than a single approach. In particular, a first level of processing (after instrumental ef-

fects have been removed) should concentrate on singling out high-probability transit

candidates, while efficiently pruning out the large number (more than 90 %, even if

all stars have planets, due to the low probability of transit events) of light curves in

which no transits are present. In this first stage of analysis the ability to efficiently

screen real transits in the data – even at the price of a moderate number of false

alarms – is a key requirement for the algorithm. The candidate light curves in which

a transit is suspected will then later be subject to a more detailed processing, which

can then afford to be computationally less efficient (given it has to operate on a

much smaller amount of data).

The modified GL method is able to detect transit events at the limit of the pho-

ton noise present in the light curve. It shows a graceful degradation of its perfor-

mance as a function of different parameters of interest, e.g. the noise level in the

data, as well as the presence of data gaps and the number of transits actually

observed. Its strong sensitivity to the phase of periodic transits supplies significant

additional information to be then used by further steps of processing for e.g. the re-

construction of the transit parameters. Thus, while little used in astronomy, Bayesian

algorithms appear to be a powerful tool in the processing of transit data.

However, given the robustness and computational efficiency requirements, sim-

plicity should be the guiding factor for subsequent work on transit detection. Simpli-

fying assumptions will be tried one by one, and those that do not degrade the per-

formance while improving the computing time will be incorporated in the algorithm

for future use.

2.1.4 Tests with solar micro-variability

The performance of the modified GL method has been evaluated for simulated data

from Eddington-like missions, containing simulated transits and photon noise. How-

ever, the influence of stellar variability induced by activity is likely to be the main
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Figure 2.14: PMO6 light curves. Top left: full light curve, January 1996 to September 2001
(no correction for instrumental degradation). Top right: section used as low activity sample.
Bottom left: idem for medium activity. Bottom right: idem for high activity.

limitation to Eddington’s ability to detect planetary transits. The present section sum-

marises the results of preliminary tests carried out by incorporating in the simulated

light curves observed variations in the total irradiance of the Sun, as measured by

the PMO6 radiometer, a part of the VIRGO experiment on the SoHO satellite, at solar

activity minimum and maximum and at an intermediate phase.

2.1.4.1 Light curves

The transit light curves were simulated using UTM (see Section 2.1.2), with the pa-

rameters listed in Table 2.1. The full PMO6 light curve is shown in the top panel of

Figure 2.14. This dataset is discussed in more detail in Chapter 3. Three 6 month long

segments were selected at low, medium and high activity (bottom 3 panels of Fig-

ure 2.14). They were chosen to illustrate a particular feature of the Sun’s variability,

for example sun-spot signatures or modulation on the time scale of the solar rota-

tional period. Care was taken also to avoid very long data gaps, although there are

frequent short gaps (every few days, lasting a few tens of minutes to a few hours),

and in the medium and high activity samples, some gaps last a few days. (N.B. This

leads in some cases to the absence of one entire transit from the light curve, a sit-

uation which was not explored in Section 2.1.3, but with which the algorithm seems

to cope reasonably well.) In each set of tests performed, the relevant segment of

the PMO6 light curve was rebinned to 1 hour bins, normalised to a mean value of 1,
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Figure 2.15: Example light curve with
medium activity level, Rp =2 R⊕. a) Full
light curve. b) Portion around first tran-
sit.

repeated in order to cover the full duration of the simulated transit light curve and

the product of stellar and transit light curves was taken. Care was taken to ensure

that the 6 month repetition period of the PMO6 light curve was not too close to the

transit period (4 months). Photon noise was then added as in the previous simulations

according to the photon counts expected from the Eddington baseline design.

An example of the light curves produced is shown in Figure 2.15. Although

individual transits are (except for the Earth–sized case) easily visible when zooming in

on a portion of the curve, the most visible signal in the full curve is activity.

2.1.4.2 Results

The algorithm’s performance with these light curves was tested using the method de-

scribed in Section 2.1.3.1. However, only 10 realisations of the noise were computed

in each case, these tests being intended as exploratory rather than systematic. As

a result, the threshold analysis described in Section 2.1.3.1 would have been mean-

ingless. Instead, results were recorded in terms of the number, if any, of detections

which were not in fact transits but activity-induced features, i.e. the number of times

the highest peak in the detection statistic distribution did not correspond to the tran-

Table 2.1: Parameters used for the simulated light curves with solar variability. Transit durations
of 5 & 15 hours were also tested in the low activity case with a 2 R⊕ planet.

Star: Planet:

spectral type K5V radius 10, 8, 6, 4, 2 & 1 R⊕

radius 0.74 R" orbital period 4 months
activity level low, med, high orbital distance 0.43 A.U.
V–band magnitude 14.5 transit duration 10 hours
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sit’s period or phase. For each such case, the corresponding transit-less light curve

(with identical noise and stellar variability realisations, but no transits) was used to

check that the spurious detection was due to activity and not photon noise.

Table 2.2 gives an overview of the results in terms of the number of spurious

detections for each set of 10 light curves with transits. We ascertain whether the

detected peak corresponds to the correct transit period or phase by comparing

with the distributions generated from transit–less light curves and by requiring that

the error in the detected value be less than 2 hours (period) or 0.006 (posital phase).

As can be seen in table 2.2, the performance starts to degrade at 1, 2 and

2 R⊕ for low, medium and high activity levels respectively. Noticeably, the break-

down is sudden, because it occurs when the transit induced peaks, whose height

depends on the transit depth, i.e. on the planet radius, become smaller than the

activity-induced peaks (which are of constant height and shape, as the same PMO6

sequence was always used for a given activity level). Although V = 14.5 was found

to be the limiting magnitude for the reliable detection of an Earth–sized planet in the

absence of activity (see Section 2.1.3), variability rather than photon noise is the lim-

iting factor of the algorithm’s performance, even in the low activity case. The results

obtained here are therefore unlikely to improve much with increasing brightness. As

the Sun is also a relatively quiet star for its type, and as other types of stars are likely

to be generally more active, the problems outlined by these results are likely to have

a serious impact on Eddington’s performance and need to be addressed.

2.1.4.3 Example cases

It is helpful to highlight certain characteristics of the detection statistic distributions in

a few representative cases in order to suggest ways to address the activity problem.

Figure 2.16 shows the distributions obtained for a planet twice the size of the

Earth at the three activity levels. The middle row corresponds to the light curve illus-

trated in Figure2.15. As activity increases, spurious activity-induced features appear

in the distributions, and at high activity the peak corresponding to the actual transit is

Rp low medium high

10 R⊕

8 R⊕

6 R⊕

4 R⊕

2 R⊕

1 R⊕

0 0
0 0
0 0
0 0
0 0

10 9

0 0
0 0
0 0
0 0
0 10
10 8

0 0
0 0
0 0
0 0

10 10
10 10

Table 2.2: Number of cases where the
highest peak in the posterior probability
distribution is spurious (activity rather than
transit induced) over each set of 10 noise
realisations as a function of activity level
(columns) and planet radius (rows). The
first and second number in each cell relate
to the period and phase detection statis-
tic respectively.
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Figure 2.16: Example detection statistic distributions for period (left column) and phase (right
column) at low (top row) , medium (middle row) and high (bottom row) activity levels, with
Rp =2 R⊕. In each panel the dashed line indicates the true value of the period or epoch.
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no longer detected. The activity-induced features are particularly noticeable in the

phase distributions, each peak corresponding to the first of the model light curve’s

transits being phase-folded onto (say) a sunspot transit. The period of repetition of

the PMO6 sequences is well outside the range of periods tested, which avoids the

detection of a peak at that period, but there is a discernible trend, which reduces

the sensitivity of the period statistic.

Importantly, at the same magnitude, a similar planet was easily detected in the

absence of variability. This implies that photon noise is not the limiting factor, hence

that the same planet would not be detected around a brighter but active star.

2.1.4.4 Implications

The first step towards understanding the significance of the results presented here

is to asses how typical the Sun’s variability is, relative to other Sun-like stars and to

stars of other spectral types and ages. Very little information on stellar activity on this

kind of amplitude and timescale is available at present but there are a number of

exploitable datasets either existing or expected within the next few years, which can

be used to construct and calibrate a simple model of stellar micro-variability appli-

cable to the variety of planetary transit search stars. A number of pre-processing

techniques may be used to remove as much of the micro-variability signal as possi-

ble, before applying the modified GL method, or other methods designed primarily

for light curves with white Gaussian noise. These topics are discussed in Chapters 3

and 4 respectively.

Given a more qualitative understanding of how micro-variability varies from

star to star, and how it will impact transit detection, several aspects of the design of

missions such as COROT, Eddington & Kepler may be affected. These include the

choice of target field(s), which should be optimised to contain as many as possible

of the least variable stars, or those whose variability can easily be filtered out. The

observing strategy, for example the sampling time, may also be affected. Finally,

it may be important to make use of additional information besides single bandpass

photometry, for example to use the colour signature of the detected events to assess

their planetary or stellar origin.

2.2 A stripped-down box-shaped transit finder

In Section 2.1, a dedicated Bayesian transit search algorithm was derived, based on

the more general GL method for period finding. Here we develop this algorithm fur-

ther and attempt to reconcile the apparent diversity of the extant transit algorithms.
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Starting afresh from the original GL prescription, appropriate sequential simplifica-

tions can be made. We demonstrate that the levels of the step-function bins – which

define the shape of the detected event – are not free parameters, their optimal

values being fully defined by the data. The use of Bayesian priors can be dropped,

given the lack of information currently available on the appropriate form for these

priors. Finally, for detection purposes, the model can be simplified to an unequal bin

duration square wave with only one out-of-transit and one in-transit value, where the

out-of-transit section lasts much longer than the in-transit section.

After a brief aside on the close links between different families of detection

methods in white Gaussian noise (Section 2.2.1), the algorithm itself is derived in Sec-

tion 2.2.2, and its implementation is presented in Section 2.2.3. Its performance in

terms of both detection capability and computational requirements is compared to

that of the GL method in Section 2.2.4, and the results are discussed in Section 2.2.5.

2.2.1 Likelihood maximisation in Gaussian noise

Transit searches are generally performed by comparing light curves to a family of

models with a common set of parameters, differing from each other according to

the different values used for these parameters. A variety of methods exists to identify

the best set of parameters. The most commonly used, in astronomy, is probably

the matched filter, shown by Kay (1998) to be the optimal detector in the presence

of white Gaussian noise. In the present section we show how the matched filter is

derived from likelihood maximisation, and its equivalence to χ2 minimisation and to

a simple cross-correlation method. This is by no means a new result, but it helps to

clarify the very close links that exist between the variety of transit search methods

published in the literature, which are based on all of the above approaches, and to

which the box-fitting algorithm will later be compared.

If the noise in each data point is assumed to be independently drawn from a

Gaussian distribution (an assumption also valid for Poisson noise in the limit of large

numbers of photons), the likelihood (or probability that the observed data is the

result of adding noise to the model) can be written as the product of independent

Gaussian probability distribution functions:

L =
N∏

i=1

 1√
2πσ2

i

exp

[
− (xi − ri)

2

2σ2
i

] , (2.20)

where xi is the flux (or count, or magnitude) value at time ti and ri is the correspond-

ing model value, N is the total number of data points and σi the expected error on
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xi . Equation (2.20) can be rewritten as

L =

(
1

2π

)(N/2)

×
N∏

i=1

(
1

σi

)
× exp

(
−χ2

2

)
, (2.21)

where

χ2 =
N∑

i=1

[
(xi − ri)

2

σ2
i

]
, (2.22)

so that likelihood maximisation, in the case of Gaussian noise, is equivalent to χ2

minimisation, since the noise properties σi are assumed to be known, i.e. fixed.

Expanding Equation (2.22) gives

χ2 =
N∑

i=1

[
x2

i

σ2
i

]
+

N∑
i=1

[
r2
i

σ2
i

]
− 2

N∑
i=1

[
(xi × ri)

σ2
i

]
. (2.23)

The first term is the error-weighted sum of all the data points, and is constant what-

ever the model. The second term is the equivalent sum for the model. In the case

of shallow, short duration transits and provided the errors are relatively constant over

the timespan of the observations, this term can also be considered constant. In such

circumstances likelihood maximisation, or χ2 minimisation, is therefore equivalent to

maximising the third term, which is a zero-offset cross-correlation between the model

and the data, i.e. a generalised matched filter:

MF =
N∑

i=1

[
(xi × ri)

σ2
i

]
. (2.24)

In the case of transit searches, one of the parameters to be adjusted is the

phase of the transit(s), i.e. the time at which the first model transit starts. Different

phases are tested by simply introducing an offset between the model and the data,

leading to formulation of the problem as a general cross-correlation:

CC = max

{
N∑

i=1

[
(xi × ri+n)

σ2
i

]}N

n=1

. (2.25)

where r is now defined for a unique reference epoch.
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2.2.2 Simplification of the algorithm

2.2.2.1 Optimum χ2 calculation for a generalised step-function model

We consider here a general periodic step-function model of the type used in the

original GL method, characterised by the following parameters: number of bins m,

period p, and epoch e (time elapsed between the start of the 1st bin and the start

of the light curve) and bin levels R = {r1, r2, . . . , rm}. By directly maximising the likeli-

hood, or in this case minimising χ2, for such a model, it is straightforward to show that

whatever the number and relative duration of the bins, the optimal values for the

bin levels can be determined directly from the data given m, p and e. If we refer to

the contribution from bin j to the overall χ2 as χ2
j , and define J as the ensemble of

indices falling into bin j, we have

χ2
j =

∑
i∈J

[
(xi − rj)

2

σ2
i

]
. (2.26)

The value r̃j of the model level rj that minimises χ2
j is then simply given by the standard

inverse variance-weighted mean of the data inside bin j, since by setting ∂χ2
j /∂rj to

zero we have
∂χ2

j

∂rj
= 2

∑
i∈J

(
xi − rj

σ2
i

)
= 0, (2.27)

hence

r̃j = xj =

[∑
i∈J

σ−2
i

]−1 ∑
i∈J

xiσ
−2
i . (2.28)

Substituting into Equation (2.26), χ2
j now becomes

χ̃2
j =

∑
i∈J

[(
xi − xj

)2

σ2
i

]
, (2.29)

where χ̃2
j denotes the minimised value of χ2

j for a given period, epoch and number

of bins. The contribution from each of the m bins can be simplified by expanding

Equation (2.29):

χ̃2
j =

∑
i∈J

[
x2

i − 2xixj + xj
2

σ2
i

]
; (2.30)

χ̃2
j =

∑
i∈J

x2
i

σ2
i

− 2xj

∑
i∈J

xi

σ2
i

+ xj
2
∑
i∈J

1

σ2
i

. (2.31)
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time tt = 0

p

e d

flux

n=1

time tt = 0

p

e d

flux Figure 2.17: Schematic illustration of the
type of model used in the box-fitting
method. The is a single in-transit bin (cf. Fig-
ure 2.2, where the number of in-transit bins
is 4) of duration d and one out-of-transit
bin of duration p − d where p is the pe-
riod. The epoch e is defined as the time
elapsed between the start of the data
and the start of the next transit.

From Equation (2.28) we have

∑
i∈J

xi

σ2
i

= xj

∑
i∈J

1

σ2
i

, (2.32)

so that

χ̃2
j =

∑
i∈J

x2
i

σ2
i

− xj
2
∑
i∈J

1

σ2
i

. (2.33)

The overall minimised χ2 over all bins is thus

χ̃2 =
N∑

i=1

x2
i

σ2
i

−
m∑
j=1

[
xj

2
∑
i∈J

1

σ2
i

]
. (2.34)

The first term in Equation (2.34) is entirely independent of the model, and hence

stays constant, so that only the second term needs to be calculated for each set of

trial parameters.

2.2.2.2 Making use of the known characteristics of planetary transits

The Gregory-Loredo method makes no assumptions about the shape of the varia-

tions, and is fairly computationally intensive. However, when trying to detect plan-

etary transits, most of the information is concentrated in a very small portion of the

light curve. In Section 2.1, we adapted the Gregory-Loredo method to the plan-

etary transit case by having one long out-of-transit bin (bin 0) and n short in-transit

bins (see Figure 2.2). The value of n used was typically 4. For a given n, the param-

eters defining each candidate model are then p, e, and the transit duration d. The

likelihood computation was carried out as described in G99.

This algorithm performed well when tested on simulated data (with photon

noise only), but the likelihood calculation was still computationally intensive. A num-

ber of improvements were made following the completion of the simulations de-

scribed in Section 2.1.3:
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1. Given the current state of exo-planet research, the use of Bayesian priors is not

expected to contribute significantly to the performance of the algorithm at the

detection stage. The information available on period and duration distributions

is relatively scarce for giant planets, and non-existent for terrestrial planets. The

priors used in the modified GL method were generic and mostly identical to

those used by G99 for X-ray pulsars, rather than specifically optimised for transit

searches.

2. Using the χ2 rather than the likelihood as a detection statistic, and implement-

ing the calculation as outlined in Section 2.2.2.1, significantly reduces the com-

putational requirements of the detection process.

3. The shape of most planetary transits is sufficiently simple that, for detection pur-

poses (as opposed to detailed parameter estimation), a single in-transit bin, as

illustrated in Figure 2.17, provides enough information. A significant advantage

of this simplification is that it makes the method far more robust and capable of

coping with real data, and all its concomitant problems, with negligible loss in

detection efficiency.

4. Once a detection is made, a shape-estimation phase with either a large value

of n, or by detailed model fitting of the phase folded light curve, can be imple-

mented. As the dependency of transit shapes as a function of the stellar and

planetary parameters is relatively well-known, Bayesian priors may have a part

to play in this phase. This is, however, outside the scope of the present chapter.

2.2.2.3 χ2-minimisation with a box shaped transit.

The algorithm used in the present paper evolved from that of Section 2.1 taking into

consideration the points listed in Section 2.2.2.2. The model therefore consists of one

out-of-transit bin and a single level in-transit bin. (Although this simplification may

seem disingenuous, by suitably pre-processing, or adaptively filtering, the signal to

remove intrinsic stellar variability, this is a valid approximation to transit detection in

practice.) All the data points falling into the out-of-transit bin form the ensemble O,

while those falling into the in-transit bin form the ensemble I. No Bayesian priors are

used. Adapting Equation (2.34) to this model gives

χ̃2 =
N∑

i=1

x2
i

σ2
i

− xO
2
∑
i∈O

1

σ2
i

− xI
2
∑
i∈I

1

σ2
i

. (2.35)

Provided the transits are shallow and of short duration (i.e. the most common case),

the ensemble O contains the vast majority of the data points, so that xO ≈ x (where
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x is the weighted mean of the entire light curve). Substituting this approximation into

Equation (2.35):

χ̃2 ≈
N∑

i=1

{
x2

i

σ2
i

− x2

σ2
i

}
− xI

2
∑
i∈I

1

σ2
i

. (2.36)

The first two terms in Equation (2.36) are constant. The minimisation of χ2 is therefore

achieved by maximising the statistic S2, given by

S2 = xI
2
∑
i∈I

1

σ2
i

, (2.37)

which can also be expanded as:

S2 =

(∑
i∈I

xi

σ2
i

)2 (∑
i∈I

1

σ2
i

)−1

. (2.38)

If the light curve is robustly ‘mean-corrected’ prior to running the algorithm, such

that xi is replaced by ∆xi , xI becomes ∆xI, the depth of the model transit. This results

in a further simplification where the only free parameters are now the phase, period,

and duration of the transit, since the depth is determined given the other three. It

is also apparent that S2 is simply equal to the square of the in-transit signal-to-noise

ratio. This is easier to see in the case where σi = σ for all i (a good approximation to

the case for space data). Equation (2.38) then becomes

S = SNR =

∑
i∈I ∆xi

n
1/2
I σ

=
n

1/2
I × ∆X

σ
, (2.39)

where nI is the number of points in I, and ∆X =
∑

i∈I ∆xi/nI is the mean of the in-transit

points, i.e. the model transit depth (the weighting being unnecessary in that case).

Equation (2.39) is used when the errors are constant, or when no individual

error estimates are available for each data point. In the latter case, the Median

Absolute Deviation (MAD) of the dataset is used to estimate σ, as this is more robust

to outliers than a simple standard error estimate (Hoaglin et al. 1983). For a Gaussian

distribution σrms = 1.48 × MAD and this factor is used throughout to scale the MAD

sigmas. If individual error estimates are available, Equation (2.38) provides a more

precise estimate of S at the cost of a slight increase in computation time.

If the noise is Gaussian, a theoretical signal-to-noise threshold (i.e. S threshold)

can in principle be computed a priori to keep the false alarm rate below a certain

value (Jenkins et al. 2002).
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2.2.2.4 Detection of triangular or curved eclipses with a box-shaped model

The use of a single class of simple, box-shaped model greatly simplifies the problem,

but how does it affect the sensitivity to highly triangular (grazing) eclipses? This can

be quantified as follows.

Let x(t) be a light curve which contains a single triangular eclipse of duration

d and depth D starting at time e, and has a constant noise level σ. If we analyse this

light curve using a matched filter4 with a model r(t) of similar (triangular) shape, the

maximum Sr in the matched filter statistic is obtained when the model parameters

dr , Dr and er are equal to d, D and e respectively. The expectation value of Sr is thus

〈Sr 〉 =

∫ T

0
x(t) r(t) dt =

∫ T

0
r2(t) dt = 2

∫ d/2

0
r2(t ′) dt ′. (2.40)

where t ′ = t − e. In the range 0 ≤ t ′ ≤ d/2, r(t ′) = −2 D t ′/d, so that

〈Sr 〉 =
8 D2

d2

∫ d/2

0
t ′2 dt ′ =

d D2

3
. (2.41)

The variance of Sr is given by

V (Sr) =

∫ T

0
σ2 r2(t) dt = σ2

∫ T

0
r2(t) dt = σ2 〈Sr 〉, (2.42)

so that the signal-to-noise ratio of Sr is

SNRr =
〈Sr 〉√
V (Sr)

=
d1/2 D

31/2 σ
. (2.43)

Now let us perform the same analysis with a box-shaped dip model b(t) of duration

db and depth Db starting a time eb. The maximum in the detection statistic occurs

when the centre of the dip in the model coincides with that of the eclipse in the light

curve, i.e. when eb + db/2 = e + d/2. One can see immediately that the optimal

model duration and depth fulfil db ≤ d and Db ≤ D. The expectation value of the

detection statistic for this model, Sb, is

〈Sb〉 =

∫ T

0
x(t) b(t) dt = 2

∫ d/2

d/2−db/2

2 D t ′

d
Db dt . =

2 D Db

d

∫ d/2

d/2−db/2
2 t ′ dt ′ (2.44)

〈Sb〉 =
D Db d2

2 d

[
1 −

(
1 − db

d

)2
]

=
D Db d

2

[
2

db

d
−
(

db

d

)2
]

, (2.45)

4As outlined in Section 2.2.1, a matched filter is equivalent to a χ2 minimisation approach.
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while its variance is

V (Sb) =

∫ T

0
σ2 b2(t) dt = σ2

∫ db

0
D2

b dt = σ2 D2
bdb, (2.46)

so that

SNRb =
〈Sb〉√
V (Sb)

=
D d1/2

2 σ

(
db

d

)−1/2
[

2
db

d
−
(

db

d

)2
]

. (2.47)

Maximising SNRb with respect to db/d yields db/d = 2/3 and hence

SNRb =
23/2 d1/2 D

33/2 σ
. (2.48)

The difference in sensitivity is given by the ratio Equations (2.48) to (2.43):

SNRb

SNRr
=

23/2

3
≈ 0.9428. (2.49)

The loss of sensitivity is thus small: although the best-fit box-shaped model doesn’t

cover all the eclipse, most of the signal is concentrated in the central part which is

covered. The expected loss for curved transits (where limb-darkening is important) is

even smaller, as these resemble a box-shape more closely than triangles do.

2.2.2.5 Comparison with other transit search techniques

In following through the steps of the previous sections our prime motives were to

modify a general purpose Bayesian periodicity estimation algorithm to make it sim-

pler, faster and more robust. In so doing we have arrived at a very similar formulation

to that developed by other authors, though the details of the implementation differ.

For example, Kovács et al. (2002) derived and tested a box-fitting method (BLS) sim-

ilar to the present algorithm on simulated ground based data with white noise, and

showed that significant detections followed for in-transit signal-to-noise ratios (our S

statistic) greater than 6.

Street et al. (2003) used a transit finding algorithm based on a matched filter

technique. After identifying and removing large amplitude variable stars they gen-

erated model light curves consisting of a constant out-of-transit level and a single

in-transit section. The models were generated for a series of transit durations and

phases, and a χ2-like measure was then used to select the best model (indeed their

Equation 3 is essentially a special case of the method derived in Sect. 2.2.1 for single

transits).

Udalski et al. (2002b), who made the first direct detections of transiting plane-

tary candidates later to be confirmed with the radial velocity method, also imple-
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mented a version of the BLS algorithm and noted that it was much more efficient

than their own algorithm based on “a simple cross-correlation with an error-less tran-

sit light curve” (Udalski et al. 2002a).

In a comparison of several transit finding algorithms, Tingley (2003a) found that

matched filters and cross-correlation gave the best results compared with progres-

sively more general methods ranging from BLS, through Deeg’s method (Doyle et al.

2000) to Defaÿ’s (Defaÿ et al. 2001) Bayesian approach. The fact that matched filters

and cross-correlation methods give good results is hardly surprising, and can easily

be deduced from the χ2 minimisation developed in Section 2.2.1. The more general

methods suffer from the added complexity of the underlying model, which through

the Bayesian view of Occam’s Razor, reduces the tightness of the posterior proba-

bility distribution of the parameter estimation. What is however surprising, is that the

BLS method did not give at least as good a result as the matched filter and cross-

correlation methods. We would expect the BLS method to have similar performance

to the matched filter as it is mathematically almost identical. In fact, the same au-

thor published more recently a revised comparison, in which he implemented the

removal of the transit depth as a parameter in the BLS method, along the same lines

as advocated here. After additional modifications to make the comparison method

more rigorous, this modified BLS – now even closer to the present algorithm – com-

pared well with the matched filter and cross-correlation (Tingley 2003b).

2.2.3 Improvements in the implementation

2.2.3.1 Optimised parameter space coverage

The formulation of the detection statistic presented in Section 2.2.2.3 is fully defined

given only the dataset and the start and end times of each model transit. The model

parameters are thus the duration d, period p and epoch e (defined for our purposes

as the time at the start of the first transit in the dataset).

The range of expected transit durations is relatively small – from a few hours for

close-in, rapidly orbiting planets, to almost a day for the most distant planets tran-

siting more than once within the timescale of the planned observations. A simple

discrete sampling prescription can therefore be adopted for the duration without

leading to large numbers of trial values. One option is to choose the step δd be-

tween successive trial durations to be approximately equal to the average time step

δt between consecutive data points. This ensures that models with the same period

and epoch and neighbouring trial durations differ on average by ∼ 1 data point per

transit. However, if the observation sampling rate is high – such as the sampling rate

of 10 min envisaged for most targets for Eddington in planet-finding mode (Favata
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2004) – a larger step in duration can be used, provided it is smaller than the shortest

significant feature in the transit, namely the ingress and egress, which have typical

durations of ∼ 30 minutes.

The period sampling prescription is designed to ensure that the error in the

phase (or equivalently epoch) of the last model transit in the light curve is smaller

than a prescribed value. Capping the error on the period (by using a constant trial

period step) is not sufficient, as the error on the epoch of the nth transit will be n times

the error on the epoch of the first. This would lead to a larger overall error for shorter

periods, where the number of transits in the light curve is large, thus introducing a

bias in the distribution of detection statistic with period. This bias is not present if one

uses a constant step in trial frequency. Defining the relative frequency νr = T/p, T be-

ing the total light curve duration, the phase of an event occurring at time t is given

by φ = 2πt/p = 2πtνr/T , so that for the last transit in the light curve φ ≈ φmax = 2πνr.

A fixed step in νr thus leads to a fixed error in φmax. By trial and error, a value of 0.05

was found to be suitable for δνr.

One caveat in the case of space missions with high sampling rates lasting sev-

eral years, is that the above prescription can lead to very large numbers of trial

periods. This implies that the overall algorithm must be extremely efficient. Some

steps taken to optimise the efficiency are described below.

The phase, or epoch step interval, is set to the average sampling rate of the

data since by so doing one can generate the phase information at no extra com-

putational cost using an efficient search algorithm, detailed below.

2.2.3.2 A weighting scheme to account for non-continuous sampling

A further complication stemming from irregular sampling and from the finite dura-

tion of each sample, is that data points nominally corresponding to a time outside a

transit may correspond partly to the out-of transit bin and partly to the in-transit bin.

To account for this, the indices of points falling either side of the transit boundaries

are also stored and included in the calculation of S, but with a weight which is < 1

and is inversely proportional to the interval between the time corresponding to the

data point and the start/end time of the transit. This weighting scheme is particularly

important for data with irregular sampling where transits might fall, for example, at

the end of a night of ground-based observations, or even with space-based obser-

vations during a gap in the temporal coverage.
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2.2.3.3 Speeding up the algorithm

By far the most time consuming operation in computing S and finding the set of pa-

rameters which maximises it, is the identification of the in-transit points, which must

be identified for each model d, p and e. If one is dealing with a large number of

light curves sharing the same observation times, it is more efficient to process many

light curves simultaneously and compute S(d, p, e) for the entire block of light curves

for each set of parameters, as follows. For each trial period, the time array is phase-

folded. At a given trial duration, the in-transit points are identified for the first trial

epoch, by stepping through the folded time array one element at a time until the

start time of the transit is reached, and then continuing, storing the corresponding

indices, until the end time of the transit is reached. S(d, p, e) is then computed and

stored for each light curve. When moving to the next trial epoch, one steps back-

ward through the folded time array from the end time of the old transit (which is

stored between successive trial epochs) until the start time of the new transit is found.

One then steps forward through the time array, storing the indices, until the end time

of the new transit is reached. S(d, p, e) is then computed and stored, and the epoch

incremented, and so forth.

This minimises the overall number of calculations needed. As the number of

in-transit points is the same for all light curves and σ only needs to be computed

once per light curve (in the constant error case), this leaves only the sum of the in-

transit points to be computed once per set of parameters and per light curve. The

optimum number of light curves to process simultaneously depends on the amount

of memory available.

A further speed increase is obtained by noting the redundancy within the com-

putation of S for a range of phase/epoch and period trial values. Breaking down

the search to a two-stage process consisting of a single transient event detector

(essentially a matched filter stage) followed by a multiplexed period/phase search,

removes the inner loop summation of data from the main search and gives a factor

of ∼ 10 improvement in execution time.

Example run-times computed using a laptop equipped with a 1.2 GHz Pen-

tium IV processor with 512 MB of RAM are as follows. The light curves consisted of

157 680 floating point numbers, i.e. each was ∼ 630 KB in size. The trial period and

duration ranges were 180 to 400 days and 0.5 to 0.7 days respectively. These ranges

are roughly appropriate to search for transits of planets in the habitable zone of a

Sun-like star, and correspond to a total number of tested (p, d, e) combinations of

∼ 5 × 107. After finding the optimal number of light curves to search simultaneously,

the runtime per light curve was ∼ 4 seconds.

Note that close-in planets with periods below the range included in this sim-
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Figure 2.18: Example detection statistic dis-
tribution for the V =14.5 case, showing S
as a function of trial epoch for the single
event search (top), as a function of period
for the multiple event search (middle) and
as a function of epoch at the best period
(bottom). The true epoch and period are
112 and 120 days respectively.

Figure 2.19: Example light curve correspond-
ing to Figure 2.18. Top: full light curve with
the positions and depths of the detected
transits in red. Middle: phase-folded light
curve (portion around transit). Bottom: full
phase-folded light curve. Transits occur 112,
232, 352 and 472 days after the start of the
light curve

ulation are, of course, of interest, so that lower trial periods (and hence lower trial

durations) would also be included when searching for transits in real data, thereby

increasing the runtime. As the trial period range is increased, the number of trial

periods becomes prohibitively large due to the use of even sampling in frequency

space (see Section 2.2.3.1): this leads to very small trial period steps at the low pe-

riod end of the range if the steps are to be kept reasonable at the high period end

of the range. This can be remedied by splitting the required range of trial periods

and running the algorithm separately for each period interval. The runtime increases

linearly with the number of trial durations.

2.2.4 Performance evaluation

Bootstrap simulations were carried out to evaluate the performance of the box-fitting

algorithm in the same manner as for the modified GL method. We present here the

evolution of the algorithm’s performance as a function of magnitude, designed to

verify that the simplifications which led from the modified GL method to the present

one did not reduce the performance. Rather than going into more detailed simula-

tions for different star-planet configurations at this stage, the box-fitting method will

be tested more extensively in combination with simultaneously developed filtering

tools to reduce the impact of stellar micro-variability (see Chapter 5).

To save time, a single transit duration value was used in the bootstrap simu-
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Figure 2.20: Evolution of the box-fitting al-
gorithm’s performance (in terms of frac-
tional error rates) with magnitude. Dotted
line: false alarm rate. Dashed line: missed
detection rate. Solid line: mean error rate.

lations (corresponding roughly to the FWHM of the input transits). Single tests on a

given light curve with a range of trial durations did however show that, contrary to

the modified GL method, the box-fitting method can be used to provide a rough esti-

mate of the transit duration, which can then be refined using standard least-squares

model fitting techniques on the phase-folded light curve.

Simulations were run for V -band magnitudes of 14, 14.5 and 15 for a system

identical to that used in Section 2.1.3.3: a 1 R⊕ planet orbiting a K5V star with a

period of 4 months, the light curves lasting 16 months with 1 hour sampling. Even

though the Eddington baseline design at the time these simulations were carried out

had evolved from what it was at the time the modified GL method was tested, the

photon counts expected with the older design were used to keep the comparison

between the two algorithms fair. Figure 2.18 shows an example of the detection

statistic distributions obtained for V = 14.5 for the single and multiple event search,

while Figure 2.19 shows the corresponding light curve and phase-folded transits.

The results of these simulations are shown in Figure 2.20. Comparing with the

bottom panel of Figure 2.10, a small improvement is indeed observed, the mean

error rate being slightly lower at all three magnitudes (0, 0.5 and 5 % are V = 14,

14.5 and 15 respectively, compared to 0, 2.5 and 8 % with the modified GL method).

Combined with the significant improvement in computing time, this makes the new

algorithm decidedly more attractive for the detection stage. Running the modified

GL algorithm on each set of 200 light curves (100 with and 100 without transits) took

approximately 2 weeks on a Sun Sparc 5, while running the box-fitting method on

Figure 2.21: Evolution of the box-fitting al-
gorithm’s performance (in terms of frac-
tional error rates) with the percentage of
gaps in the data for V =14.5. Dotted line:
false alarm rate. Dashed line: missed de-
tection rate. Solid line: mean error rate.
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the same light curves took just over an hour on a laptop PC with 512 MB of RAM and

a 1.2 GHz processor.

Tests were also conducted inserting short, random gaps (as was done for the

modified GL method in Section 2.1.3.4) for the V = 14.5 case. The results are shown

in Figure 2.21, showing a smooth, slow degradation of performance with increasing

percentage of gaps. Given that the expected duty cycle for Eddington is over 95 %,

short gaps of this type should not pose a problem for detection.

2.2.5 Discussion and future work

Through a process of simplification and consolidation, a robust least-squares box-

fitting method for transit searching was derived from the modified GL method. Its

performance is slightly improved compared to its ‘ancestor’, while the computa-

tional requirements have been vastly reduced.

In white noise, it is capable of reliably detecting periodic transits with a com-

bined signal to noise ratio down to ≥ 6, a limit similar to that found by the authors of its

closest relative, the BLS of Kovács et al. (2002). As the Kepler mission was designed to

produce a combined signal-to-noise ratio ≥ 8 for three transits of an Earth-analogue,

the present algorithm should detect such events in Kepler data provided most of the

stellar variability can be filtered out.

The fact that the detection statistic S is equal to the transit signal-to-noise ratio

makes the interpretation of the distributions of the statistic with period and epoch,

and thus the initial appraisal of potential candidates, relatively straight forward. The

distribution of S with trial epoch at the best trial period (bottom panel of Figure 2.18)

is, in simple terms, the convolution of the phase-folded light curve with a top-hat

function of width equal to the trial duration, so that the actual duration (and to

some extent shape) of the detected event, as well as the presence of other signal

(secondary eclipses of a binary for example) can be assessed directly from that

distribution. The reduction in sensitivity for triangular or curved eclipses due to the

use of a box-shaped model is not expected to exceed 6 %.

The next step is to test this algorithm in a more realistic context, that is in the

presence of data gaps and non-Gaussian noise. The two issues are linked: while

non-Gaussian noise sources such as stellar micro-variability make a pre-processing

stage necessary, the natural approach to filter out this noise involves Fourier domain

decomposition. In the presence of data gaps, this is a non-trivial process, which is

explored further in Chapter 4.

Following that, the algorithm has been applied blindly to simulated data con-

taining a more complex realistic mix of noise sources, produced by a consortium of

members of the COROT Exoplanet Working Group (see Chapter 6).


