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ABSTRACT
We present an extension of the formalism recently proposed by Pepper and Gaudi to evaluate the
yield of transit surveys in homogeneous stellar systems, incorporating the impact of correlated
noise on transit time-scales on the detectability of transits, and simultaneously incorporating the
magnitude limits imposed by the need for radial velocity (RV) follow-up of transit candidates.
New expressions are derived for the different contributions to the noise budget on transit time-
scales and the least-squares detection statistic for box-shaped transits, and their behaviour as a
function of stellar mass is re-examined. Correlated noise that is constant with apparent stellar
magnitude implies a steep decrease in detection probability at the high-mass end which, when
considered jointly with the RV requirements, can severely limit the potential of otherwise
promising surveys in star clusters. However, we find that small-aperture, wide-field surveys
may detect hot Neptunes whose RV signal can be measured with present-day instrumentation
in very nearby (<100 pc) clusters.

Key words: techniques: photometric – surveys – planetary systems – open clusters and asso-
ciations: general.

1 I N T RO D U C T I O N

Open clusters have long been used as laboratories to test our understanding of star formation and stellar evolution, as each contains a
(sometimes large) sample of stars with relatively well-known and common properties (age, composition, environment) but spanning a wide
range of masses. For the same reasons, since the discovery of the first extrasolar planet around a Sun-like star in the field just over a decade
ago (Mayor & Queloz 1995), the possibility of discovery of extrasolar planets in open clusters has been a tantalizing goal.

Open clusters tend to be relatively distant, and their members relatively faint compared to the field stars usually targeted by radial
velocity (RV) surveys. Most of the projects searching for extrasolar planets in open clusters therefore employ the transit technique, which is
particularly well suited to dense stellar environments and has the additional advantage of providing a direct measurement of the planet to star
radius ratio. Recent or ongoing transit surveys in open clusters include the UStAPS (the University of St Andrews Planet Search, Street et al.
2003; Bramich et al. 2005; Hood et al. 2005), EXPLORE-OC (von Braun et al. 2005), PISCES (Planets in Stellar Clusters Extensive Search,
Mochejska et al. 2005, 2006), STEPSS (Survey for Transiting Extrasolar Planets in Stellar Systems, Burke et al. 2006) and the Monitor project
(Aigrain et al. 2007).

Understanding the factors that affect the yield of such a survey is vital not only to maximize its detection rate, but also to enable the
interpretation of the results of the survey, including in the case of non-detections, in terms of constraints on the incidence and parameter
distributions of planetary companions. Recently, Pepper & Gaudi (2005a) (hereafter PG05a) introduced an analytical formalism to estimate
the rate of detection of exoplanets via the transit method in stellar systems. One particularly interesting result is the fact that the probability
that transits of a given system in a given cluster are detectable, if they occur, is a very slowly varying function of stellar mass in the regime
where the photometric performance is dominated by the source photon noise, but drops sharply with stellar mass in the background-dominated
regime. This implies that the number of detections to be expected from a given survey is roughly proportional to the number of stars with
source photon counts above the sky background level in that survey.

In a follow-up paper, Pepper & Gaudi (2005b) (hereafter PG05b) applied the aforementioned formalism to young open clusters, showing
that transit surveys focusing on these systems have the potential to detect transiting Neptune and even Earth-sized planets, by making use
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of the fact that low-mass stars are relatively bright at early ages, and that their smaller radius gives rise to deeper transits for a given planet
radius. This opens up the tantalizing possibility of detecting transits of terrestrial planets from the ground, and what is more of doing so in
young systems, where one might obtain particularly interesting constraints on the formation and evolution of extrasolar planets (Aigrain et al.
2007).

The formalism of PG05a assumes that the photometric errors on each star and in each observation are independent of each other (i.e.
that the noise is white). However, an a posteriori analysis of the detection threshold of the OGLE transit survey in the light of their RV
follow-up observations of OGLE candidate transits (Pont et al. 2005) demonstrated that the effective detection threshold is significantly higher
than that expected for white noise only, suggesting that correlated noise on transit time-scales might be present in OGLE light curves. Pont,
Zucker & Queloz (2006) (hereafter PZQ06) developed a set of methods for evaluating the amount of correlated noise on transit time-scales
in the light curves of transit surveys, and applied them to the OGLE light curves to show the latter do indeed contain correlated noise at
the level of a few mmag. Similar analysis of light curves from other transit surveys (see e.g. Smith et al. 2006; Irwin et al. 2007; Pont 2007
for an overview) has shown that they are also affected by correlated noise at a similar level. Because correlated noise does not average out
as more observations of a given transit event are obtained, as white noise does, it is generally correlated noise which dominates over white
noise in determining the detectability of transits around all but the faintest stars in a given field survey. A number of effects can give rise to
correlated noise, including seeing-dependent contamination of the flux measured for a given star by flux from neighbouring stars, pointing
drifts combined with flat-fielding errors, and imperfect sky subtraction – some or all of which may be important in a given survey depending
on the telescope/instrument combination used and the observing strategy.

Photometry alone does not allow the mass of the companion causing the transits to be ascertained, and RV measurements are thus
generally needed to confirm the planetary nature of a transit event. As pointed out by PG05a, this effectively imposes an apparent magnitude
limit for transit detections to be confirmable, as accurate RV measurements of faint stars are extremely expensive in terms of large telescope
time.

As noise that is correlated on transit time-scales reduces the detectability of transits around the brightest stars in a given survey, but
the need to perform radial velocity follow-up implies that transits can only be confirmed around the brightest stars, both effects must be
incorporated in the scaling laws used to estimate the number of detections expected from a given survey. The present paper attempts to do
this by extending the formalism of PG05a to include correlated noise and by translating the magnitude limit imposed by RV follow-up into a
cluster-specific mass limit.

Section 2 briefly sketches out the basics of the formalism of PG05a and describes how one or more additional noise terms representing
correlated noise terms can be incorporated in it. The impact of these modifications on the noise budget on transit time-scales and on the
transit detection probability as a function of mass are investigated in Section 3. Considerations external to the transit search itself, including
RV follow-up, are introduced in Section 4. Finally, the practical implications of the resulting formalism for open cluster transit searches are
briefly explored in Section 5.

2 I N T RO D U C I N G R E D N O I S E T E R M S

2.1 Overall formalism

This formalism is described in detail in PG05a, and only its major characteristics are sketched out here, so as to allow the modifications
implied by the presence of correlated noise to be made clear.

PG05a compute the number of transiting planets with periods between P and P + dP and radii between r and r + d r that can be detected
around stars with masses between M and M + dM in a given stellar system as

d3 Ndet

dM dr dP
= N� fp

d2 p

dr dP
Ptot(M, P, r )

dn

dM
, (1)

where Ndet is the number of detected transiting planets, N� is the total number of stars in the system, d2p/dr dP is the probability that a planet
around a star in the system has a period between P and P + dP and a radius between r and r + dr, f p is the fraction of stars in the system with
planets, Ptot(M, P, r ) is the probability that a planet of radius r and orbital period P will be detected around a star of mass M and dn/dM is
the mass function of the stars in the system, normalized over the mass range corresponding to N�.

Following Gaudi (2000), PG05a separate Ptot(M, P, r ) into three factors:

Ptot(M, P, r ) = Ptr(M, P)PS/N(M, P, r )PW(P). (2)

Ptr is the probability that a planet transits its parent star, PS/N is the probability that, should a transit occur during a night of observing, it will
yield a signal-to-noise ratio (S/N) that is higher than some threshold value, and PW is the window function that describes the probability that
more than one transit will occur during the observations.

PG05a’s expression for the transit probability is used without modification

Ptr = R

a
=
(

4π2

G

)1/3

M−1/3 R P−2/3, (3)

where R is the star radius and a the orbital distance.
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The S/N of a set of transits is S/N = (�χ 2
tr)

1/2, where �χ2
tr is the difference in χ2 between a constant flux and a boxcar transit fit to the

data. PZQ06 give the general expression:

�χ 2
tr = d2

σ 2
d

= d2 n2∑
Ci j

, (4)

where d is the transit depth, σ d is the uncertainty on the transit depth, n is the number of in-transit data points and C is the covariance matrix
the in-transit flux measurements.1 If the noise is uncorrelated, the non-diagonal elements of C are zero, and

∑
Ci j =∑i σ 2

i where σ i is the
uncertainty on the ith flux measurement. Additionally, if this uncertainty is constant, that is, σ i = σ w, equation (4) further reduces to

�χ 2
tr = n

(
δ

σw

)2

, (5)

which, for single transits, is equivalent to equation (4) in PG05a. Note that the notation adopted here matches that of PZQ06, and thus differs
that of PG05a and PG05b. In particular, the symbols Ntr and n, used in PG05a and PG05b to represent the number of in-transit points and the
number of transits, respectively, are inverted here. We also use σ 0 where PG05a and PG05b used σ , and d where they used δ.

2.2 Modifying the detection statistic to account for red noise

In an attempt to account for the saturation of the rms noise level that is seen at the bright end of all transit surveys, PG05a introduced in their
section 4.3 the concept of a minimum observational error σ sys, which is added in quadrature to the error contribution σ phot from the sky and
source photon noise to give the error estimate σ ind for each data point:

σw = (σ 2
phot + σ 2

sys

)1/2
. (6)

This expression for σ w is then simply inserted into equation 5.
However, detailed analysis of the light curves of various transit surveys (PZQ06; Pont 2007) shows that they systematically contain

noise that is correlated on transit time-scales (2–3 h for a hot Jupiter transit), that is, the non-diagonal elements of the covariance matrix are
non-zero. As a result, σ d no longer decays as n−1/2 as expected for uncorrelated (white) noise. PZQ06 propose a single-parameter description
of the covariance, assuming the noise can be separated into purely uncorrelated (white) and purely correlated (red) components, the former
decaying as n−1/2 but the latter independent of n:

σ 2
d = σ 2

w

n
+ σ 2

r , (7)

where σ w and σ r represent the white and red noise components, respectively. This single-parameter description of the correlated noise assumes
that the degree of correlation remains unchanged on all time-scales up to the maximum transit duration. It is equivalent to approximating the
covariance matrix with Cii = σ 2

0 ≡ σ 2
w + σ 2

r in the diagonal, Ci j = σ 2
r for two data points in the same transit, and Ci j = 0 otherwise (see

Section 2.3 for the treatment of multiple transits).
There is evidence that the correlation time-scale in transit survey light curves is finite (Gould et al. 2006). If this correlation time-scale

is shorter than the maximum transit duration, the above expression would underestimate the significance of long-duration transit events. This
does not appear to be the case for light curves analysed by PZQ06 and Pont (2007), where the noise remains correlated up to 3 h time-scales.
Nevertheless, it is interesting to investigate the impact of finite correlation time-scales through a simple example. We consider a transit
with a depth of 1 per cent lasting 2 h and observed with 15 min time sampling, that is, n = 8. In the white noise only case, if σ w = 2 mmag,
σ d = 0.71 mmag and �χ 2

tr = 200. If correlated noise is present, with σ r = 1 mmag, the single-parameter approximation gives σ d = 1.22 mmag
and �χ 2

tr = 67. If on the other hand, the noise is correlated only over time-scales up to 1 h or four data points, that is, Ci j = 0 for |i − j| � 4,
σ d = 1.10 mmag and �χ 2

tr = 82. In general, even if the characteristic correlation time-scale of the noise is shorter than a transit duration, we
expect the single-parameter correlated noise approximation adopted here to give an estimate of the transit significance that is much nearer to
the true value than that obtained with the white noise approximation.

We therefore adopt equation (7) for what follows. The white noise is assumed to be equal to the photon noise and modelled as of
contributions from the source and the sky background:

σ 2
w = σ 2

source + σ 2
back = Ns + Nb

N 2
s

, (8)

where Ns and Nb are the number of photons from the source and the sky detected in the photometric aperture.
PZQ06 found that the distribution of the rms of OGLE light curves over a typical transit time-scale of 2.5 h is consistent with a constant

red noise level of σ sys ∼ 3 mmag, independent of apparent magnitude. Processing the light curves with a systematics removal algorithm such
as Sys-Rem reduces σ sys to ∼1.5 mmag for the best objects. The work of the International Space Science Institute (ISSI) working group on
transiting planets (Pont 2007) has shown that similar values are also typical of other surveys, with a correlated noise value of ∼1.5 mmag for the
best objects. We therefore adopt σ sys ∼ 1.5 mmag throughout the following calculations, which would correspond to very good ground-based

1 One can show that the estimate of d which minimizes the χ2 of the fit is the inverse-variance-weighted average of the in-transit flux measurements, and σ d is
thus the uncertainty on this average.
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photometry. While it is theoretically possible to reduce the level of correlated systematics further, this value is used because it is considered
representative of the leading surveys currently in operation.

In addition to this systematics term, a red noise component proportional to the white noise level (as a function of magnitude) is present
in some surveys. This dominates over the systematics term in the domain where background photon noise dominates the white noise and is
thus likely to be somehow associated with background subtraction. We therefore label it σ sub. For the purposes of the present calculations, it
is modelled as a term proportional to the background noise:

σsub = kσb. (9)

For the purposes of the present work we assume k = 0.2. This is the kind of values the ISSI team found for the correlated noise in the HAT and
SuperWASP surveys. Most cluster surveys, such as the UStAPS (Street et al. 2003; Bramich et al. 2005; Hood et al. 2005), EXPLORE-OC
(von Braun et al. 2005), STEPSS (Burke et al. 2006), PISCES (Hartman et al. 2005; Mochejska et al. 2005, 2006) or Monitor (Aigrain et al.
2007; Irwin et al. 2007), have better spatial sampling, and lower values of k might therefore be expected to apply, though preliminary analysis
of test light curves indicates that k ∼ 0.2 is also appropriate, if not an underestimate, for at least some of these surveys. In any case, this value
is used here to illustrate the effects of noise of this type when it dominates the overall noise budget.

The overall red noise budget is thus

σ 2
r = σ 2

sys + σ 2
sub = σ 2

sys + k2 Nb

N 2
s

. (10)

2.3 Multiple transits

As correlated noise does not average out over transit time-scales, but does average out over repeated transit events, it is particularly important
to consider the repeatability of transits in the detection process when one suspects correlated noise might dominate. In an appendix, PG05a
derived an expression for PS/N for multiple transits, which is based on the equation

�2
tr(multiple transits) = Ntr �2

tr(single transits) = Ntr
d2

σ 2
d

, (11)

where Ntr is the number of observed transits. This equation remains valid in the presence of correlated noise provided there is no correlation
over long time-scales (similar to the planet’s orbital period). In PG05a, PW has to be calculated separately for each value of the number of
transits. This assumes that the number of data points in each observed transit is the same, and in practice one must therefore choose a minimum
value for the number of data points in a partially observed transit above which that transit contributes to PW, and below which it does not.

PZQ06 provide a general formula which accounts for the number of data points in each observed transit:

�2
tr(multiple transits) = n2

tot

d2∑Ntr

k=1 n2
kV(nk)

, (12)

where ntot =∑k = 1Ntr is the total number of in-transit points and

V(nk) ≡ 1

n2
k

nk×nk block∑
Ci j (13)

is the noise integrated over the kth observed transit. PW then becomes a multidimensional quantity dependent not only on Ntr but for each Ntr,
on the set of nk . As with the PG05a formalism, it must be evaluated numerically.

In the present work, we make the assumption of homogeneous phase coverage, which allows us to ignore differences between nk for the
different transits, and enables us to (roughly) estimate the number of transits observed as a function of period given the time sampling and
survey duration. This can then be incorporated into equation (11) directly, therefore alleviating the need to compute PW separately. One can
approximate Ntr as

Ntr = ttot

P
= Nn tnight

P
, (14)

where ttot is the total time spent on target, which is the product of the number of nights Nn and the average duration of a night tnight, and P is
orbital period. Reality diverges strongly from the homogeneous phase coverage assumption close to harmonics of the daily interruptions in
the observations, but it follows the global 1/P trend (see fig. 1 of PG05a).

3 I M PAC T O N T H E N O I S E BU D G E T A N D D E T E C T I O N S TAT I S T I C

3.1 Noise budget on transit time-scales

Useful insights regarding the dominant noise sources, and how to mitigate those that have the largest impact on the transit detection performance,
can be gained by exploring the dependency of the various noise components on the stellar parameters. We start from the following expressions,
given by PG05a, for Ns, Nb and n (recalling that n is called Ntr in PG05a):

Ns = L X ,
 × 10−0.4AX

4πd2
texpπ

(
D

2

)2(
M

M


)βX

= Ns,

(

M

M


)βX

, (15)
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Nb = Ssky,Xtexpπ

(
D

2

)2

(16)

and

n =
√

1 − b2
R

δt

(
4P

πG M


)1/3(
M

M


)α−1/3

=
√

1 − b2 neq,

(

M

M


)α−1/3

, (17)

where M is the stellar mass; α is the index of the (power-law) mass–radius relation; βX is the index of the (power-law) mass–luminosity
relation in the filter X under consideration; D is the telescope aperture; texp is the exposure time; d is the distance to the cluster; AX is the
extinction to the cluster. PG05a adopt the distance-dependent extinction law AI = 0.5 (d/kpc); LX ,
 is the Sun’s photon luminosity in the
filter of interest, which we compute, following PG05a, as

L X ,
 =
8π2cR2
λ−4

X ,c�λX

exp(hc/λX ,ckT
) − 1
, (18)

where λX,c and �λX are the filter central wavelength and full width at half-maximum (FWHM), respectively; Ssky,X is the sky photon flux per
unit solid angle;  is the effective area of the seeing disk, which we compute, following PG05a, as

 = π

ln 4
θ2

see, (19)

where θ see is the FWHM of the point spread function (PSF); b is the impact parameter of the transit; δt is the interval between consecutive
measurements. In PG05a,

δt = texp + tread, (20)

where tread is the readout time, which can be generalized to include any time spent off-target; Ns,
 is the number of source photons in the
aperture for a solar mass star; neq,
 is the number of points in an equatorial transit for a solar mass star.

Substituting for Ns and Nb from equations (15) and (16) into equation (8) gives

σ 2
w = 1

Ns,


(
M

M


)−βX
[

1 + C2

(
M

M


)−βX
]

, (21)

where we have introduced, following PG05a,

C2 = 4πd2 Ssky,X

L X ,
10−0.4AX
(22)

which is the ratio of sky to source flux in the aperture for a solar mass star. Taking σ r from equation (10), σ w from equation (21) and n from
equation (17) and substituting into equation (7),

σ 2
d = (1 − b2)−1/2

Ns,
neq,


(
M

M


)1/3−α−βX
[

1 + C2

(
M

M


)−βX
]

+ σ 2
sys + k2C2

Ns,


(
M

M


)−2βX

. (23)

To simplify this expression we introduce two new constants

C4 = Ns,
 neq,
 (24)

which is the square of the background-subtraction component for a Sun-like star, and

C5 = k2C2

Ns,

(25)

which is the total number of source photons collected during an equatorial transit for a Sun-like star. (Note that C3 is defined in PG05a but
not used here.) Equation (23) then becomes

σ 2
d = (1 − b2)−1/2

C4

(
M

M


)1/3−α−βX
[

1 + C2

(
M

M


)−βX
]

+ σ 2
sys + C5

(
M

M


)−2βX

. (26)

The form of σ eq, the depth uncertainty for equatorial transits (b = 0) and of the different terms that compose it is illustrated in Fig. 1
(right-hand panel). Also shown for comparison is the noise level per data point (left-hand panel), or V(1).

The relative importance of the red noise components is clearly enhanced over the transit time-scale. While the systematics term is the same
for all stellar masses, the source photon noise is a steeply decreasing function of stellar mass, the background-subtraction noise is even steeper
and the background photon noise is the steepest. There may thus be up to four noise regimes, starting with the systematics-limited regime
at the highest masses, followed by the source noise-limited regime, the subtraction-limited regime and finally the background noise-limited
regime at the lowest masses.

Equating each pair of components and solving for M yields the mass regimes in which each component dominates. This exercise was
done by PG05a to obtain Msky, the transition mass between the source and background noise-limited regimes, which for clarity we rename
Ms,b.

Ms,b = C1/βX
2 M
. (27)
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6 S. Aigrain and F. Pont

Figure 1. Error budget on individual data points (left-hand panel) and over a the duration of an equatorial transit (right-hand panel) for the fixed and fiducial
parameters of PG05a, assuming σ sys = 1.5 mmag and k = 0.2. The black dashed, dot–dashed, triple dot–dashed and dotted lines show the source photon noise,
background photon noise, background-subtraction noise and systematics terms, respectively, and the solid black line shows the total noise budget. The grey
line on the right-hand panel shows what the behaviour the total noise would have it all the components behaved as white noise. The grey vertical dotted lines
show mark transitions between the different regimes, as defined in equations (27)–(30).

Given the two additional noise terms that have been introduced, the relevant transitions are now:

Msys,s = (C4 σ 2
sys

)3/(1−3α−3βX )
M
, (28)

Ms,sub = (C4 C5)3/(1−3α+3βX ) M
, (29)

Msub,b =
(

C4 C5

C2

)3/(1−3α)

M
. (30)

However, it is very easy for the source noise-limited regime to disappear altogether, because the source photon noise averages out over the
duration of the transit whereas the systematics and background-subtraction noise do not. Even if one ignores the background-subtraction term,
the source-limited regime disappears if Ms,b � Msys,s. Given the set of fixed and fiducial parameters adopted by PG05a, the source-limited
regime exists only if σ sys < 0.5 mmag. Adopting a more realistic value of 1.5 mmag, there is a direct transition between the systematics- and
subtraction-limited regimes, which occurs at

Msys,sub =
(

C5

σ 2
sys

)1/(2βX )

M
. (31)

For the subtraction-dominated regime to exist it requires k to be relatively large (k � 0.2). If this is not the case, there is a direct transition
between the systematics and background-limited regimes:

Msys,b =
(

C4 σ 2
sys

C2

)3/(1−3α−2βX )

M
. (32)

3.2 Detection probability PS/N

The detection probability is derived following the same method as PG05a, although we consider multiple, rather than single transits.
A transit observed Ntr times is assumed to be detectable if it gives rise to a detection statistic �χ2

tr � �χ2
min. If equatorial transits of a

given system are detectable, one can derive a maximum impact parameter bmax up to which transits of such a system are also discoverable
(PG05a). This arises because n = teq

√
1 − b2/δt , where b is the impact parameter of the transit and teq the duration of an equatorial

transit:

teq = R

(
4P

πG M

)1/3

, (33)

where R is the radius and M the mass of the star. We have assumed that the planet radius r � R and ignored limb-darkening, which allows us
to ignore grazing transits as both are extremely rare and hard to detect, and to write δ = (r/R)2 where r is the planet radius.

Therefore, the probability that transits of such a system are detectable, that is, that �χ 2
tr � �χ 2

min, reduces toPS/N = bmax when integrated
over b, assuming the impact parameters are uniformly distributed between 0 and 1. However, the statement

�χ 2
tr = �χeq

√
1 − b2, (34)

which is valid in PG05a, no longer holds here, because �χ2
tr is no longer simply proportional to n. Instead, equations (4) and (7) imply
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Transit surveys in star clusters 7

Figure 2. Detection statistic �χ2
eq for an equatorial transit, for individual transits and assuming the systematics are white (as in PG05a, left-hand panel) or for

multiple transits and incorporating both red noise terms with σ sys = 1.5 mmag and k = 0.2 (this work, right-hand panel). The line styles have the same meaning
as in Fig. 1. The grey horizontal dotted line marks the detection threshold �χ2

min = 30 adopted by PG05a. The grey vertical dotted lines mark the lower and,
if applicable, upper mass limits between which the transits are detectable. The grey vertical dashed lines mark the mass range where RV follow-up is feasible
with FLAMES + UVES.

�χ2
tr = Ntr δ2

(
σ 2

w

n
+ σ 2

r

)−1

= Ntr δ2

(
σ 2

w

neq

√
1 − b2

+ σ 2
r

)−1

. (35)

The expression for bmax is found by setting the left-hand side of equation (35) to �χ2
min and solving for b. This yields

PS/N = bmax =

√√√√1 −
[

σ 2
w

neq

(
Ntr δ2

�χ 2
min

− σ 2
r

)−1
]2

. (36)

Inserting the expressions for the different noise terms derived above gives

PS/N =

√√√√√√√√1 −




(
M

M

)1/3−α−βX

[
1 + C2

(
M

M

)−βX

]

C4

[
Ntr

�χ2
min

(
r

R

)4 (

M
M

)−4α

− σ 2
sys − C5

(
M

M

)−2βX

]−1




2

. (37)

This expression reduces, in the case of white noise only – that is, when σ sys and k vanish – to PG05a’s equation (15). A similar expression for
�χ 2

eq, the detection statistic for equatorial transits, also ensues

�χ 2
eq =

Ntr

(
r

R

)4 (

M
M

)−4α

C4

(
M

M

)1/3−α−βX

[
1 + C2

(
M

M

)−βX

]
+ σ 2

sys + C5

(
M

M

)−2βX

. (38)

If �χ 2
eq < �χ2

min for a particular star–planet system, transits of that systems are not detectable, whatever the inclination.
The overall behaviour of �χ2

eq as a function of mass is illustrated in Fig. 2 (right-hand panel). Also shown for comparison is the
single-transit �χ 2

eq obtained following PG05a, that is, assuming the systematics are white (left-hand panel).
PG05a point out that, using α = 1 and βI = 3.5, �χ 2

eq ∝ M1/6 and M11/3 in the source and background noise-limited regimes, respectively,
which has the remarkable implication that the detectability of planetary transits is virtually independent of mass for all stars above sky, while
it decreases rapidly for stars below sky. In white, source-limited noise only, the number of detections from a given survey is thus roughly
proportional to the number of unsaturated stars above sky. In the red noise-limited regimes, �χ2

tr no longer depends on n, that is, on b (provided
the transit is not grazing, a given transit event contributes the same amount to the detectability no matter what the number of observations
in that transit). Transits of a given system are thus detectable, whatever the inclination (i.e. the transit duration), if they are deep enough
(δ) and enough of them are observed (Ntr). Using the same values of α and βI as in PG05a, �χ 2

eq ∝ M−4 and M3 in the systematics and
background-limited regimes, respectively, with the remarkable implication that transits are detectable only around stars below a certain mass,
determined by the systematics term. The reason is that the degree of correlation of the noise lowers the advantage of having longer transits
and lower photon noise (a larger and brighter primary) compared to that of having deeper transits (a smaller primary).

The combined effect of the different noise terms across the entire stellar mass range is to give rise to a peak in �χ 2
eq versus M, as

illustrated in Fig. 2. This immediately points to a potentially very simple way of evaluating whether a given type of planet is detectable at
all in a given cluster with a given observational set-up: find the ‘peak mass’, or stellar mass at which �χ2

eq is maximized, by differentiating
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equation (38) with respect to M and setting the derivative to zero:

C4

(
M

M


)1/3−α−βX
[

5α + βX − 1

3
+ C2

(
5α + 2βX − 1

3

)(
M

M


)−βX
]

+ C5 (1 + 2βX )

(
M

M


)−2βX

+ σ 2
sys = 0. (39)

The solution of equation (39) could then be plugged back into equation (38), to yield �χ2
peak. If �χ 2

peak > �χ2
min, detections are possible in

the cluster under consideration. In that case, one can also compute the limits Mlow and Mup of the stellar mass range over which detections are
possible by setting the left-hand side of equation (38) to �χ2

min and solving for M. In practice, both equations cannot be solved analytically
in the general case. If one is interested in calculating precise values of �χ2

peak, Mlow and Mp, the simplest way is to compute �χ 2
eq for a range

of M and find the quantities of interest numerically.
However, as discussed in Section 3.1, it is not uncommon for a single component to dominate over a significant portion of the mass

regime. By considering dependence of �χ 2
eq on each of the components one at a time, one can obtain useful insights into what limits the transit

survey’s performance, and what mass range will be accessible. Each of the source, background and background-subtraction terms imply a
minimum mass around which a given type of transit is detectable:

Mlow,s = (C ′
1

)3/(−9α+3βX −1)
M
, (40)

Mlow,b = (C ′
1 C2

)3/(−9α+6βX −1)
M
, (41)

Mlow,sub = (C ′
1 C4 C5

)1/(4α−2βX )
M
, (42)

where C′
1 is a multiple-transit equivalent of PG05a’s C1:

C ′
1 = C1

Ntr
= �χ2

min

Ntr Ns,
 neq,


(
r

R


)−4

(43)

and Mlow,s and Mlow,b are equivalent to PG05a’s Mth,s and Mth,b. On the other hand, the systematics term implies a maximum mass:

Mup =
(

1

C ′
1 C4 σ 2

sys

)1/(4α)

M
. (44)

Note that PG05a’s white systematic noise term also induces an upper mass limit detection, but it is typically larger than 3 M
. As long as
Mup is above the peak of the mass function, correlated systematic noise will not significantly affect the total number of detections in a given
survey. However, it does have the effect of preventing detections around the brightest stars, which are arguably the most interesting, because
of their enhanced potential for follow-up.

In general, more than one component contributes near the limits of the range of masses of stars around which transits of a given type of
planet are detectable, and the expressions for Mlow and Mup are rather complex. Again, an alternative is to compute each term in �χ2

eq for an
array of stellar masses and to find the values of M between which �χ 2

eq > �χ2
min.

4 A D D I T I O NA L C O N S I D E R AT I O N S

4.1 Turn-off mass

Following PG05a, we compute the turn-off mass

Mto =
(

εMβ


c2

Lbol,
 A

)1/(β−1)

, (45)

where ε is the efficiency of hydrogen burning and β is the bolometric mass–luminosity index.

4.2 Saturation mass

Also following PG05a’s expression for the number of photons at the peak of the PSF of a given star, the saturation mass is(
Msat

M


)βX

= 4πd2

L X ,

100.4AX

[(
D

2

)−2
NFW

texpπ
− Ssky,Xθ 2

pix

]{
1 − exp

[
− ln 2

(
θpix

θsee

)2
]}−1

, (46)

where NFW is the full-well capacity of the detector and θpix is the angular size of the pixels.

4.3 Radial velocity follow-up

RV follow-up is necessary to confirm the planetary nature of any detected transits and to measure companion masses. In this section, we
examine the range of stellar masses over which this is feasible for a planet of a given mass and period.
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PG05a used a fixed magnitude limit (V = 17 or 18) beyond which planets were considered undetectable by the RV method. This is
approximately suitable for planetary companions to Sun-like stars: it is extremely difficult to measure radial velocities with precisions of a few
tens of m/s level beyond V ∼ 18 even with the largest telescopes available at present (Pont et al. 2005). However, in cluster transit searches,
many of the detections occur around lower mass stars, where planetary companions may induce significantly larger RV modulations, and a
more detailed treatment is needed.

For a star of a given magnitude, the minimum detectable radial velocity amplitude Kmin is highly instrument dependent, and we examine
two representative telescope/instrument combination: the UV–Visual Echelle Spectrograph (UVES) coupled to the Fibre Large Area Multi-
Element Spectrograph (FLAMES) on the Very Large Telescope (VLT) – hereafter FLAMES + UVES – and the High Accuracy Radial velocity
Planet Searcher on the 3.6 m telescope at La Silla – hereafter HARPS. High-precision measurements tend to be limited by instrument stability
rather than by photon noise, in the sense that, if deemed interesting enough, a given (short-period) object can be observed as long as necessary,
binning the phase-folded measurements to reduce the photon noise contribution. However, for each telescope/instrument combination there is
also a magnitude limit YRV, beyond which the S/N achievable in a single exposure drops below a critical level, and high-precision measurements
are no longer feasible in reasonable exposure times. As the spectral region used typically covers the V and R bands, Y should be either V or
R, depending on which filter the object under consideration is brightest in.

The RV semi-amplitude induced by a given planet scales as

K ∝ m P−1/3 M−2/3, (47)

where m is the planet mass and we have assumed that m � M and that the inclination of the system is edge-on. All planets giving rise to
K � Kmin are then assumed to be detectable around stars with apparent magnitude down to YRV, beyond which it is assumed that high-precision
RV measurements are not feasible at all with the telescopes/instruments under consideration. For HARPS, we use Y = V and YRV = 14, for
FLAMES + UVES we use Y = R and YRV = 18. Both are relatively optimistic limits. This means that in each cluster, there is a lower mass
limit

MRV,min = 10M
Y ,
−YRV+5 log d−5+AY /2.5βY , (48)

where Y is R or V, below which no RV measurements are feasible with a given instrument, and above which the minimum detectable planet
mass is

mmin = mref

(
P

3 d

)1/3(
M

M


)2/3

, (49)

where mref = MNeptune for HARPS and MJupiter for FLAMES + UVES. If considering a particular planet mass m across a range of stellar masses,
one can derive a maximum stellar mass MRV,max around which such a planet produces a detectable RV signal by setting Mmin in equation (49)
to m:

MRV,max =
(

m

mref

)3/2(
P

3 days

)−1/2

M
 (50)

which is independent of the cluster properties and depends on the planet mass and period only. Planets with mass m and period P can thus be
confirmed by RV with present observational means only if they orbit stars with MRV,min < M < MRV,max.

Note that, for the sake of simplicity, we have ignored a number of important factors, including morphological differences in the spectra
of stars of different types and the impact of rotation, which broadens the lines and degrades the RV precision.

5 A P P L I C AT I O N S

One can roughly evaluate the mass range [Mmin; Mmax] within which planets of a given radius and period in a given cluster produce detectable
transits and RV modulations:

Mmin = max(Mlow, MRV,min), (51)

Mmax = min(Mup, Mto, Msat, MRV,max). (52)

5.1 PG05a’s fiducial cluster

Going back to the fiducial cluster of PG05a, under the relatively optimistic assumption that σ sys = 1.5 mmag, the detection of transits alone
for a 1 MJupiter planet in a 2.5-d orbit is possible around stars with masses between 0.28 and 1.49 M
. However, using FLAMES + UVES
on the VLT, for which we assume that Kmin corresponds to a Jupiter-mass planet in the same orbit around the same star and that RRV = 18,
MRV,min = 1.13 M
 and MRV,max = 1.22 M
, so that the mass range where such a planet can be detected via transits and RV is only 0.11 M
.

The combination of correlated systematics and follow-up requirements imposes very stringent limits on the potential of transit surveys
in open clusters. In practice, it implies an even stronger dependence on cluster distance, which is illustrated in the bottom right-hand panel of
PG05a’s fig. 8.
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Table 1. Mass ranges over which transits of Jupiter-sized planets in 2-d orbits are detectable in selected Galactic open clusters, using the
observational parameters of PG05b. Columns 7 and 9 give the primary cause of the upper and lower limits (sat: saturation; TO: turn-off;
sys: systematics; lim: lower limit of mass range considered).

Name Distance Age Aperture texp Mlow (Cause) Mup (Cause) �M
(pc) (Myr) (m) (s) (M
) (M
) (M
)

Hyades 46 625 1.8 15 0.15 (lim) 0.55 (sat) 0.47
Praesepe 175 800 1.8 45 0.15 (lim) 0.87 (sat) 0.79
NGC 2682 (M67) 783 4000 3.6 45 0.15 (lim) 1.36 (TO) 1.28
NGC 2168 (M35) 912 180 3.6 45 0.15 (lim) 1.49 (sys) 1.41
NGC 2323 (M50) 1000 130 3.6 45 0.15 (lim) 1.49 (sys) 1.41
NGC 2099 (M37) 1513 580 3.6 45 0.15 (lim) 1.49 (sys) 1.41
NGC 6819 2500 2900 6.5 45 0.15 (lim) 1.49 (sys) 1.41
NGC 1245 2850 960 6.5 45 0.15 (lim) 1.49 (sys) 1.39
NGC 6791 4800 8000 6.5 45 0.15 (lim) 1.08 (TO) 0.92

5.2 Example Galactic open clusters

In a subsequent paper, PG05b applied the formalism of PG05a to a number of well-studied Galactic open clusters and, on this basis, made
the prediction that close-in Neptune- or even Earth-sized planets should be detectable in some of these clusters via transit surveys from
ground-based 2- to 6-m class telescopes. If so, transit surveys in open clusters might not only enable the detection of planets around well
characterized stars of known age and metallicity, but may also lead to the first radius measurements for terrestrial planets. It is therefore
interesting to investigate the detectability of Jupiter-sized and smaller planets in these clusters in the presence of red noise.

We use the same test sample of nine clusters (the Hyades, Praesepe, M67, M35, M50, M37, NGC 6819, 1245 and 6791) as PG05b, from
which we take the cluster parameters (distance, age, extinction) and the observational parameters, which are similar to those of PG05a except
that the night duration is tnight = 8 h, the telescope apertures are 1.8 m (Pan-STARRS), 3.6 m (CFHT) and 6.5 m (MMT) depending on the
cluster (as selected by PG05b), and the exposure time is texp = 45 s for all clusters except the Hyades for which texp = 15 s.

Table 1 shows the range of stellar masses between which transits Jupiter-sized planets in 2-d orbits produce detectable transits. For all
but the most distant cluster, transits are detectable right down to the minimum stellar mass considered (0.15 M
, well below the limit of
0.3 M
 adopted by PG5b), that is, the addition of a correlated background-subtraction term component does not affect the results. For all
but the nearest clusters, the upper limit comes from the systematics term (Mup = 1.49 M sun, independent of the cluster and observational
parameters). For the Hyades and Praesepe, the upper limit is saturation with the observational set-up considered here, but this can be raised
by using shorter exposure times and/or smaller telescopes, which have the added advantage of providing wider fields of view. For example,
the SuperWASP project (Pollacco et al. 2006) uses multiple 11 cm apertures and has 13.5 as pixels and an effective bandpass similar to
R (sky brightness 20.8 mag). As it cycles between fields, δt = 8 min. With the standard exposure times of 30 s, we obtain Msat = 0.79 M
 for
the Hyades and 1.71 M
 for Praesepe. These represent a significant gain, and hereafter we adopt these observational parameters for these two
clusters. Note that one could decrease the exposure time for the Hyades to increase Msat further, but this would conflict with the primary goal
of SuperWASP, namely to search for transits around field stars. Overall, correlated noise does not strongly affect the detectability of transits
of hot Jupiters in these clusters.

We now incorporate the limits induced by radial velocity follow-up with FLAMES + UVES in the calculations. The results are shown
in Table 2. RV or turn-off are now the limiting factors in almost all cases, and imply a stronger distance dependence of the planet yield than
transits. It is interesting to note, however, that confirmed detections of transiting hot Jupiters are possible down to very low stellar masses in
the nearest clusters.

Table 2. Mass ranges over which transits and RV modulations of Jupiter-sized planets in 2-d orbits are detectable in selected Galactic
open clusters, using SuperWASP for the Hyades and Praesepe and the observational parameters of PG05b for the other clusters, and
using FLAMES + UVES for RV follow-up. Columns 7 and 9 give the primary cause of the upper and lower limits (RV: radial velocity).

Name Aperture texp Mlow (Cause) Mup (Cause) �M
(m) (s) (M
) (M
) (M
)

Hyades 0.1 30 0.15 (lim) 0.79 (sat) 0.70
Praesepe 0.1 30 0.18 (RV) 1.22 (RV) 1.04
NGC 2682 (M67) 0.8 15 0.57 (RV) 1.22 (RV) 0.66
NGC 2168 (M35) 1.3 15 0.64 (RV) 1.22 (RV) 0.59
NGC 2323 (M50) 1.5 15 0.66 (RV) 1.22 (RV) 0.57
NGC 2099 (M37) 2.7 15 0.75 (RV) 1.22 (RV) 0.48
NGC 6819 5.0 15 0.84 (RV) 1.22 (RV) 0.38
NGC 1245 6.5 18 0.93 (RV) 1.22 (RV) 0.30
NGC 6791 6.5 65 1.07 (RV) 1.08 (TO) 0.01
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Table 3. Mass ranges over which transits of Neptune-sized planets in 2-d orbits are detectable (1) and confirmable with HARPS (2) in
selected Galactic open clusters, using SuperWASP for the Hyades and the observational parameters of PG05b for the other clusters.

Name Aperture texp M(1)
low (Cause) M(2)

low (Cause) Mup (Cause) �M
(m) (s) (M
) (M
) (M
) (M
)

Hyades 0.1 30 0.08 (lim) 0.28 (RV) 0.50 (sys) 0.42
Praesepe 1.8 15 0.08 (lim) 0.63 (RV) 0.52 (sys) 0.44
NGC 2682 (M67) 1.8 15 0.18 (back) 1.06 (RV) 0.52 (sys) 0.34
NGC 2168 (M35) 3.6 15 0.16 (back) 1.19 (RV) 0.52 (sys) 0.36
NGC 2323 (M50) 3.6 15 0.18 (back) 1.25 (RV) 0.52 (sys) 0.34
NGC 2099 (M37) 3.6 15 0.32 (back) 1.49 (RV) 0.49 (sys) 0.17
NGC 6819 6.5 15 0.39 (back) 1.70 (RV) 0.46 (sys) 0.07

We also investigate the detectability of Neptune-sized planets, using HARPS for RV follow-up, still with a period of 2 d. For such planets,
the systematics term implies an upper mass limit of Mup = 0.53 M
 independent of the observational set-up. We use the same observational
set-up as before except for Praesepe, where a greater photon-collecting capacity than that of SuperWASP is needed to offset the smaller planet
radius, so we revert to Pan-STARRS. The results are shown in Table 3. We have omitted NGC 1245 and 6791 because transits of Neptune-sized
planets are not detectable at all in these clusters. The systematics term severely limits the maximum stellar mass around which transits of hot
Neptunes can be detected, while the need for RV measurements limits the minimum mass around which they can be confirmed, and it is only
in the Hyades that confirmed transiting Neptunes are expected to be detectable. We stress that these limits are relatively independent of the
observational set-up.

For hot Earths, the systematics term implies a very stringent upper limit of Mup = 0.13 M
, and the formalism adopted here also precludes
RV confirmation around any stars in the clusters considered (although it may be feasible to detect the RV signal from a hot Earth around a
bright star using HARPS by observing many repetitions of the orbit).

6 C O N C L U S I O N S

Simple modifications have been made to the formalism of PG05a to account for correlated noise and the need for RV follow-up. These should
lead to more realistic estimates of the efficiency of open cluster transit surveys, while retaining the analytic nature of the original formalism,
which affords useful insights into the behaviour of the detection probability as a function of mass.

Two types of correlated noise were considered: systematics, which are constant with apparent stellar magnitude, and background-
subtraction noise, which scales with the background photon noise level. The latter behaves in a similar fashion to background photon noise
itself, though its contribution to the total noise budget on transit time-scales has a slightly less steep dependence on the stellar mass, and
therefore it does not significantly modify the yield of a survey unless extreme assumptions are adopted. However, the former implies a detection
probability that steeply decreases with increasing mass and therefore curtails detections at the bright end. This effect is much stronger than
the loss of sensitivity implied by a white minimum observational error of similar magnitude.

In the course of evaluating the impact of correlated noise on the detectability of transits, we made a number of simplifying assumptions,
and these should be borne in mind when comparing the predictions of the present formalism to the yield of real cluster transit surveys. First,
we have assumed that the noise budget is the same for all stars of a given magnitude, and that every data point in a given light curve is affected
by the same noise level. In fact, both white and correlated noise typically affect some objects and/or nights more than others, as they depend
on factors which vary from object to object (e.g. crowding, position on the detector, colour) and time (e.g. weather, instrumental problems).
Additionally, the way we compute the number of observed transits does not take into account the very strong features close to integer multiples
of a day that are present in the window function of most ground-based surveys. As a result, while the scaling laws derived here apply for
the majority of the objects in a given survey, the most significant detections in a real survey may well occur in special cases where the time
sampling and the noise characteristics were particularly favourable.

On the other hand, the RV modulation induced by the companion in the primary, in order to measure the companion’s mass, is only
detectable given present-day instrumentation over a certain stellar mass range which can be close to, if not above, the maximum mass implied
by the systematics term for typical targets and observational set-ups. Thus, even though correlated systematics may not affect the yield of
open cluster transit surveys significantly in terms of transit detection alone (because transits usually remain detectable around stars close to
the peak of the mass function), it has a very serious impact on the yield in terms of transits whose planetary nature can be confirmed and
where the companion mass can be measured. While the specific colour–magnitude relation followed by the members of a given cluster may
enable one to exclude many of the astrophysical false positives which affect all transit surveys without actually detecting the RV modulation
of the primary, the scientific impact of any detection of a transiting planet will be significantly lowered if its mass cannot be measured.

To illustrate a possible application of this modified formalism, it was applied to a selection of well-studied Galactic open clusters, which
were used by PG05b to show that transits of hot Neptunes, and even hot Earths, should be detectable from the ground in nearby young open
clusters. While correlated noise alone has little effect on the detectability of hot Jupiters in these clusters, we find that RV follow-up severely
limits the minimum mass around which their masses can be measured, which makes the confirmation of even Jupiter-mass planets in the
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more distant clusters difficult. Additionally, correlated systematics at the level of 1.5 mmag affecting all stars in a 20-night survey imply that
transits of hot Neptunes are only detectable around stars with masses below 0.5 M
. For such low stellar masses, the planetary RV signal will
only be measurable in very nearby clusters (<100 pc) with present-day facilities. If hot Neptunes are abundant around M-stars, some could be
detected by the combination of small-aperture, wide-field surveys such as SuperWASP and state-of-the-art RV instruments such as HARPS.

The same level of systematics limits the detection of transits of hot Earths to stars with masses below 0.13 M
, irrespective of the cluster
properties or observational set-up. It is thus vital to achieve lower systematics (e.g. by going to space with CoRoT and Kepler) to detect
transits of terrestrial planets, and particularly to detect them around stars bright enough that it may be possible to measure their RV signal
with future instrumentation.

A general trend that emerges from this work is that the combination of correlated noise and RV follow-up requirements severely limits
the choice of suitable target clusters, and effectively imposes a rather stringent distance limit. Additionally, we note that, for a given cluster,
the optimal observational set-up differs depending on the type of planet considered.
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