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ABSTRACT
A number of space missions dedicated to the search for exoplanets via the transit method, such
as COROT , Eddington and Kepler, are planned for launch over the next few years. They will
need to address problems associated with the automated and efficient detection of planetary
transits in light curves affected by a variety of noise sources, including stellar variability. To
maximize the scientific return of these missions, it is important to develop and test appropriate
algorithms in advance of their launch dates.

Starting from a general-purpose maximum-likelihood approach we discuss the links between
a variety of period- and transit-finding methods. The natural endpoint of this hierarchy of
methods is shown to be a fast, robust and statistically efficient least-squares algorithm based
on box-shaped transits.

This approach is predicated on the assumption of periodic transits hidden in random noise,
usually assumed to be superposed on a flat continuum with regular continuous sampling.
We next show how to generalize the transit-finding method to the more realistic scenario
where complex stellar (micro) variability, irregular sampling and long gaps in the data are all
present.

Tests of this methodology on simulated Eddington light curves, including realistic stellar
microvariability, irregular sampling and gaps in the data record, are used to quantify the
performance. Visually, these systematic effects can completely overwhelm the underlying
signal of interest. However, in the case where transit durations are short compared to the
dominant time-scales for stellar variability and data record segments, it is possible to decouple
the transit signal from the remainder.

We conclude that even with realistic contamination from stellar variability, irregular sam-
pling, and gaps in the data record, it is still possible to detect transiting planets with an efficiency
close to the idealized theoretical bound. In particular, space missions have the potential to ap-
proach the regime of detecting Earth-like planets around G2V-type stars.
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1 I N T RO D U C T I O N

The discovery of the first exoplanet orbiting a Sun-like star was
announced almost a decade ago by Mayor & Queloz (1995). Since
then extraordinary progress has been made, and the number of plan-
ets discovered to date is well beyond the hundred mark.1 As well
as probing age-old questions such as the existence of life beyond
the Earth, these discoveries are fundamental to understanding how
planets and planetary systems form, and whether ours is a typical
one. The gaseous giant planets discovered so far have prompted a

�E-mail: suz@ast.cam.ac.uk (SA); mike@ast.cam.ac.uk (MI)
1 see http://exoplanets.org or http://www.obspm.fr/encycl/encycl.html.

re-thinking of planet-formation theories due to their close-in and/or
eccentric orbits.

Among the various methods available to search for exoplanets,
the transit method presents a number of advantages. The most im-
mediate are that it allows direct determination of the planet’s radius
relative to that of its parent star, the orbital inclination and, provided
more than one transit is observed, the orbital period. Combined with
radial velocity observations, a measurement of the planet mass free
of the sin i degeneracy can be obtained. The transit method also
allows the simultaneous monitoring of many thousands of target
stars. This multiplexing capability is a necessity, due to the strin-
gent requirement on the alignment of the orbit with the line of sight
for transits to occur. The first planet candidates tentatively detected
via the transit method have been announced over the last year or so
(Udalski et al. 2002a,b; Dreizler et al. 2003; Mallén-Ornelas et al.
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2003; Street et al. 2003), and one has received tentative radial veloc-
ity confirmation (Konacki et al. 2003). The plethora of ground-based
searches currently underway (see Horne 2002, for a review) is ex-
pected to yield hundreds of candidate transiting giant exoplanets in
the next few years.

However, terrestrial planets, capable of harbouring liquid water
on their surface, are beyond the reach of the methods used so far.
Detecting them is the goal of a number of planned space missions,
such as the Franco-European satellite COROT (Baglin & the COROT
Team 2003), NASA’s Kepler (Borucki et al. 2003) and ESA’s Ed-
dington2 (Favata 2003). These should push the numbers of known
exoplanets into the thousands.

The detection of a weak, short, periodic transit signal in noisy
light curves is a challenging task. The large number of light curves
collected make the automation and optimization of the process a
necessity. This requirement is even stronger in the context of space
missions, which will collect even larger amounts of data and where
telemetry limitations will require as much of the processing to be
done on board as possible. A number of transit-detection algorithms
have been implemented in the literature (Doyle et al. 2000; Defaÿ,
Deleuil & Barge 2001; Aigrain & Favata 2002; Jenkins, Caldwell &
Borucki 2002; Kovács, Zucker & Mazeh 2002; Udalski et al. 2002a;
Street et al. 2003) and there has been some effort to compare their
respective performances in a controlled fashion (Tingley 2003a), but
there is currently no widespread agreement on the optimal method
to use.

In a previous paper (Aigrain & Favata 2002, hereafter Paper I),
a dedicated Bayesian transit-search algorithm was derived, based
on the more general period-finding method of Gregory & Loredo
(Gregory & Loredo 1992; Gregory 1999 hereafter GL92 and G99,
respectively). Here we develop this algorithm further and attempt
to reconcile the apparent diversity of the extant transit algorithms.
Starting from the original Gregory & Loredo prescription, which
is based on a maximum-likelihood (ML) estimation for a periodic
step-function model of unspecified shape, appropriate sequential
simplifications can be made. We demonstrate that the levels of the
step-function bins – which define the shape of the detected event
– are not free parameters, their optimal values being fully defined
by the data. The use of Bayesian priors can be dropped, given the
lack of information currently available on the appropriate form for
these priors. Finally, for detection purposes, the model can be sim-
plified to an unequal mark-space ratio square wave with only one
out-of-transit and one in-transit value. The algorithm itself and its
implementation are presented in Section 2. The performance has
proved better than that of the previous version, and the computa-
tional requirements have been significantly reduced. Pursuing this
simplification has also highlighted the similarities between the pre-
viously published transit-detection methods.

However, ML-based algorithms are only optimized for data con-
taining simple transits embedded in random noise (usually well ap-
proximated by a Gaussian distribution). Real transit-search light
curves will contain intrinsic stellar variability of various amplitudes
and shapes. They will also suffer from irregular sampling, with fre-
quent large gaps in the coverage. Combined, these effects can pose
a major threat to our ability to detect planets. This problem is il-
lustrated, for the case of ground-based data, by recent data from
the University of New South Wales planet-search project using the
Automated Patrol Telescope at Siding Springs observatory: in five
nights of observations of the open cluster NGC 6633, nearly all of

2 COROT and Eddington also include asteroseismology programmes.

the 1000 brightest stars were found to be variable at the millimag
level (Hidas et al. 2004). With the even higher precision possible
with upcoming space missions (∼0.1 mmag), this problem will be-
come even more acute due to the sensitivity to additional stellar
activity-induced variability. Worries that this could seriously impair
the detection of terrestrial planets have led to the development of
variability filters (Jenkins 2002; Carpano, Aigrain & Favata 2003),
but these are applicable only to data with regular sampling and no
gaps. In Section 3, we introduce more generic filters applicable to
irregularly sampled data, or data with gaps (as expected for space
missions, due for example to telemetry drop-outs). Performance es-
timation results are discussed in Section 4, and their implications in
Section 5. Finally, Appendix A contains details of how the simulated
Eddington light curves used throughout the paper were generated.

2 M A X I M U M - L I K E L I H O O D - BA S E D
A L G O R I T H M S

2.1 Maximum-likelihood approach in the Gaussian noise case

Transit searches are generally performed by comparing light curves
to a family of models with a common set of parameters, differing
from each other according to the different values used for these
parameters. The best set of parameters is identified by finding the
model most likely to have given rise to the observed data, i.e. the
model with the highest likelihood L.

If the noise in each data point di is assumed to be Gaussian (an
assumption also valid for Poisson noise in the limit of large num-
bers of photons), the likelihood can be written as the product of
independent Gaussian probability distribution functions:

L =
N∏

i=1

{
1√

2πσ 2
i

exp

[
− (di − ri )2

2σ 2
i

]}
(1)

where di is the data value at time ti and ri is the corresponding model
value, N is the total number of data points and σ i the error associated
with di. Equation (1) can be rewritten as

L =
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where

χ 2 =
N∑

i=1

[
(di − ri )2

σ 2
i

]
, (3)

so that likelihood maximization, in the case of Gaussian noise, is
equivalent to χ 2 minimization, since the noise properties σ i are
assumed to be known, i.e. fixed.

2.2 The Gregory–Loredo method

The generic method developed by Gregory & Loredo (GL92, G99)
to detect periodic modulations in X-ray data was used as the start-
ing point of the present work. This method is based on a Bayesian
maximum-likelihood approach where the model consists of a peri-
odic step function with period p, and m bins (labelled 1 to j) of equal
duration p/m (which can readily be generalized to unequal-duration
bins if necessary). Each model is characterized by p, m, the epoch
e (which is equal to the time t at the start of the first bin) and the
individual bin levels rj. Such a model is illustrated in Fig. 1. The
repartition of the data points into the m bins is defined by

ji = int {1 + m [(ti + p − e) mod p] /p} (4)
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Figure 1. Schematic representation of the family of step-function models
used in the Gregory–Loredo method.

where ji is the number of the bin into which the ith data point falls
and int(x) is the largest integer less than or equal to x.

For a given m, p and e, the contributions from all possible values
for the individual bin levels rj are analytically integrated over. Indi-
vidual likelihoods are then computed at each point in the (m, p, e)
parameter space. By marginalizing over each parameter in turn, one
obtains a global posterior probability for the entire family of periodic
models. Marginalizing over a parameter θ consists of multiplying
the (multidimensional) likelihood function by the (assumed) prior
probability distribution (Bayesian prior) for θ , then integrating over
all values of θ . This global posterior probability can then be divided
by the equivalent probabilities for a constant and/or aperiodic model
to give an odds ratio, which is greater than 1 if there is significant
evidence for periodicity. If this is the case, a posterior probability
distribution for each parameter θ can be computed by marginalizing
the likelihood function over all the other parameters. The best value
of θ is that which gives rise to the maximum in the 1D posterior
probability distribution for θ . The interested reader is referred to
GL92 and G99 for more details.

We discuss in the next section how this approach can be modified,
without loss of generality, to obviate the need for marginalizing out
the m variables rj, corresponding to the values of each model bin.
This in turn leads to a very simple transit-detection algorithm for the
special case of two discrete levels, of unequal duration, applicable
to most generic transit searches.

2.3 Optimum χ2 calculation

By directly maximizing the likelihood, or in this case minimizing
χ 2, for any generalized step-function model, it is straightforward to
show that whatever the number and relative duration of the bins, the
optimal value for the bin levels rj can be determined directly from
the data given the other model parameters p, m and e. If we refer to
the contribution from bin j to the overall χ2 as χ 2

j , and define J as
the ensemble of indices falling into bin j, we have

χ 2
j =
∑
i∈J

[
(di − r j )2

σ 2
i

]
. (5)

The value r̃ j of the model level rj that minimizes χ 2
j is then simply

given by the standard inverse variance-weighted mean of the data
inside bin j, since by setting ∂χ2

j/∂rj to zero we have

∂χ 2
j

∂r j
= 2
∑
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(
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σ 2
i

)
= 0 (6)

and hence

r̃ j = d j =
[∑
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σ−2
i

]−1∑
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diσ
−2
i . (7)

Substituting into equation (5), χ 2
j now becomes

χ̃2
j =
∑
i∈J

[(
di − d j

)2

σ 2
i

]
(8)

where χ̃2
j denotes the minimized value of χ2

j . The contribution
from each of the m bins can be simplified by expanding equa-
tion (8):
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From equation (7) we have∑
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The overall minimized χ 2 over all bins is thus

χ̃2 =
N∑

i=1

d2
i

σ 2
i

−
m∑

j=1

[
d j

2
∑
i∈J

1

σ 2
i

]
. (13)

The first term in equation (13) is entirely independent of the
model, and hence stays constant, so that only the second term needs
to be calculated for each set of trial parameters.

2.4 Making use of the known characteristics of planetary
transits

The Gregory–Loredo method makes no assumptions about the shape
of the variations, and is fairly computationally intensive. However,
when trying to detect planetary transits, most of the information is
concentrated in a very small portion of the light curve. In a previous
paper (Aigrain & Favata 2002, hereafter Paper I), we adapted the
Gregory–Loredo method to the planetary-transit case by having one
long out-of-transit bin (bin 0) and n short in-transit bins (see Fig. 2,
top panel). The value of n used was typically 4. For a given n, the
parameters defining each candidate model are then p, e, and the
transit duration d. The likelihood computation was carried out as
described in G99.

This algorithm performed well when tested on simulated data,3

but the likelihood calculation was still computationally intensive.
The odds ratio method was not used to identify light curves showing
significant evidence of transits, due to the considerations detailed in
Paper I. Instead, bootstrap simulations containing hundreds of light
curves with different realizations of the same noise distribution,

3 The simulated light curves included some or no transits and photon noise
corresponding to the characteristics of the Eddington mission.
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Figure 2. Schematic representation of the family of models used in Paper I
(top) and in the present paper (bottom).

with and without transits, were used to define optimized detection
thresholds in terms of posterior probability maxima.

A number of improvements have been made since the publication
of Paper I as follows.

(i) Given the current state of exoplanet research, the use of
Bayesian priors is not expected to contribute significantly to the
performance of the algorithm. The information available on period
and duration distributions is relatively scarce for giant planets, and
non-existent for terrestrial planets. The priors used in Paper I were
generic and mostly identical to those used by G99 for X-ray pulsars,
rather than specifically optimized for transit searches.

(ii) Using the χ 2 rather than the likelihood as a detection statis-
tic, and implementing the calculation as outlined in Section 2.3,
significantly reduces the computational requirements of the detec-
tion process.

(iii) The shape of most planetary transits is sufficiently simple
that, for detection purposes (as opposed to detailed parameter esti-
mation), a single in-transit bin, as illustrated in Fig. 2 (bottom panel)
provides enough information. A significant advantage of this sim-
plification is that it makes the method far more robust and capable
of coping with real data, and all its concomitant problems, with
negligible loss in detection efficiency.

(iv) Once a detection is made, a shape-estimation phase with
either a large value of n, or by detailed model fitting of the phase-
folded light curve, can be implemented. As the dependency of transit
shapes as a function of the stellar and planetary parameters is rela-
tively well known, Bayesian priors may have a part to play in this
phase. This is, however, outside the scope of the present paper.

2.5 χ2-minimization with a box-shaped transit

The algorithm used in the present paper evolved from that of Paper I,
taking into consideration the points listed in Section 2.4. The model
therefore consists of one out-of-transit bin and a single level in-
transit bin. (Although this simplification may seem disingenuous, by
suitably pre-processing, or adaptively filtering, the signal to remove
intrinsic stellar variability, this is a valid approximation to transit
detection in practice.) All the data points falling into the out-of-

transit bin form the ensemble O, while those falling into the in-transit
bin form the ensemble I. No Bayesian priors are used. Adapting
equation (13) to this model gives

χ̃ 2 =
N∑

i=1

d2
i

σ 2
i

− dO
2
∑
i∈O

1

σ 2
i

− dI
2
∑
i∈I

1

σ 2
i

. (14)

Provided the transits are shallow and of short duration (i.e. the most
common case), the ensemble O contains the vast majority of the data
points, so that dO ≈ d (where d is the weighted mean of the entire
light curve). Substituting this approximation into equation (14):

χ̃ 2 ≈
N∑

i=1

{
d2

i

σ 2
i

− d
2

σ 2
i

}
− dI

2
∑
i∈I

1

σ 2
i

. (15)

The first two terms in equation (15) are constant. The minimization
of χ 2 is therefore achieved by maximizing the detection statistic Q,
given by

Q = dI
2
∑
i∈I

1

σ 2
i

(16)

which can also be expanded as

Q =
(∑

i∈I

di

σ 2
i

)2(∑
i∈I

1

σ 2
i

)−1

. (17)

If the light curve is robustly ‘mean-corrected’ prior to running the al-
gorithm, such that di is replaced by 
di , dI becomes 
dI , the depth
of the model transit. This results in a further simplification where
the only free parameters are now the phase, period and duration of
the transit, since the depth is determined given the other three. It is
also apparent that Q is simply equal to the square of the in-transit
signal-to-noise ratio. This is easier to see in the case where σ i = σ

for all i (a good approximation to the case for space data). Equation
(17) then becomes

Q =
(∑

i∈I


di

)2 (
nI σ

2
)−1 =

(∑
i∈I


di

nI

)2

nI

σ 2
(18)

where nI is the number of points in I, and
∑

i∈I 
di/nI is the mean
of the in-transit points, i.e. the model transit depth (the weighting
being unnecessary in that case).

Equation (18) is used when the errors are constant, or when no
individual error estimates are available for each data point. In the
latter case, the median absolute deviation (MAD) of the data set is
used to estimate σ , as this is more robust to outliers than a simple
standard error estimate (Hoaglin, Mostellar & Tukey 1983). For a
Gaussian distribution σ rms = 1.48 × MAD and this factor is used
throughout to scale the MAD sigmas. If individual error estimates
are available, equation (17) provides a more precise estimate of Q
at the cost of a slight increase in computation time.

If the noise is Gaussian, a theoretical signal-to-noise threshold
(i.e. Q threshold) can in principle be computed a priori to keep the
false alarm rate below a certain value (Jenkins et al. 2002).

2.6 Comparison with other transit-search techniques

In following through the steps of the previous sections our prime
motives were to modify a general-purpose Bayesian periodicity es-
timation algorithm to make it simpler, faster and more robust. In
so doing we have arrived at a very similar formulation to that de-
veloped by other authors, though the details of the implementa-
tion differ. For example, Kovács et al. (2002) derived and tested a
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box-fitting method (BLS) similar to the present algorithm on simu-
lated ground-based data with white noise, and showed that signifi-
cant detections followed for in-transit signal-to-noise ratios greater
than 6.

Street et al. (2003) used a transit-finding algorithm based on
a matched filter technique. After identifying and removing large-
amplitude variable stars they generated model light curves consist-
ing of a constant out-of-transit level and a single in-transit section.
The models were generated for a series of transit durations and
phases, and a χ2-like measure was then used to select the best model
(indeed their equation 3 is essentially a special case of the method
derived in Section 2.3 for single transits).

Udalski et al. (2002b), who have claimed the first direct detections
of transiting planetary candidates, also implemented a version of the
BLS algorithm and noted that it was much more efficient than their
own algorithm based on ‘a simple cross-correlation with an errorless
transit light curve’ (Udalski et al. 2002a).

In a comparison of several transit-finding algorithms, Tingley
(2003a) found that matched filters and cross-correlation gave the
best results compared with progressively more general methods
ranging from BLS, through Deeg’s method (Doyle et al. 2000)
to Defaÿ’s (Defaÿ et al. 2001) Bayesian approach. The fact that
matched filters and cross-correlation methods give good results is
hardly surprising, and can easily be deduced from the χ 2 minimiza-
tion developed in Section 2.3. Examination of equation (5) shows
that the dominant term is the cross-term

∑
dir j/σ

2
i , which needs

to be maximized. The first term is a constant for a given data set,
while the final model term should have much smaller influence. The
cross-term is exactly a generalized cross-correlation function and
also identical to a matched filter. The more general methods suffer
from the added complexity of the underlying model, which through
the Bayesian view of Occam’s Razor, reduces the tightness of the
posterior probability distribution of the parameter estimation. What
is surprising, however, is that the BLS method did not give at least
as good a result as the matched filter and cross-correlation methods.
We would expect the BLS method to have similar performance to
the matched filter as it is mathematically almost identical.

2.7 Optimized parameter space coverage

The formulation of the detection statistic presented in Section 2.5
is fully defined given only the data set and the start and end times
of each model transit. The model parameters are thus the duration
d, period p and epoch/phase e (defined for our purposes as the time
at the start of the first transit in the data set).

The range of expected transit durations is relatively small – from
a few hours for close-in, rapidly orbiting planets, to almost a day
for the most distant planets transiting more than once within the
time-scale of the planned observations. A simple discrete sampling
prescription can therefore be adopted for the duration without lead-
ing to large numbers of trial values. One option is to choose the step
δd between successive trial durations to be approximately equal to
the average time-step δt between consecutive data points. This en-
sures that models with the same period and epoch and neighbouring
trial durations differ on average by ∼1 data point per transit. How-
ever, if the observation sampling rate is high – a sampling rate of
10 min is envisaged for most targets for Eddington in planet-finding
mode (Favata 2003) – a larger step in duration can be used, provided
it is smaller than the shortest significant feature in the transit, namely
the ingress and egress, which have typical durations of ∼30 min.

The period-sampling prescription is designed to ensure that the
error in the phase (or equivalently epoch) of the last model transit in

the light curve is smaller than a prescribed value. Capping the error
on the period (by using a constant trial period step) is not sufficient,
as the error on the epoch of the nth transit will be n times the error
on the epoch of the first. This would lead to a larger overall error for
shorter periods, where the number of transits in the light curve is
large, thus introducing a bias in the distribution of detection statistic
with period. This bias is not present if one uses a constant step in
trial frequency. Defining the relative frequency ν = T /p, T being
the total light curve duration, the phase of an event occurring at time
t is given by θ = 2πt/p = 2πtν/T , so that for the last transit in
the light curve θ ≈ θ max = 2πν. A fixed step in ν thus leads to a
fixed error in θ max. By trial and error, a value of 0.05 was found to
be suitable for δν.

One caveat in the case of space missions with high sampling
rates lasting several years is that the above prescription can lead
to very large numbers of trial periods. This implies that the overall
algorithm must be extremely efficient. Some steps taken to optimize
the efficiency are described below.

The phase, or epoch step interval, is set to the average sampling
rate of the data since by so doing one can generate the phase in-
formation at no extra computational cost using an efficient search
algorithm, detailed below.

2.8 A weighting scheme to account for non-continuous
sampling

A further complication stemming from irregular sampling and from
the finite duration of each sample is that data points nominally cor-
responding to a time outside a transit may correspond partly to the
out-of transit bin and partly to the in-transit bin. To account for this,
the indices of points falling either side of the transit boundaries are
also stored and included in the calculation of Q, but with a weight
which is <1 and is inversely proportional to the interval between
the time corresponding to the data point and the start/end time of the
transit. This weighting scheme is particularly important for data with
irregular sampling where transits might fall, for example, at the end
of a night of ground-based observations, or even with spaced-based
observations during a gap in the temporal coverage.

2.9 Speeding up the algorithm

By far the most time-consuming operation in computing Q and
finding the set of parameters which maximizes it, is the identification
of the in-transit points, which must be identified for each model d,
p and e. If one is dealing with a large number of light curves sharing
the same observation times, it is more efficient to process many
light curves simultaneously and compute Q(d, p, e) for the entire
block of light curves for each set of parameters, as follows. For
each trial period, the time array is phase-folded. At a given trial
duration, the in-transit points are identified for the first trial epoch,
by stepping through the folded time array one element at a time
until the start time of the transit is reached, and then continuing,
storing the corresponding indices, until the end time of the transit is
reached. Q(d, p, e) is then computed and stored for each light curve.
When moving to the next trial epoch, one steps backward through
the folded time array from the end time of the old transit (which is
stored between successive trial epochs) until the start time of the
new transit is found. One then steps forward through the time array,
storing the indices, until the end time of the new transit is reached.
Q(d, p, e) is then computed and stored, and the epoch incremented,
and so forth.
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This minimizes the overall number of calculations needed. As
the number of in-transit points is the same for all light curves and σ

only needs to be computed once per light curve (in the constant error
case), this leaves only the sum of the in-transit points to be computed
once per set of parameters and per light curve. The optimum number
of light curves to process simultaneously depends on the amount of
memory available.

A further speed increase is obtained by noting the redundancy
within the computation of Q for a range of phase/epoch and pe-
riod trial values. Breaking down the search to a two-stage process
consisting of a single transient event detector (essentially a matched
filter stage) followed by a multiplexed period/phase search, removes
the inner loop summation of data from the main search and gives a
factor of ∼10 improvement in execution time.

Example run-times computed using a laptop equipped with a
1.2 GHz Pentium IV processor with 512 Mb of RAM are as follows.
The light curves consisted of 157 680 floating-point numbers, i.e.
each was ∼630 kB in size. The trial period and duration ranges were
180 to 400 d and 0.5 to 0.7 d, respectively. These ranges are roughly
appropriate to search for transits of planets in the habitable zone
of a Sun-like star, and correspond to a total number of tested (p, d,
e) combinations of ∼5 × 107. After finding the optimal number of
light curves to search simultaneously, the run-time per light curve
was ∼4 s.

Note that close-in planets with periods below the range included
in this simulation are, of course, of interest, so that lower trial peri-
ods (and hence lower trial durations) would also be included when
searching for transits in real data, thereby increasing the run-time.
As the trial period range is increased, the number of trial periods
becomes prohibitively large due to the use of even sampling in fre-
quency space (see Section 2.7): this leads to very small trial-period
steps at the low-period end of the range if the steps are to be kept
reasonable at the high-period end of the range. This can be remedied
by splitting the required range of trial periods and running the al-
gorithm separately for each period interval. The run-time increases
linearly with the number of trial durations.

3 P R E - P RO C E S S I N G I R R E G U L A R LY
S A M P L E D DATA

Intrinsic variability from the planet host star is expected to be the
dominant noise source for space-based planetary transit searches,
and for ground-based searches in the case of active stars. As an ex-
ample, we use throughout the present section a light curve simulated
according to the planned characteristics of the Eddington mission,
containing stellar variability, planetary transits and photon noise.
The procedure used to generate this light curve is described in more
detail in Appendix A. The light curve, shown in Fig. 3, corresponds
to a solar-age G2V star with apparent magnitude V = 13, containing
transits of a 2-R⊕ planet which last ∼13 h and have a period of 1
yr. It has a sampling of 10 min and a duration of 3 yr.

Intrinsic stellar variability can seriously impede the detection of
terrestrial planets by missions such as Eddington and Kepler. How-
ever, it is possible to disentangle the planetary transit signal from
other types of temporal variability if the two have sufficiently dif-
ferent temporal characteristics. To illustrate this we show the power
spectra of the different components contributing to the light curve
mentioned above in Fig. 4. Although the power contained in the
transit signal is small compared to both stellar and photon noise
components (and would be even smaller for the case of an Earth-
size planet), it retains significant power for frequencies higher than
∼1 µHz, where the stellar signal starts to drop off steeply. As long

Figure 3. Simulated Eddington light curve for a V = 13 solar-age G2V star
orbited by a 2-R⊕ planet with a period of 1 yr (see Appendix A for details).
Top panel: entire light curve. Bottom panel: first 30 d, with a transit 1.5 d
after the start. The flux values shown have been normalized to have a mean
of 1.

Figure 4. Upper grey line: power spectrum of the light curve shown in
Fig. 3. Lower grey line: stellar variability only. Lower black line: transits
only (three transits). Upper black line: photon noise. The power spectrum is
dominated by stellar variability at low frequencies and by photon noise at
high frequencies.

as this condition is fulfilled (i.e. if the stellar variability occurs on
sufficiently long time-scales), one should be able to separate and
detect the transits. Furthermore, in the case of multiple transits, the
regular period of the transits also helps constrain the Fourier space
occupancy of the transit signal with respect to the stellar signal.

3.1 Wiener or matched filtering approach

Carpano et al. (2003) demonstrated how use of an optimal filter
can simultaneously pre-whiten and enhance the visibility of transits
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in data dominated by stellar variability. The Fourier-based method
presented there is also closely related to a minimum mean square
error (MMSE) Wiener filter. However, even for space-based mis-
sions uneven sampling of the data will occur. In these real-life
cases, irregularly sampled data implies that standard Fourier meth-
ods are no longer directly applicable and a more general technique is
required.

To gain some insight to the problem consider the general case of
intrinsic stellar variability, with the received signal x(t) is composed
of the three components

x(t) = s(t) + r (t) + n(t) (19)

where s(t) is the intrinsic time-variable stellar light curve, r(t) is
the transiting planet signal, and n(t) denotes the measurement plus
photon noise, which we can take to be random (and Gaussian in the
cases of interest here).4 Each component is statistically independent,
hence the expected power spectrum �(ω) of the received signal is
simply given by

�(ω) = 〈|S(ω)|2〉+ 〈|R(ω)|2〉+ 〈|N (ω)|2〉 (20)

and in the case of random, or white, noise 〈|N (ω)|2〉 is a constant,
hence guaranteeing positivity of the right-hand term. This also high-
lights in a natural way a justification for the somewhat arbitrary
constant in equation (6) in Carpano et al. (2003) and how its value is
related to the expected noise properties (although it would be more
natural to implement it as a lower bound). However, as outlined
below there is a simpler way to implement their technique without
the need for the additional constant.

A standard MMSE Wiener filter attempts to maximize the signal-
to-noise ratio in the component of interest, in this case r(t), by
convolving the data with a filter, h(t), constructed from the ratio of
the cross-spectral energy densities between observation and target,
such that

x ′(t) = h(t) ⊗ x(t) X ′(ω) = H (ω)X (ω) (21)

and (using ∗ to denote complex conjugate)

H (ω) = 〈R(ω)X (ω)∗〉
〈X (ω)X (ω)∗〉 =

〈|R(ω)|2〉〈|X (ω)|2〉 (22)

for a long enough run (a fair sample) of observations. In practice
the only example we have of x(t) is often singular, implying that
the best estimate of the denominator is simply the observed power
spectrum �(ω), subject to the constraint of positivity imposed by
the implicit 〈|N (ω)|2〉 term. Such a filter is illustrated in Fig. 5: the
top panel shows the filter, constructed using the Fourier transform
of the light curve shown in Fig. 3 and a box-shaped reference transit
of duration 0.65 d, and the bottom two panels show the filtered light
curve.

This should be contrasted with the pre-whitened matched detec-
tion filter employed by Carpano et al. (2003), illustrated in Fig. 6
(using the same layout as Fig. 5), and which can be written in the
form

X ′(ω) = H (ω)X (ω) = X (ω)

〈|X (ω)|〉 〈|R(ω)|〉 (23)

and hence is equivalent to reconstructing the data using just the phase
of the input signal Fourier transform modulated by the amplitude

4 Strictly speaking, the first two terms in equation (19) should be multiplica-
tive, but in the limit of low-amplitude variability and shallow transits, an
additive combination is a very good approximation.

Figure 5. Top panel: Wiener filter constructed using the light curve shown
in Fig. 3 and a reference box-shaped transit of duration 0.65 d. Middle panel:
filtered light curve. Bottom panel: excerpt from the same filtered light curve
as for the middle panel showing the first 30 d, with a transit 1.5 d after the
start.

spectrum from the expected transit shape (see Fig. 7). Viewing the
problem in this way removes the need for the additional constant in
their equation (6) and emphasizes the two-stage nature of the filter-
ing. The pre-whitening suppresses the stellar variability component,
while the matched filter is directly equivalent to the n = 1 ML case
presented in Section 2.

In practice, transit searching can be based directly on the output
of the filtering, or pre-processing can be used to decouple the stel-
lar variation estimation from the transit-search phase, which then
proceeds using the methods outlined in Section 2, since the prob-
lem has been reduced to the simpler one of transit detection in
random noise. (In either case, detailed investigation of the transit
depth and shape involves phase folding, unfiltered data, and local
modelling.)

Either of these pre-processing filters works well in the case of
regularly sampled data with no gaps and with a reasonable separation
between the signatures of the Fourier components of the transits and
the stellar variability. In Figs 5, 6 and 7, the transits are distinctly
visible in the filtered light curve. The results in terms of transit-
detection performance using either method are very similar. For
simplicity, the matched filter approach, rather than the Wiener filter,
is used in the remainder of this paper.

However, real data, even space-based, suffer from irregular sam-
pling and the presence of significant gaps. Fourier domain meth-
ods cannot be directly applied to irregularly sampled data, but it is
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Figure 6. Top panel: matched filter constructed using the light curve shown
in Fig. 3 and a reference box-shaped transit of duration 0.65 d. Middle panel:
filtered light curve. Bottom panel: excerpt from the same filtered light curve
as for the middle panel showing the first 30 d, with a transit 1.5 d after the
start.

possible to treat regularly sampled data with gaps as a series of n
independent time series, and to filter them separately. To test this,
four arbitrarily chosen sections were removed from the light curve
shown in Fig. 3 (see Fig. 8). The matched filter was then applied
to the five unbroken intervals separately, and the results are shown
in Fig. 9. Though the filtering is effective on relatively long sec-
tions of data (bottom panel) it is not successful for short intervals
(middle panel), even if they are significantly longer than the transit
duration. This is because the power spectrum of the stellar noise is
estimated from the data in order to construct the filter. For this to
be successful, the data segment needs to be at least twice as long
as the longest significant time-scale in the star’s variability, which
is either the rotation period or the long end of the starspot lifetime
distribution (Aigrain, Favata & Gilmore 2004). In the case of the
G2V star used in the simulations, the minimum data segment length
for which the filtering was successful was ∼60 d (last data seg-
ment in Fig. 9), consistent with a rotation period of ∼30 d for such
a star.

It is therefore necessary to find other means of coping with
this additional complexity. We have investigated two alternative
approaches: one based on a least-squares generalization of the
Fourier filtering approach; the other based on a general-purpose
iterative clipped non-linear filter. In both cases we use the pre-
processing to attempt to remove the stellar signature, as much as pos-
sible, prior to invoking the transit-detection methods developed in
Section 2.

Figure 7. As Fig. 6, but the filtered light curve was obtained by modulating
the phase of the Fourier transform of the data by the amplitude spectrum of
the reference transit signal. The filter was omitted as it is effectively identical
to that shown in Fig. 6. Comparing, visually, the amplitude, shape and time-
scale of the variations in the filtered data with the bottom two panels of Fig. 6
confirms that this gives very similar results to the matched filter approach.

Figure 8. Simulated light curve with data gaps. Four arbitrarily chosen
sections were removed from the light curve shown in Fig. 3. Note that for
this test the gaps were chosen to avoid the transit regions for comparison
purposes.

3.2 Least-squares filtering

For a long run of regularly sampled data, a discrete Fourier trans-
form asymptotically approaches a least-squares fit of individual sine
and cosine components (see, e.g. Bretthorst 1988). This naturally
suggests an extension of the approach described in Section 3.1 to
the case of irregularly sampled data. An analogous situation occurs
in the generalization of the periodogram method to Fourier estima-
tion of periodicity; using generic least-squares sine-curve fitting is
a more flexible alternative (Brault & White 1971). This allows the
case of gaps in the data, or more generally irregular sampling, to be
dealt with in a consistent and simple manner.

The procedure is basically identical to that employed for the
Wiener filter described in the previous section, but the calculation
of the Fourier transform, or power spectrum, of the received signal
is replaced by an orthogonal decomposition of this signal into sine
components whose amplitude, phase and zero-point are fitted by
least squares. Each of the components has the form

ψk(t) = ak sin (2πkt/T + φk) (24)

where T is the time range spanned by the data. The number of com-
ponents to fit can be chosen such than the maximum frequency fitted
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Figure 9. Results of applying the matched filter independently to the five
unbroken intervals of the light curve shown in Fig. 8. Top panel: entire
filtered light curve. Middle panel: first 30 d. Bottom panel: another 30-d
section centred on the second transit (at 366.5 d). See text for an explanation.

is equal to some fraction of the Nyquist frequency, but for this one
must define an equivalent sampling time δt. In the case of regular
sampling with gaps, δt is simply the time sampling outside the gaps.
In the case of irregularly sampled data the definition of δt is more
open ended. However, provided that the sampling is close to reg-
ular, a good approximation will be the average time-step between
consecutive data points – keeping in mind that any significant gaps
should be excluded from the calculation of this average. The po-
tentially highest frequency component should then have frequency
≈1/(2δt), although in practice a much lower frequency cut-off for
the components is all that is required.

Note that the first (zero-frequency) component is effectively the
mean data value 〈x(t)〉 (which can be pre-estimated and removed in a
robust way, for example, by taking a clipped median). The presence
of gaps in the data provides us with a natural way of obtaining several
independent estimates of 〈X ls(w)〉 by measuring it separately in each
interval between gaps, or alternatively provides a natural boundary
for doing independent light curve decompositions.

Fig. 10 illustrates this least-squares fitting method, as applied to
the light curve shown in Fig. 3. The top panel shows the ‘power
spectrum’, i.e. the coefficients ak versus frequency, while the bot-
tom two panels show the light curve reconstructed by summing the
fitted sine curves. Note that high-frequency variations are not re-
constructed as only the first 2000 sine components were fitted (well
below the Nyquist limit, but amply sufficient for the purposes of
following the long time-scale stellar variability).

Figure 10. Top panel: ‘Power spectrum’ (i.e. coefficients ak versus fre-
quency) obtained by the least-squares fitting method for the light curve
shown in Fig. 3. Middle panel: reconstructed light curve, obtained by sum-
ming over the fitted sine curves up to a frequency of ∼1.8 cycles d−1. Bottom
panel: first 30 d of the reconstructed light curve.

The decomposition of the reference (transit) signal can usually be
well approximated analytically. For example if a simple box-shaped
transit of duration d is adopted as reference signal, the kth coefficient
is given by

rk = sin (πkd/δt)

πkd/δt
. (25)

However, this decomposition can also be performed in the same way
as for the received data, for a reference signal of any given shape.
The sets of coefficients ak and rk then define the filter hk, which is
equivalent to the Wiener, or matched filter of the previous section:

hk =
〈|rk |2

〉〈|ak |2
〉 hk = 〈|rk |〉

〈|ak |〉 (26)

where the first expression corresponds to the standard Wiener filter,
and the second to the filter used in Carpano et al. (2003).

Fig. 11 illustrates this filtering method. Using the second expres-
sion in equation (26), a ‘matched filter’ hk (top panel) is constructed
from the coefficients ak and rk (the latter computed according to
equation 25). The filtered light curve, obtained by multiplying the
ak by hk and reversing the ‘transform’, is shown in the middle panel,
with a zoom on the first 30 d in the bottom panel.

Fig. 12 shows the results of the matched filter constructed using
the least-squares fitting method when the light curve contains gaps
(as in Fig. 8). The performance of the filter is generally not affected
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Figure 11. Top panel: equivalent matched filter constructed using the light
curve shown in Fig. 3 and a reference box-shaped transit of duration 0.65 d.
Middle panel: filtered light curve. Bottom panel: filtered light curve, first
30 d, with a transit 1.5 d after the start.

by the gaps, though artefacts near gap boundaries can sometimes be
introduced.

The case of irregular sampling is not illustrated here, for practical
reasons: if the sampling is allowed to vary, say, by ±10 per cent of
the normal sampling time in a random fashion, the effect is not
visible in plots of such long light curves. In any case, we have found
it to have negligible effect on the least-squares filtering.

3.3 Non-linear filtering

If the time-scale of the transits is shorter than the time-scale for
the majority of the dominant stellar variations, iterative non-linear
time-domain filters provide a powerful way of separating out short
time-scale events. A good example of this type of approach can be
based around a standard median filter.

The data is first, if necessary, split into segments, using any sig-
nificant gaps in temporal coverage to define the split points. These
gaps, defined as missing or bad data points, or instances where two
observations are separated in time by more than a certain duration,
can be automatically detected.

Each segment of data is then iteratively filtered using a median fil-
ter of window ∼2–3 times the transit duration, followed by a (small
window) box-car filter to suppress level quantization. The differ-
ence between the filtered signal and the original is used to compute
the (robust) MAD-estimated scatter (sigma) of the residuals. The
original data segments are then k-sigma clipped (with k = 3) and
the filtering repeated, with small gaps and subsequent clipped val-

Figure 12. As Fig. 11, but the input light curve is that shown in Fig. 8, with
four significant data gaps.

ues flagged and ignored during the median filtering operation. The
procedure converges after only a few iterations.

Break points and/or edges are dealt with using the standard tech-
nique of edge reflection to construct temporary data extensions ar-
tificially. This enables filtering to proceed out to the edges of all the
data windows.

The main advantage of using a non-linear filter is that the exact
shape of the transit is irrelevant and the only free parameter is the
typical scale size of the duration of the transit events. The main
drawback is that the temporal information in the segments is essen-
tially ignored. However, providing the sampling within segments is
not grossly irregular this has little impact in practice. This filter is
also relatively fast due to its simplicity: with the same computer as
before, the running time for a transit duration of ∼0.5 d is 4 s per
light curve, about the same as the time required for the Wiener filter.
The least-squares fitting method was significantly slower (requiring
approximately 30 s when 1500 frequencies were fitted).

Fig. 13 illustrates this method as applied to the light curve with
gaps shown in Fig. 8. As with the indirect least-squares filtering,
the high-frequency noise remains, but this does not impede transit
detection. Given the simplicity of this method and its good per-
formance in the presence of data gaps, it appears to be the most
promising, as long as the sampling remains relatively regular (if the
sampling is significantly irregular, the least-squares fitting method,
which takes the time of each observation into account directly, is
likely to perform better).

The results of applying the transit-search algorithm to the filtered
light curve are shown in Fig. 14. The detection is unambiguous (and
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Figure 13. Light curve with data gaps filtered using the non-linear technique
(black curve). The input data was the light curve shown in Fig. 8. The window
of the iterative median filter used was 3 × 0.65 d. The grey curve shows the
same data with the residual noise level after filtering measured and artificial
data with Gaussian distributed noise of the same standard deviation generated
to fill the gaps. This illustrates the fact that, after non-linear filtering, the
light curve (outside the transits) is well approximated by a constant level
plus white noise.

remains so for a 1.5-R⊕ planet with otherwise identical parameters,
though the detection is not successful for a 1-R� planet with only
three transits5).

The step-like appearance and systematic slope of the middle panel
(period determination) is due to a combination of the discrete (and
small) number of potential transits of the phase-estimation stage
which precedes it and the search for a minimum (over phase) at
each trial period. For each trial period the number of independent
attempts to find a maximum in phase/epoch increases as the trial
period increases. Furthermore, the single transit phase has negative-
going excursions clipped out to enhance the detectability of real
transits. This leads to a systematic bias toward higher maxima as a
function of trial period. The steps are at harmonics and subharmonics
of the fundamental period and are due to quantization of the number
of possible transits within each local trial period search.

The overall signal-to-noise ratios of the three combined transits
in the filtered light curves were approximately 26, 12 and 6 for
planets of radius 2.0, 1.5 and 1.0 R⊕, respectively. The fact that the
1.0-R⊕ case was not detected is therefore roughly consistent with
the signal-to-noise ratio limit of 6 stated by Kovács et al. (2002).

4 P E R F O R M A N C E E VA L UAT I O N

In this section, we describe Monte Carlo simulations carried out
to evaluate the performance of the transit-detection algorithm de-
scribed in Section 2.5, combined with the iterative non-linear filter
introduced in Section 3.3.

4.1 Method

The method employed was identical to that described in Section 5.1
of Aigrain & Favata (2002), which was first used in the context of

5 The star is a 4.5 Gyr old G2 dwarf in all cases.

Figure 14. Results of transit search after non-linear filtering. The input of
the transit-search program was the black curve shown in Fig. 13. Top panel:
detection statistic as a function of trial epoch for the preliminary single transit
search (see Section 2.9). The signature of all three transits (e = 1.5, 366.5 and
731.5 d) is clearly visible. Middle panel: multiple transit-detection statistic
as a function of trial period. Bottom panel: multiple transit-detection statistic
as a function of epoch at the optimal period of 365.0 d. The detected epoch
(1.5 d) is correct. The x-axis for the top and bottom panels were shifted by
100 d for clarity.

transit searches by Doyle et al. (2000). The detection statistic (in
this case the signal-to-noise ratio of the best candidate transit) is
computed for N light curves with transits. All light curves have the
same parameters, but different realizations of the noise and differ-
ent epochs randomly drawn from a uniform distribution (the epoch
should not affect the detection process). The process is repeated for
N transitless light curves, which have noise characteristics identi-
cal to those of the light curves with transits. The chosen value of
100 for N is a compromise between accuracy and time constraints,
and suffices to give a reasonable estimate of the performance of the
method.

As the aim was to test the combined filtering and detection pro-
cess, the light curves were subjected to the iterative non-linear filter,
before being forwarded to the transit-detection algorithm. To avoid
prohibitively time-consuming simulations, and thus to allow several
star/planet configurations to be tested, a single transit duration value
was used (corresponding roughly to the full width at half maximum,
or FWHM, of the input transits).

Once the algorithm has been run on all the light curves, the next
step consists in choosing a detection threshold: any light curve for
which the maximum-detection statistic exceeds this threshold will
be considered to contain a candidate transit. If a transitless light
curve gives rise to a statistic above the threshold, this is known as
a false positive: a candidate transit appears to have been detected
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Figure 15. Results of the performance evaluation for five star/planet con-
figurations, as detailed in Table 1. Solid histograms: distributions of the
maxima of signal-to-noise ratio statistics computed by the transit-detection
algorithm after non-linear filtering for 100 light curves containing transits.
Dashed histograms: equivalent distributions for 100 light curves contain-
ing stellar variability and photon noise only. Thick vertical lines: optimal
detection threshold.

Table 1. Light curve characteristics for each panel of Fig. 15.

Panel (a) (b) (c) (d) (e)

Photon noise √ √ √ √ √
Stellar × √ √ √ √

variability
Age (Gyr) 4.5 4.5 4.5 4.5 4.5
Spectral type G2V G2V G2V G2V G2V
Rpl (R⊕) 1.0 1.0 1.5 1.0 1.0
Period (yr) 1.0 1.0 1.0 0.5 1.0

when there is in fact none. Conversely, if the maximum-detection
statistic for a light curve with transits lies below the threshold, the
transit(s) will go undetected: a false negative.

The optimal threshold, given a set of light curves which are known
to share the same noise characteristics, can be chosen from the results
of the transit search itself to minimize the false alarms and missed
transits. This is illustrated in a schematic way in fig. 3 of Aigrain &
Favata (2002). Detection statistic histograms ideally should show

a clear separation between real transits and false alarms, allowing
a simple choice of boundary between the respective distributions.
The location of the boundary is chosen as a compromise between
maximizing the detection rate and minimizing the number of false
alarms.

In certain circumstances, it might be more important to minimize
missed detections (for example if the sought-after events are very
rare, particularly if false alarms can easily be weeded out at a later
stage). In other circumstances (for example if it is very difficult to test
the reliability of any candidate events through further observations)
it may be more desirable to minimize false alarms. However, as our
present aim is simply to carry out a simple performance evaluation,
we did not give priority to either kind of error over the other and
just minimized the sum of the two types of error.

4.2 Results

4.2.1 Photon-noise-only case

The aim of this simulation was to compare the performance of the
present algorithm to others, which have mostly been tested on white-
noise-only light curves.

If the present method is to improve on the performance of the
Bayesian approach it is derived from, it should be able to detect
reliably a 1.0-R⊕ planet orbiting a G2V star with photon noise cor-
responding (for the expected photometric performance of Edding-
ton) to V = 13, given three transits in the light curve. In Aigrain &
Favata (2002), simulations showed that such a planet should be eas-
ily detected around a smaller (K5V) but fainter (V = 14) star with
the older algorithm and no filtering. The V = 13, G2 case corre-
sponds to a signal-to-noise ratio (S/N) that is larger by a factor of
1.07, and should therefore be detected easily if the new method is
as efficient as the old.

After a set of simulations was run for such a configuration, the
maximum-detection statistic (S/N) from the noise-only light curves
was S/N=5.79, while the minimum value from the light curves with
transits was S/N = 7.41 (see Fig. 15a and Table 1). Any threshold
in between would therefore allow the detection of all the transits
where present, with no false alarms.

Note that the signal-to-noise ratio limit of 6, quoted by Kovács
et al. (2002) for their BLS method, which is statistically close to ours,
falls as expected in the range of thresholds that would be suitable in
the present case.

4.2.2 Photon noise and stellar variability

(i) 1.0-R⊕⊕ planet orbiting a G2V star. This configuration is
identical to that in Section 4.2.1, but with stellar variability added.
It is also similar to the case illustrated in Figs 3–14, but with a smaller
planet. The results are shown in Fig. 15(b). The distributions of the
detection statistics from the light curves with and without transits
overlap almost entirely, i.e. the performance is poor. The threshold
that minimizes the sum of false alarms and missed detection leads
to 56 of the first and 26 of the second.

Assuming that the sampling rate, light curve duration, and stellar
apparent magnitude are fixed, there are three factors which should
lead to better performance: a larger planet, a shorter orbital period
(i.e. more transits) or a smaller star. Each of these options in turn is
investigated below.

(ii) 1.5-R⊕⊕ planet orbiting a G2V star. The histograms are rela-
tively well separated (see Fig. 15c), with only a small overlap, so that
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the optimal threshold of S/N = 7.85 leads to one missed detection
and no false alarms.

It is interesting to note the similarity between the results of this
simulation and the requirements used for the design of the Kepler
mission, which was to detect planets given a signal-to-noise ratio
totalling at least 8 for at least three transits.6

(iii) 1.0-R⊕⊕ planet orbiting a G2V star with six transits. The
aim of this set of simulations was to investigate the effect of increas-
ing the number of transits in the light curve by a factor of two by
reducing the orbital period to 182 d. This is equivalent to increasing
the overall duration of the observations. As expected, this leads to
higher signal-to-noise values and hence better performance, with
only 13 false alarms and 16 missed detections (see Fig. 15d).

(iv) 1.0-R⊕⊕ planet orbiting a K5V star. A K5 star is smaller
than a G2 star, leading to deeper transits, but also more active,
leading to more stellar variability. Recent studies (Aigrain et al.
2004) suggested that the former effect prevailed over the latter, and
that K- or even M-type stars might make better targets for space
missions seeking to detect habitable planets than G stars, but these
were based only on results from a few individual light curves, rather
than Monte Carlo simulations.

The present tests confirm this trend: the separation between the
with- and without-transit distributions is wider (see Fig. 15e) than in
the previous case, though the best-threshold false alarm and missed
detection rates remain high at 13 and 25 per cent, respectively.

Note the higher signal-to-noise values for the transitless light
curves compared to the G2 case, which suggests the presence of
more residual stellar variability after filtering, as would be expected.

5 D I S C U S S I O N

Starting from a general-purpose maximum-likelihood approach we
have demonstrated the links between a variety of period- and
transit-finding methods and have shown that matched filters, cross-
correlation, least-squares fitting and maximum-likelihood methods
are all facets of the same underlying principle. In the simple approxi-
mation of rectangular-shaped transits embedded on a flat continuum
and in white noise, all of these approaches can be tuned to give sim-
ilar detection results.

The transit-detection algorithm presented here provides a unified
approach linking all these methods. Computational efficiency is of
particular importance in the context of large, long-duration, high-
sampling missions such as Eddington and Kepler, and the present
method would allow a search for transits by habitable planets to be
performed on 20 000 3-yr long light curves with 10-min sampling
in less than a day. Including the time required to apply the non-
linear filter, which for the laptop used takes ∼4 s per light curve
per filter duration, this would increase to ∼3 d (using three different
filter durations). This is achieved at no cost in efficiency: in white-
noise-only, the algorithm is capable of detecting transits down to
approximately the same signal-to-noise ratio limit as that quoted by
Kovács et al. (2002) for their BLS method, which has been the most
successful method to date in terms of practical results, being used
by the OGLE team to discover most of their candidate transits, (see
Udalski et al. 2002b, 2003).

This approach is predicated on the assumption of periodic tran-
sits hidden in random noise, usually assumed to be superposed
on a flat continuum with regular continuous sampling. In the real
world, stellar (micro) variability is expected to be the dominant

6 See http://www.kepler.arc.nasa.gov/sizes.html

signal component. We have then shown how to generalize the
transit-finding method to the more realistic scenario where complex
stellar variability, irregular sampling and long gaps in the data, are
all present.

The two filtering methods developed to deal with this case share
some advantages – both can be applied to data with gaps – but they
also have different properties. The least-squares fitting method is
capable of making use of the time information in data with irreg-
ular sampling. It also allows a theoretically optimal filter (i.e. the
Wiener or matched filter) to be combined with a pre-whitening filter,
although from the point of view of detection, the matched filter is the
main active component of any maximum-likelihood-based detection
algorithm. As a by-product of the filtering, the stellar signal can also
be reconstructed. However, this is computationally intensive, par-
ticularly if one wishes to fit higher frequencies. Its performance also
depends quite critically on concordance between the duration of the
reference transit and that of any true transit.

On the other hand, iterative non-linear filtering is simple to im-
plement and fast, but ignores any local time information (except for
the long gaps which are detected automatically). This means that its
performance is likely to degrade if the sampling is seriously irreg-
ular. However, it is the most efficient method in cases such as those
investigated here. By removing any signal on time-scales longer
than two–three times the estimated transit duration, it is likely to be
less affected by the value chosen for that duration. Although more
work is needed to establish quantitatively the relative merits of the
two approaches, it seems more efficient, given the results so far, to
use the iterative non-linear filtering method prior to a general tran-
sit search. The least-squares fitting method could be employed in
the more difficult (e.g. very irregular sampling) or borderline (as in
Section 4.2.2) cases, where the additional information used about
the transit shape may lead to better performance.

Whatever the method used, there is a fundamental limit to what
can be achieved. Stellar variability can only be filtered out if an or-
thogonal decomposition of the transit and stellar signal is possible,
e.g. if the two signatures in the frequency domain do not overlap by
too much. Therefore, very rapidly rotating stars where the rotation
period is close to the transit duration, or stars showing much more
power than the Sun on time-scales of minutes to hours (e.g. higher
meso- or super-granulation) will be problematic targets. Even in
the hypothetical situation where all stellar noise is removed, the re-
maining white noise will also place a limit on the performance of
the transit-detection algorithm, and hence on the apparent magni-
tude of star around which transits of a certain depth can be found.
In white Gaussian noise, any transit yielding a signal-to-noise ra-
tio above a fixed threshold (estimated to be ≈6 in Section 4.2.1)
should be detectable. Considering photon noise alone, for a given
stellar radius, orbital period and transit duration, the smallest de-
tectable planet radius would therefore scale as B−1/4 or exp(m/10)
where B and m are the star’s apparent brightness and magnitude,
respectively.

The natural progression of this work will be further quantifica-
tion of the performances attained, and the identification of the best
method to use for a given situation (i.e. star–planet combination,
instrument characteristics and/or sampling). As in the present pa-
per, this can be done through Monte Carlo simulations, and more
realistic noise profiles can be included in the light curves (e.g. instru-
mental noise). Extensive simulations can be performed for a given
target field by coupling the stellar variability model to a Galactic
population model and any available extinction information on the
field. However, it will only be meaningful to carry out such simula-
tions when the design, target fields and observing strategies of the
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missions in question are finalized and when more information about
stellar microvariability is available.

Our main conclusion if that even with realistic contamination
from stellar variability, irregular sampling, and gaps in the data
record, it is still possible to detect transiting planets with an effi-
ciency close to the idealized theoretical bound. In particular, space
missions are tantalizingly close to being capable of detecting Earth-
like planets around G and K dwarfs.
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A P P E N D I X A : S I M U L AT I O N O F R E A L I S T I C
E D D I N G TO N L I G H T C U RV E S

In this appendix we briefly outline the method used to simulate the
light curves shown in Figs 3 and 8.

A1 Planetary transits

Deeg, Garrido & Claret (2001)’s IDL-based Universal Transit Mod-
eller (UTM) was used to simulate noise-free light curves. UTM
includes a linear limb-darkening law, and limb-darkening coeffi-
cients from Van Hamme (1993) were used. For a given star–planet
configuration, the other input parameters were the ratio of plane-
tary to stellar radius, the planet’s orbital period and distance, and
the sampling time and duration. For the latter, values of 10 min and
3 yr, respectively, were used, as appropriate for Eddington in planet-
finding mode (Favata 2003). The output is in units of relative flux,
normalized to an out-of-transit value of 1.0. These units are used
throughout. Note that no reflected light from the planet is included,
and that all orbits are assumed to be circular. The planet’s orbital
plane is also assumed to be aligned along the line of sight.

For the current paper, we chose to model a 2-R⊕ planet orbiting
a G2V star (R� = 1.03 R�), i.e. a radius ratio of 0.018, leading
to a relative transit depth of 3.24 × 10−4. This is not the smallest
detectable planet around such a star (with the methods presented
here), but it is the smallest for which transits are visible by eye in
both the pre- and post-filtering light curves. The orbital period of
the planet is 1 yr, and its orbital distance 1 au. The epoch of the first
transit is 1.5 d. The power spectrum of this transit-only light curve
is shown as the black line with repeated ‘humps’ in Fig. 4.

A2 Intrinsic stellar variability

The model used to simulate stellar microvariability, which allows
the generation of light curves for stars of various spectral types and
ages, was presented in detail in Aigrain et al. (2004), with the aim of
testing and refining filtering and transit-detection algorithms, in the
context of space-based transit searches such as COROT , Eddington
and Kepler.

The starting point for the model is the Sun’s photometric vari-
ability, which has been studied at ultra-high precision since 1996
January by the VIRGO experiment (Frohlich et al. 1997) onboard
the SOHO observatory. Empirical scaling laws, either published
(Skumanich 1972; Noyes et al. 1984) or derived from published
data sets (Radick, Thompson & Lockwood 1987; Radick et al. 1995,
1998; Henry et al. 2000, for a wide range of stars), are then used
to scale the amplitude and frequency distribution of the Sun’s vari-
ability to other stellar ages and masses.

Light curves can be generated for dwarfs of any spectral type
between F5 and K5, and for all ages later than the Hyades (625 Myr,
Perryman et al. 1998). In the present paper, a 4.5 Gyr old G2V star
was modelled, again with a sampling time of 10 min and duration
of 3 yr. The stellar light curve, also in relative flux units (and whose
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power spectrum is shown as the lower grey line in Fig. 4), is then
multiplied by the planetary light curve described in Section A1.

The IDL source code used to construct these, together with
a number of existing simulated light curves, are available from
http://www.ast.cam.ac.uk/∼suz/simlc.

A3 Photon noise

The Eddington baseline configuration,7 at the time of writing, con-
sists of four co-aligned wide-field telescopes, with a total collecting
area of 0.764 m2. Combined with the optics and CCD performance,
this leads to an expected photon count of, for example, 1.4 × 105 γ

s−1 for a V = 13 star. The photon noise in relative flux units should
thus be well approximated by a Gaussian distribution with a nor-
malized standard deviation of 1.09 × 10−4 for 10 min integrations,
and such a randomly generated photon noise value was added to
each data point in the combined star–planet light curve. The result
is the light curve shown in Fig. 3, while the power spectrum of the
noise component is shown as the approximately constant black line
in Fig. 4.

7 http://astro.estec.esa.nl/Eddington/Tempo/eddiconfig.html

A4 The above with gaps

To investigate the impact of data gaps, the following four sections
of data were removed from the gapless light curve:

(i) indices 4000 to 8999 (i.e. t = 27.8 to 62.5 d);
(ii) indices 55 092 to 65 060 (i.e. t = 382.6 to 451.8 d);
(iii) indices 110 000 to 123 009 (i.e. t = 763.9 to 854.2 d); and
(iv) indices 140 395 to 149 999 (i.e. t = 975.0 to 1041.7 d).

These were chosen arbitrarily, but with the aim of ensuring a
variety of gap and data interval durations, and avoiding the removal
of any transits. In reality, data gaps are of course likely to affect the
number of observed transits, but this is a different issue from that
investigated here, i.e. the development of filters which can remove
the stellar signal in the presence of gaps regardless of the presence
(or lack) of transits. The resulting light curve is shown in Fig. 8.

Note that missions like Eddington are expected to have a very
high duty cycle (>95 per cent – Favata, private communication),
compared to a value of ∼70 per cent for the simulated light curve
used in the present work. Such a low duty cycle is therefore even
more conservative than the expected worst-case scenario.
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