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Research Interests

(1) Theoretical problems in rotating fluids
(2) Atmospheric dynamics of planets

(3) Planetary dynamo problems



Outline: Three examples

(1) Convective instabilities in rotating spherical systems:
asymptotic solutions (JFM, 2007)

(2) Mean flow in Jupiter:
saturation of the inverse cascade process (ApJ, 2007)

(3) Planetary dynamos: a new generation model (PEPI 2007)



Asymptotic solutions of thermal convection

The problem of convective instabilities/flows, which generate
small-scale vortices in rotating spherical systems, is a classical
problem

Chandrasekhar, (1961, monograph);
Roberts, (1968, Proc. Roy. Soc.);
Busse, (1970 J. Fluid Mech.);
Soward, (1977, GAFD )

Zhang (1992, J. Fluid Mech.);

Jones et al. (2000, J. Fluid Mech.)...

We report asymptotic solutions of convection with the no-slip
boundary condition in rapidly rotating spherical systems, valid for

0 < P./E < oo at an arbitrarily small but fixed £ < 1 (Zhang et al.,
2007, JFM).



Asymptotic solutions

Convective instabilities/flows in rapidly rotating spherical systems.

Ekman
boundary

Sketch of geometry
(Chandrasekhar, 1961):

e Radial Gravity: g = —r.

e Unstable Temp. Gradient:
VT()(T) = —ﬁI‘.



Governing equations

The problem of convective instabilities is governed by the three

dimensionless equations

0
a—ltl +u-Vu+2k xu=—Vp+ ROr + EV-u,
00
(P./E) (a ru. V@> uor+ V0,
V-u=0,
where k is a unit vector parallel to the axis of rotation and
afyra v v
R = P.=— F=—.
Ok’ K Qr2

The rigid, no-slip boundary with fixed temperature gives

Ur = Ug = Up = O =0 at r = ry.



Interior Solutions

The asymptotic solution of the interior flow ug at £ — 0 is

expressed as

Upg = ZCN (UN + ﬁN) €2Iat7 Po — ZCN (PN —|_15N) 62I0t7 (5)
N N

where up denotes perturbations induced by the flux from the Ekman layer
and Uy is solutions of

2(i0‘NUN—|—k><UN>+VPN:O, V-Uy =0, (6)

subject tor- Uy = 0 at r = rg. Explicit expressions for all Uy was
found by Zhang et al (JFM, 2004). The interior flow uq is characterized by

#uy = O(EY?), (7)

which is required in the process of asymptotic matchings for the
higher-order problem.



An important property of the interior solution

The interior flow ug is represented by a new Poincaré polynomial
associated with the Poincaré equation found by Zhang and Liao
(2005). The asymptotic matching requires to evaluate the
three-dimensional viscous dissipation integral
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An important property of the interior solution
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Boundary solutions

For a sufficiently small £, the Ekman boundary flow u; is governed by

2
2icuy + 2k X up — f’%—ib = 88;19, (8)
where ¢ = E71/2(1 —r), for E < 1. It can be reduced to
5 2
8——2i0 w+4(k-1)°u, =0 (9)
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Boundary solutions

A cumbersome analysis shows that u; at the Ekman boundary layer is

ZCN [— (lH + qb) exp (Z;{,&) + BT (IH qb) exp ( &f)]

where
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The limit P,/E < 1

When P./E < 1, we obtain

B2 " (oK + cosb) O P
R = B+ 00— _ mPx)dO + E /2f 7
OKkK [W/o |OK+COSH\3/2 (sin a0 " K)d6 + KK]
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Minimization of R over different modes, we found the simple asymptotic

o = ox—FEYr

relation at the convective instabilities,

me = ]., Rc — E1/2 (8868 > 102 + 1.033 x 104E1/2) 7

o, = 0.7550 + 0.2177EY/?,



The limit P,/E < 1

The explicit asymptotic solution for convection is
U, = isinf [7“2 — 1] :
ug = [1—2r*— gr*(cos®d —sin® )] — [(1 — cos ) (=1 — g(cos® 6 — sin* 4)/2)
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—gsin® 0 cos 9]6(1_T)Z;E_1/2
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When Pr is not small, asymptotic solutions can be also obtained but their

expressions are lengthy.



Asymptotic solutions valid for any P./FE

An asymptotic solution is determined by matching u, to u; at
the edge of the Ekman boundary layer,
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Asymptotic solutions vs. three-D numerical simulations

Pr (Reyme,00)rnum (Re, Me, 0c)Qarw
0.001 (23.74,2,-0.1064) (22.14,2, —0.1095)
0.01  (36.50,2, —0.0927) (35.42,2, —0.0957)
0.05 (74.45,4,—0.0466) (74.65,4, —0.0458)
0.1  (95.34,5,—0.0394) (94.17,5,—0.0390)
0.25 (143.3,6,—0.0269) (140.8,6, —0.0272)
0.7 (226.7,7,—0.0145) (225.7,7,—0.0155)
1.0 (258.6,7,—0.0108) (257.9,7, —0.0114)

Table 1: Convection solutions at £ = 10~* for various Prandtl numbers.
The fully numerical solutions are indicated by the subscript FFNU M while
the asymptotic solutions by the subscript QGIW .



Asymptotic solutions vs. three-D numerical simulations

Figure 1. Contours of u, in the equatorial plane at E = 10~%: for P, =
1072,107%,1.0. Upper panels are numerical solutions while the lower for
asymptotic solutions.
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Mean flows on giant planets

Recent observations from the Hubble space telescope and the
Cassini spacecraft have provided more much detailed structure and
variation of the zonal flows, prograde equatorial jets and
higher-latitude multiple alternating jets in the atmospheres of

Jupiter and Saturn (Porco et al., 2003, 2005,; Salyk et al., 2006)).
In particular, observations reveal two significant new features:

(i) A high correlation between the small-scale vortices and the mean
zonal flow (the large vortex), suggesting that energy is transferred
from the small vortices into the large-scale mean zonal flow via the
inverse cascade;

(ii) Observations from 1996 to 2004 indicate that the equatorial jets
on Saturn may have slowed substantially from over 400 m/s to
about 275 m/s, suggesting that there exist strong temporal
variations in the strength of the jets

17



Mean flows

The physical picture:

Convective instabilities =

Small-scale correlated vortices =
Nonlinear interaction of the vortices =
Mean flow (the largest vortex)...

18



Mean flows

The new observed features, a high correlation between the small
vortices and the mean flow and the strong temporal variation,
prompt two fundamental questions:

(i) How to saturate the inverse cascade process, which causes a
continual build up of energy in the mean flow but without a proper

mechanism for dissipating it;
(ii) Whether substantial temporal variations in Saturn’s equatorial
jets represent a typical feature of the convection-generated mean

zonal flow.

19



Mean flows: saturation of the inverse cascade

Making a quasi-geostrophic approximation (e.g., Gillet and
Jones, 2006)in a rotating spherical annulus defined by n < s <1,

—V1—-52<z<+v1-35%2and 0<¢ <27 In the quasi-geostrophic
approximation, the vanishing vertical vorticity leads to the
velocity of the convective flow being of the form

u ="V x|zY(s, ¢, )] + uz(s, ¢, 2, 1)z, (13)
which lead to, after applying z - V x
2 2 2
oV ¢+§<8¢8V¢_8¢8V ¢)+2E_18uz RE- ;00 PRV

ot 0o Os Js O¢ 0z [0J0)
(14)
00 1 (0Y9dO Yoo \| o, oy

The boundary condition that the normal flow vanishes on the
outer spherical surface gives rise to

——I—uz\/ (1 —s?) (16)



Saturation of the inverse cascade

Making use of the quasi-geostrophic approximation, the

governing equations then reduce to

2 2 2
OV %) 1 (0¢ OV < B oY OV w)_ 2 0y :RE_18—6+V4¢,

ot +3 0p Os ds 0¢ (1 —s2) 0¢ 0¢
(17)
90 1 (0000 9p00\] . O
PT[E*E((%@S_asa¢>]_vg+a¢’ (18)

which are two-dimensional nonlinear partial differential equations
governing quasi-geostrophic convection in rapidly rotating

spherical-shell geometry.



Saturation of the inverse cascade

Sketch of the domain decomposition
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Saturation of the inverse cascade

In discussing nonlinear flows, it is convenient to introduce a
supercritical Rayleigh number ¢ = (R — R.)/R. and to decompose
the velocity of nonlinear convection into

u =Ty(s,t)$ + (s, $,1),

where 1y is the mean flow and u denotes the velocity of
small-scale vortices, with the corresponding averaged kinetic
energies defined as

_ 1 2m To N 1 27 To
Erin = To|*sdsdd; Ein = 0|%sdsdo.
: 27r<r3—r%>/o / [l sdsdd; B 2w<r3—r§>/o | s

(]

We start our numerical simulations from small values of ¢



Saturation of the inverse cascade

Episodic convection (the secondary bifurcation)

| | | | |
0 0.05 0.1 0.15 0.2 0.25
time

Episodic cycle for £ = 107> and P, = 1.0 with e.
FE.in, while Ekm by solid lines.

Dashed lines for
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Planetary dynamos

The Dynamo on massively parallel computers

Sketch of geometry:

e Inner solid core:
0<r<r.

e Quter fluid shell:

Tig?“é?“o.

e thermally or electrically
heterogeneous mantle
mantle:

To <7 < T
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Mathematical Model

Dimensionless equations in each region:

e Fluid shell, r; < r <r,, generating magnetic fields

1
E (?9—1: +u-Vu—V2u> +2zxu+VP = RQ;@—F%(VXB)XB, (19)
%—]?:Vx(uxB)—k%VxVxB,
00 TiTo 1 o
E%—u-V@— ( 3 )u-r+P—TV O,

V-u=0, V-B=0,

e [he velocity and temperature boundary conditions:
u=0, at r=mr;, r=r,,

©=0, at r=r;, r=r,.

(23)
(24)
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Mathematical Model

Dimensionless equations in each region:
e Solid inner Core: 0 < r < r;.
OB*

5 + BV x V x B' =0, (25)

V- -B'=0, (26)

. : 1
Bz—B:rx<ﬁ¢Vsz——VxB>:O, at r=r;. (27)
Pm

e Solid mantle: r, <r <r,,.
0B¢

57 TV % (Bm(r)V x BY) =0, (28)

V-B° =0, (29)
B_Bezrx(%VxB—ﬂm(r)VxBe):O, at r=r,. (30)
B¢ =0, at r=rp,. (31)



Tetrahedral spherical FEM Mesh:

No pole and origin problems
Particularly suitable for modern massively parallel computers.
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Tetrahedral spherical FEM Mesh:

No pole and origin problems
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Tetrahedral spherical FEM Mesh:

No pole and origin problems
Particularly suitable for modern massively parallel computers.

i’y
¥
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Parallel Dynamo Simulations

e Element-by-element (EBE) parallelization technique adopted.
e Fortran 90 code with Message Passing Interface (MPI).

e Reproduce the spectral dynamo benchmark.

512

2561 | -B8- |deal speedup

e The nearly linear scalability of —o— Actual speedup

the parallel code. R
e The existence/convergence <= sl B Brass
of the numerical scheme is gm
proved by Chan, Zhang and 8
Zou ( 2006, SIAM J. Numer. Ar

ol

Anal.)

=

1 2 4 8 16 32 64 128 256 512
No. of processors
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Geomagnetic fields: simulations

The radial field at the core-mantle boundary at two instants for m=2.
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