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Abstract. The detection of planetary transits in stellar photometric light-curves is poised to become the main method for finding
substantial numbers of terrestrial planets. The French-European mission COROT (foreseen for launch in 2005) will perform
the first search on a limited number of stars, and larger missions Eddington (from ESA) and Kepler (from NASA) are planned
for launch in 2007. Transit signals from terrestrial planets are small (∆F/F ' 10−4), short (∆t ' 10 hours) dips, which repeat
with periodicity of a few months, in time series lasting up to a few years. The reliable and automated detection of such signals
in large numbers of light curves affected by different sources of noise is a statistical and computational challenge. We present
a novel algorithm based on a Bayesian approach. The algorithm is based on the Gregory-Loredo method originally developed
for the detection of pulsars in X-ray data. In the present paper the algorithm is presented, and its performance on simulated
data sets dominated by photon noise is explored. In an upcoming paper the influence of additional noise sources (such as stellar
activity) will be discussed.
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1. Introduction

The search for rocky, terrestrial planets around other stars
is a key research topic in astrophysics for the next decade.
Following the first exo-planet detection around a sun-like star
(Mayor & Queloz 1995), gaseous giants around other solar-
type stars have been shown to be relatively common (Butler
et al. 2001). The mass function of the current crop of extra-
solar planets grows rapidly toward the lower masses (Butler
et al. 2001), showing that low-mass planets must be common.
However, the radial velocity technique, which has resulted
in the detection of the exo-planets detected so far, is limited
to planetary masses somewhat smaller than Saturn, and cannot
reach the domain of terrestrial planets. This is due to astrophys-
ical effects, such as microturbulence in the star’s atmosphere,
rather than instrumental limitations.

The most promising approach for the detection of
(significant numbers) of terrestrial planets around stars other
than the Sun appears to be the search for planetary transits,
i.e. dips in the light curve of the parent stars caused by the
planet transiting in front of the stellar disk. The flux dip caused
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by the transit is also small, ∆F/F = (Rp/R∗)2, which for the
transit of an Earth-Sun system gives ∆F/F = 10−4. This is well
below the scintillation noise caused by the Earth’s atmosphere
(Favata & the Eddington Science Team 2000, see), so that high-
accuracy space-based photometry will be needed for the detec-
tion of such events. The probability of occurrence of a transit
depends on the inclination of the planetary orbit relative to the
line of sight (which must be close to i = 90 degrees), and is
relatively small (for a set of randomly oriented Sun-Earth sys-
tems p ' 0.5%), so that searches for planetary transits must be
based on observation of large samples of target stars. A typical
transit duration will be of order ∆t ' 10 hours, and the transit
periodicity will be the same as the orbital period of the planet,
typically several months.

A number of space missions wholly or partially dedicated
to the search for planetary transits are either in development or
in the planning stage. The CNES/European satellite COROT is
planned for launch in 2005, while the ESA mission Eddington
and the NASA mission Kepler are planned for launch in 2007.
Given the intrinsically statistical nature of planetary transit
searches, these missions will acquire large number of stellar
light curves, ranging from thousands for COROT to hundreds
of thousands for Eddington and Kepler. Also, some smaller
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searches are being conducted for limited time periods (and con-
centrating on larger planets) using e.g. HST (Gilliland et al.
2000) or ground-based telescopes (e.g. Doyle et al. 2000).

The analysis of data from such searches, and in particu-
lar the detection of transits with a high degree of certainty and
a low false alarm rate, is a challenging task. The transit signal
is weak (∆F/F = 10−4), and concentrated in a small fraction
of the total signal: for a habitable planet orbiting a K5V star
the orbital period will be roughly 4 months, so that for a 1 year
light curve three events will be present. As each transit lasts
≈10 hours, the transit signal is present in only ≈0.3% of the to-
tal light curve. In the Euclidean regime, the number of stars in
a given field increases toward fainter magnitudes by a factor of
≈4 per magnitude. This is the case for the range of magnitudes
and the low Galactic target latitudes of interest for currently
planned missions. Therefore, most of the detected planets will
be in the light curves of the fainter (and thus statistically nois-
ier) stars, impying the need for effective robust data analysis
algorithms able to reliably detect transits “hidden in the noise”.
At the same time, the large number of light curves which will
need to be analyzed, each with a large number of points (of or-
der 10 000 points for a year of data) makes the use of efficient
algorithms necessary, and rules out brute force approaches.

Some ground- (Doyle et al. 2000) and HST-based (Gilliland
et al. 2000) transit searches, which deal with relatively small
numbers of light curves, use a detection approach based on
comparing large numbers of model transits to the light curves
and minimising a χ2 statistic (or a linear statistic in the case
of Doyle). These approaches are computationally very inten-
sive, and thus may be unsuitable for the routine processing of
the large number of light curves which will be produced by up-
coming space missions.

As an alternative, transit detection algorithms based on
Bayesian methods have recently been the subject of some atten-
tion. They have the advantage of combining computational ef-
ficiency with flexibility. While a global statistic can be used for
the detection, information is directly available to reconstruct
the detected signal if wanted, therefore providing a tool to dis-
criminate between planetary transits and other types of periodic
signals (Defaÿ et al. 2001a), as well as directly measuring ad-
ditional planetary characteristics such as the planet’s radius.

In the present paper we present a novel algorithm for the
detection of planetary transits based on the method devel-
oped by Gregory & Loredo (1992) (hereafter referred to as
GL method) for the search of pulsed emission from pulsars in
X-ray data. While the algorithm was developed to be “general
purpose”, we have tuned it with the parameters of the upcom-
ing Eddington planet finding mission in mind. The present pa-
per discusses the characteristics of the algorithm on the basis
of extensive simulations for the case in which the light curve
is dominated by photon noise. Its performance in the case in
which stellar activity is the dominating noise source will be the
subject of a future paper.

Bayesian algorithms for the detection of planetary transits
are also being developed in the context of the COROT mission.
In particular, an approach based on expansion of the light curve
into a truncated Fourier series is being investigated (Defaÿ et al.
2001b). Perfoming the detection in the Fourier domain can

make the algorithm computationally sensitive to data gaps and
sampling rates. Here we explore a more robust direct space
approach.

The GL (Gregory & Loredo 1992) method, was initially
developed for the detection of X-ray pulsars (where Poisson
statistics dominate) and later extended to the Gaussian noise
case (Gregory 1999). At the flux levels of interest for the tran-
sit searches for Eddington, the photon shot noise per detection
element (which is Poissonian) can be very well represented by
Gaussian noise (see Sect. 2.1). The original formulation of the
GL algorithm is well-suited to the detection of periodic signals
of unknown shape. However, in the planetary transit problem
we have strong prior information about the transit shape. In this
paper we modify the GL algorithm to perform more optimally
for planetary transit detection. We do this by allowing one of
the bins to have a variable width, to represent the out of transit
constant signal level. This formulation also permits the phase
of the transits to be identified, a task the original GL method is
not suited for (see Sect. 3.1). The fitted parameters are the pe-
riod, duration and phase of the transit. The shape of the transit
can then be reconstructed from the phase-folded light curve.

The simulated light curves are described in Sect. 2. The
algorithm is outlined in Sect. 3 and compared with the origi-
nal GL algorithm in Sect. 4. Section 5 describes the evaluation
of the algorithm’s performance by determining the number of
false alarms and missed detections in a large sample of sim-
ulated light curves with and without transits. Conclusions and
options for future work are presented in Sect. 7.

2. The light curves

2.1. Transits

Given the presence of limb darkening in stellar photospheres,
planetary transits are not perfectly “flat bottomed” (nor are
they, strictly speaking, truly grey). To simulate transits in a real-
istic way, the Universal Transit Modeler (UTM) software writ-
ten by H. J. Deeg (Deeg 1999) was used. Limb darkening co-
efficients were taken from Van Hamme (1993). Two types of
transits were simulated, one representing a Jupiter-type planet
in a short orbit around a Sun-like star and another representing
a Earth-like planet in an habitable orbit around a K5V star.

The input characteristics of the system for the Jovian transit
were:

– Time step tunit = 15 min.
– Radius of star R∗ = R�.
– Luminosity of star L∗ = L�.
– Radius of planet Rp = RX. The ratio of the duration of

the ingress/egress, to that of the “flat bottom” of the transit
(affected only by limb darkening) is roughly 2Rp/(R?−Rp),
in this case '0.22.

– Period of transit P = 2880 × tunit (1 month). This is at the
short end of the range of periods of interest for Eddington,
but extrapolation to longer periods is to some extent possi-
ble (when activity is not included) by acting on the number
of transits in the light curve.

– The distance star-planet, which is used to determine the
transit duration, was varied between d = 15.3 × R�
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(resulting in a transit duration of 15 hours) and d = 45.9 ×
R� (5 hours). (N.B.: for the same period different dis-
tances would correspond to different planetary to stellar
mass ratios).

– The duration of light curve was varied between D = 3 × P
and D = 5 × P.

– The phase of the transit was randomly varied in the different
simulations. The posital phase (between 0 and 1) is used in
the course of the present paper.

Light curves were normalized to the photon count level ex-
pected for a star of a given V magnitude (between 7 and
17 typically), based on the throughput expected for the baseline
Eddington mission design (Favata & the Eddington Science
Team 2000), i.e. a collecting area of 0.6 m2 and a total sys-
tem throughput of 70%. With these instrument parameters a
V = 21.5 G2V star will yield '50 detected photons/s. Gaussian
noise was then added with variance defined by the number of
detected photons per pixel.

3. The algorithm

3.1. A Bayesian method

The method employed consists of calculating the likelihood of
the data given a certain number of parameters, varying the pa-
rameters over a given range and identifying the value of each
parameter whose probability is maximized according to Bayes’
theorem:

p(θ|data, I) = p(θ|I) × p(data|θ, I)
p(data|I)

(1)

where:

– θ is a set of parameter values (i.e. a hypothesis).
– data is the dataset.
– I represents information about the ensemble of hypotheses

considered i.e. the type of model used and knowledge about
the other models. For the remainder of this section I will be
implicit in likelihood expressions.

– p(data|I) is a prior for the type of model used.
– p(θ|I) is the combined prior for the parameters.

An excellent description of the theory on which the present al-
gorithm is based is given in Gregory & Loredo (1992). In the
present paper we will give a brief outline of the calculations,
detailing only those aspects in which our work differs from the
discussion of Gregory & Loredo (1992). As a starting point we
constructed an algorithm following exactly the GL prescrip-
tion, and we tested it on sets of 10 simulated light curves con-
taining transits with varying characteristics. This benchmark
was later used to ensure that the modifications in our algorithm
were indeed improvements.

The GL algorithm employs a family of stepwise models
to describe the periodic signal plus background. Each mem-
ber of the family resembles a histogram, with m equal sized
bins per period P. The family members are distinguished by
the value of m which is varied in the range from 2 to some up-
per limit (typically 15 for X-ray pulsar detection work). Such

a model is capable of approximating a light curve of essen-
tially arbitrary shape, which is desirable for detecting periodic
signals of unknown shape, in contrast to the current planetary
transit problem, for which the shape is known a priori. GL also
employs a phase parameter φ. If the time offset o is defined
as the time elapsed between the start of the first bin and the
start of the data, φ = 2π(o/P). The parameters fitted by
the GL method are then P, m, φ (the flux level in each bin of the
model is marginalised over). In the case of planetary transits,
it is not desirable to let the model vary outside the transit. We
therefore have a slightly different type of model. The number
of steps in the step function is n+1. Bin 0 is the “out of transit”
bin and lasts for a large fraction of any given period, and bins 1
to n are “in transit”, each lasting d/n where d is the duration of
the model transit. We have also adopted a different definition
for the time offset, as we have a significant event – the tran-
sit – which we can use to determine the start of a new period.
Defining the time offset o as the time from the start of the data
to the start of the next transit, the phase is then related to the
offset in the same way as before. The parameters required are
now P, φ and d. These parameter definitions are illustrated for
both methods in Fig. 1.

As there is no feature in a step function of unconstrained
shape with equal duration steps which can mark the beginning
of a period in the data, the concept of phase is not well defined.
Any bin in the step function could be the first. Thus we do not
expect the GL method to enable phase determination directly.
Only after reconstruction of the entire light curve could the po-
sition of the transit be pin-pointed relative to the start of the
data. By introducing a transit feature in the model, the phase
is built into the model function and we expect it to be detected
effectively by the modified algorithm.

Models with a lower number n of “in transit” bins will in-
cur a lower Occam penalty factor, as emphasised in Gregory &
Loredo (1992). In general, n should be chosen to be the lowest
value possible. For pure detection purposes, given that transits
are relatively simple events, n = 1 should suffice. For transit
reconstruction purposes, a higher value can be used.

Despite the modifications we made to the GL models, we
followed the method outlined in Gregory (1999) to calculate
the likelihoods.

3.2. Likelihood calculation

The likelihood is initially calculated for a given set of param-
eters P (period), d (duration), o (offset). For convenience the
results were sometimes expressed in terms of posital phase:
ph = φ/2π = o/P.

Due to the different type of model function used, Eq. (6)
in Gregory (1999), which describes the assigmnent of a bin
number j to each data point yi taken at time ti, was replaced by
the following:

j(ti) =


tmod : if 0 < tmod ≤ n

0 : otherwise
(2)
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Fig. 1. Schematic illustration of the type of model and parameters
used. a) GL method with m = 4. b) Modified method with n = 3.

where:

tmod = int
(
(ti + P − o) mod (P)

d/n
+ 1

)
(3)

n is the number of bins per transit, int(x) is the nearest integer
lower than or equal to x and (a) mod (b) is the remainder of a
divided by b.

At time ti, the observed flux count yi can be written as
yi = y(ti) + ei where y(ti) is the value predicted by the model
for time ti and ei is a noise component. The noise is assumed
to have a Gaussian distribution (see Gregory 1999 and refer-
ences therein) with variance σ2

i . In the present case it is appro-
priate and clearer to use the same value ofσ for all data points1.
Strictly speaking the noise in the Eddington case is Poisson
distributed (being photon shot noise), however given the large
number of photons in each time bin used for the transit search
this is indistinguishable from a Gaussian noise distribution. The
likelihood is therefore given by:

p(data|P, d, o) =
N∏

i=1

[
σ−1

√
2π
× exp

[
− (yi − y(ti))2

2σ2

]]
(4)

where N is the total number of data points.
Re-expressed in terms of the n + 1 bins of the model:

p(data|P, d, o) = σ−N(2π)−N/2

×
n∏

j=0

exp

−


nj∑
i=1

yi − r j


2

/2σ2

 (5)

1 In Gregory (1999) a noise parameter b is introduced to account for
incomplete knowledge of σ, and is then marginalised over. We have
not made use of this parameter in this work.

where n j is the number of data points in bin j and r j is the
model value in bin j.

As shown in Gregory (1999) the argument of the exponen-
tial can be reduced to:


nj∑

i=1

yi − r j


2

2σ2
=

W j

(
r j − dWj

)2
+ χ2

Wj

2
· (6)

This allows the marginalization over the r j’s to be performed,
which we do identically to Gregory, to obtain:

p(data|P, d, o) = σ−N(2π)−N/2 (∆r)−(n+1)
(
π
2

)(n+1)/2

× exp

−
n∑

j=0

χ2
Wj
/2



×
n∏

j=0

W1/2
j

[
erfc(y j,min) − erfc(y j,max)

]
(7)

where:

– ∆r = rmax − rmin is the range of values the model step func-
tion is allowed to take;

– the quantities W j, χ2
Wj

, y j,min and y j,max are taken directly
from Eqs. (11) to (16) in Gregory (1999);

– erfc(y) is the complementary error function.

3.3. Odds ratio calculation

In order to use the likelihood to determine a given parameter
all the other parameters must be marginalized, by multiplying
by the corresponding prior and integrating over the parameter’s
range of values. When marginalizing the phase, in order to min-
imise the computing time, we incremented the phase by steps
of πd/P where P is the period and d the duration of the transit,
corresponding to time offset increments of d/2. We used the
same priors for each parameter as Gregory, with a flat prior for
the new parameter d. Although we worked in terms of period
rather than frequency this does not change the calculations.

Odds ratios OP,c were then computed by comparing the
probabilities as defined in Eq. (7) for a range of period values,
integrating out all other parameters, to the probability obtained
with a constant model denoted by the subscript “c”. These odds
ratios can then used to check for evidence of a periodic sig-
nal over the entire frequency range before proceeding to de-
termine individual parameters, as described in Gregory (1999).
The a posteriori probabilities needed for parameter estimation
can be directly evaluated from the odds ratios by multiplying
by the relevant prior and normalizing.

In Gregory & Loredo (1992), a global odds ratio is calcu-
lated for each light curve by marginalising over all the parame-
ters, in order to determine whether there is evidence for a peri-
odic signal. If the global odds ratio is larger than 1, the answer
is yes. In that case, posterior probability distributions for indi-
vidual parameters are used to determine the optimal parameter
values.
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3.4. Weighting factor to compensate for uneven
distribution into the bins

When the number of periods is low such that one bin might
be represented four times while another only three times, or if
there are gaps in the data which may not be evenly distributed
over the bins, Gregory & Loredo (1992) noted that some of
their initial assumptions may fail, leading to the appearance of
an erroneous trend in the posterior probability for the period.

In an appendix to Gregory & Loredo (1992), a solution to
this problem was proposed. A weighting factor s j is applied
to each bin:

s j =

(n jm

N

)−nj · (8)

This factor is derived in the context of Poisson statistics and
does not apply to the present, Gaussian noise case.

Despite the low number of periods in our light curves it was
found that no weighting factor was required in the benchmark
algorithm that reproduced the GL identically. However it is
clear that the problem is more acute in the modified algorithm.
The “out of transit” bin contains many more data points than
the others, and therefore has a much larger effective weight.
A weighting factor is required to compensate for this prob-
lem. The expression given above for s j is only appropriate in
the photon count context in which it was derived, not in the
Gaussian noise case adopted here. A different weighting factor
can be heuristically derived by considering Eq. (6). The contri-
bution of each model level to the likelihood is a χ2 sum. The
variance of a χ2 distribution is given by the number of degrees
of freedom ν. In each bin there are n j data points and nparam

parameters to adjust. As n j � nparam, ν = n j − nparam ' n j.
Weighting each bin by a factor 1/n j is therefore equivalent
to weighting by the variance. In practice this is achieved by

maintaining the expressions for dWj and d2
Wj

, given in Gregory
(1999) in terms of di and σ, but replacing Wj by W j/n j.

This modification was implemented in our algorithm and
found to give more robust results.

3.5. Minimizing the computing time

For a given set of parameters, the calculation of the likelihood
involves summing over each element in each bin. The time re-
quired to compute the likelihood for a given set of P, d, o there-
fore scales linearly with the number of points in the light curve.
It also increases with the number of bins, but this is a slow in-
crease. It does not depend on the individual parameter values.

The overall computing time also depends, of course, on
how tightly the parameter space is sampled. It is necessary
to minimise the number of trial values for each parameter with-
out missing potentially localised likelihood maxima. Because
of the relative sharpness of the peak in the posterior proba-
bility for the period, the period increment needs to be kept
fairly small (typically once or twice the time step between data
points). Attention was therefore concentrated on what incre-
ment was suitable in terms of phase. The results are not sig-
nificantly worsened by increasing the posital phase increment
from 1/P (i.e. shifting the model by 1 sampling time at each

increment) to d/2nP (i.e. shifting the model by half the dura-
tion of an in-transit bin at each increment). Further increase
leads to sharp steps in the posterior probability distribution
(analogous to Shannon’s sampling theorem).

However, the computing time is inversely proportional to
the increment, and the steps in the distribution are effectively
removed by dividing it by the equivalent distribution for an en-
tirely flat light curve with the same duration, sampling and data
gaps as the light curve. We call this dividing function the “win-
dow function”2. We therefore used a phase increment of d/2P
and performed the division before analyzing the results. As the
window function only needs to be calculated once per set of
parameters, this is much faster than using a smaller increment
(see Sect. 5).

Note that due to the use of this window function one should
not strictly speaking use the word “posterior probability” when
talking about the output of the algorithm. In the rest of this pa-
per we will refer to “modified posterior probability” to mean
“posterior probability distribution divided by the window func-
tion”. This also implies that the global odds ratios mentioned
in Sect. 3.3 cannot be used to directly measure the ratio of
the probabilities for a periodic model compared to a constant
model. Instead, we use bootstrap simulations (see Sect. 5.1)
to set a threshold value of the detection statistic above which
a detection is accepted.

4. Comparing the modified algorithm
with the original version

In order to establish a reference point and to have a preliminary
estimate of the modified algorithm’s performance, some tests
were run on both the original and the modified version. Table 1
summarizes the names and meanings of the various parameters
in each method.

4.1. A few qualitative tests

From a typical light curve described below a number of param-
eters were varied one by one and the odds ratios were plotted as
a function of period and as a function of phase. The base light
curve lasted 11 500 × 15 min (119.8 days), contained a transit-
ing giant planet with a period of 30 days, a duration of 15 hours
and a posital phase (i.e. phase in radians divided by 2π) of 0.25.
The magnitude of the parent star was 10.0, which for Eddington
corresponds to a signal to noise ratio of roughly 1400 over
15 min, so that the depth of the transit for the Jupiter-sized
planet is 14 times the noise standard deviation. It was analyzed
with m = 10 in the case of the GL method, and n = 4 in the case
of our method3. In order to sample the transit as well with the
GL method as with the modified method, a much higher value
of m would need to be used, but this would be too computation-
ally expensive. Instead the values of m and n we chosen such

2 This also has the advantage of ironing out any residual effects of
the uneven bin duration not removed by the weighting factor.

3 The possibility of using n = 1 for detection only purposes, then
a larger value of n for transit reconstruction, will be the subject of
investigations in a further paper.
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Fig. 2. Comparison of the Gregory-Loredo (GL) and modified meth-
ods for the case of Jovian planet transiting accross a 10th magni-
tude star (as described in Sect. 4.1), with a period of 2800 × 15 min
a) and a phase of 0.25 b). Solid line: modified algorithm, dashed
line: GL method. Both methods successfully detect the period of the
transits although the peak is sharper with the modified method. The
GL method is unsuccessful in the phase domain (the GL phase results
are folded over the 10 bins). Note that the probabilities are in arbitrary
units.

that the computing times were similar. The results obtained for
this benchmark case are shown in Fig. 2.

Each of the parameters (be they associated with the light
curve or with the model) was varied over a small range of repre-
sentative values. These one-off tests on a small parameter space
confirmed some expected trends:

– for a given light curve duration the detection is less precise
for longer periods as the light curve contains less transits;

– as expected, the unmodified GL method is not well suited
to detecting the phase as there is no way of labeling one
bin the first one. A detection is still possible by folding the
posterior probability for the phase over the number of bins
used. On the other hand the phase is very successfully re-
covered with the modified version, and the precision does
not vary with the phase itself;

– the larger the value of m (GL method), the sharper the
detection. However m = 10 appeared sufficient for our
purposes;

– increasing the value of n (modified method) does not nec-
essarily improve the detection ability since one starts to fit
the noise inside the transits, which is not periodic. When
fitting Gaussian profiles it is standard to require a mini-
mum of 2 bins per FWHM. The shape of the transit is not
Gaussian but it is relatively simple, hence we multiplied by
a safety factor of 2, leading to n = 4 in further calculations.
However when dealing with a particular value of d it is ad-
vantageous to choose n so d is a multiple of it to avoid

Table 1. List of all parameters for the two types of models tested, with
the symbols used to refer to them.

Symbol Method Meaning

P both Period of transits

ph both Posital [0−1] phase of the transits

m GL Number of steps per period

d modified Duration of each transit

n modified Number of steps inside each transit

introducing extra noise by splitting individual data points
across bin boundaries (see footnote 3);

– although the modified method should in principle allow us
to determine the duration of the transit, in practice this is
not successful. The program may be fitting a much wider
region than the transit itself. In the GL method, as there are
only 10 to 20 bins per period, with P of order several hun-
dred sampling times or more, the bin in which the transit
falls is much larger than the transit itself. We have seen that
the loss of information this implies does not prevent the de-
tection of the period by the GL method. The modified algo-
rithm is likely to overestimate the transit duration because
fitting a region larger than the transit does not significantly
reduce the likelihood. For now the duration of the transit
was simply marginalized over; once the presence of a tran-
sit is asserted and its period known, phase folding should al-
low a fairly quick determination of the shape and duration;

– for a given set of parameters, with m = 10 and n = 4, such
that both algorithms have similar computing times, the de-
tection peaks are much sharper with the modified version.

5. Performance of the algorithm

5.1. Method

To evaluate the performance of the algorithm, we used the same
method as Doyle et al. (2000). For each set of trial parame-
ters the algorithm was run first on a set of one hundred simu-
lated light curves containing only Gaussian noise and no tran-
sits. Subsequently it was run on another set of one hundred
simulated light curves containing Jovian-type planetary transits
with the characteristics described in Sect. 2.1, with the same
level but different realizations of the photon noise, and with
uniformly distributed random phases

For each simulation, the modified posterior probabilities
were plotted versus period and the value of the maximum was
noted. This maximum is our “detection statistic”, on the ba-
sis of which we determine whether there is a transit or not.
We then plot a histogram of the detection statistics measured
from running the algorithm over all the light curves with tran-
sits and one histogram for all the light curves with noise only.
In other words, one histogram corresponds to the cases where
the transit hypothesis is correct and one to the cases where the
null hypothesis is correct. Ideally, the two distributions would
be completely separated, with no overlap, and choosing a de-
tection threshold located between the two histograms would
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Fig. 3. Schematic diagram of the method used to set the optimal
threshold and compute the false alarm and missed detection rate. Solid
line: distribution of the detection statistics obtained for lightcurves
with noise + transit. Dashed line: distribution of the detection statistics
obtained for lightcurves with noise only. Vertical solid line: threshold.
The hashed area, to the left of the threshold but under the “transits”
distribution, corresponds to the missed detection rate. The filled area,
to the right of the threshold but under the “noise only” distribution,
corresponds to the false alarm rate.

guarantee a 100% detection rate and a 0% false alarm rate.
In practice, for the cases of real interest, close to the noise level,
the two histograms will show an overlap. A compromise has to
be found by choosing a threshold which minimises a penalty
factor designed to take into account both false alarm and missed
detection rate. This is illustrated in Fig. 3.

Depending on the circumstances, it may be more important
to minimise the false alarm rate than the missed detection rate.
This is the approach followed by Jenkins et al. (2002), on the
basis that detections from space experiments are hard to follow-
up from the ground. An alternative view is any real transit that
is rejected is a loss of valuable scientific information. As long
as the false alarm rate is kept to a manageable level, further
analysis of the light curves will prune out the false events. We
have opted here for an intermediate position, and our penalty
factor is simply the sum of the missed detection rate NMD and
the false alarm rate NFA:

Fpenalty = NFA + NMD. (9)

However, the marginalised detection algorithm yields modi-
fied posterior probabilities as a function of period, and also as
a function of phase. The simultaneous use of the two detec-
tion statistics S per and S ph (plotting 2-D rather than 1-D dis-
tributions) increases the discriminating power of the algorithm,
(as long as the two distributions do not have secondary maxima
in 2-D space). This is shown when comparing the false alarm
and missed detection rates obtained from period and phase in-
formation separately and together. The threshold in the 2-D
case takes the form of a line: S ph = a + b × S per. Here the
optimal values of a and b were found by trial and error, al-
though standard discriminant analysis techniques can be used
to determine them automatically.

Fig. 4. Distributions of the detection statistics for an Earth-sized planet
orbiting a V = 13 star with period P = 932 × 15 min. Solid line:
lightcurves with noise + transit. Dashed line: lightcurves with noise
only. Vertical solid line: threshold value. a) Period. b) Phase. Over
100 realizations there were no false alarms and no missed detections.

5.2. Results

5.2.1. An ideal case

In Defaÿ et al. (2001a), analysis performed on the basis
of 200 bootstrap samples for the COROT observations of
a star with magnitude 13 and an Earth-sized planet showed,
with 6 transits lasting 5 hr each, a probability of true detec-
tion of around 0.3. We performed the simulations described in
Sect. 5.1 for a similar case: Earth-sized planet orbiting a K5V
type star with V = 13 with a period of 932×15 min and a transit
duration of 5 hr. The light curve is sampled with 15 min bins.
The noise is different from the COROT case, as we concentrate
uniquely on the photon noise expected for Eddington.

The results are shown in Fig. 4 for period and phase sepa-
rately. As the distributions for the noise only and transit light
curves are completely separated, each parameter alone is suf-
ficient to determine a threshold ensuring null false alarm and
missed detection rates.

5.2.2. Performance of the algorithm at the noise limit

Given that the key scientific goal of Eddington in the field of
planet-finding is the detection of habitable planets, the perfor-
mance of the algorithm was extensively tested for habitable
planets at (or close to) the noise limit of Eddington. The case of
an Earth-like planet orbiting a K dwarf in a habitable orbit was
used as benchmark. The light curve was simulated for a system
with the following parameters:

– the star is a K5 dwarf (R∗ = 0.8 R�) with a range of apparent
V-band magnitudes V = 14.0, 14.5, 15.0;
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– planet with radius Rp = R⊕ and a period of 4 months, orbit-
ing the star at a distance of 0.64 A.U. (leading to a transit
duration of ≈10.5 hours);

– light curve duration of 16 months, containing 4 transits. The
light curves were sampled every hour.

An example of a light curve is shown in Fig. 5. The resulting
transit event has a depth ∆F/F = 1.4×10−4. For the Eddington
baseline collecting area a star at V = 14 will result in a photon
count of 1.8 × 108 per hour, so that the Poisson noise standard
deviation will be 1.34×104. The S/N of the transit event in each
1 hour bin will thus be 1.88. Following the same reasoning for
the V = 15 case, the S/N of the of transit event in a single one
hour bin is 1.19. As there are 4 transits lasting 10 hours each in
the light curves considered, the overall transit signal has a S/N
of
√

40 × 1.19 ' 7.5.
With the results of the simulations, an example of which

is shown in Fig. 6, the analysis described in Sect. 5.1 was
performed for all three magnitudes, confirming that the com-
bined use of the two statistics improves the results. This is il-
lustrated for the V = 14.5 case in Figs. 7, 8 (for this particu-
lar case 1000 rather than 100 runs were computed to improve
precision).

transit

Fig. 5. An example light curve containing 4 transits of an Earth-
like planet orbiting a K5V star with V = 14.5. a) Full light curve.
b) Portion around a transit. c) The four transits phase-folded.

As illustrated in Fig. 9, a mean error rate4 of <3% can be
achieved up to magnitude 14.5. This magnitude is therefore
taken as the performance limit for the algorithm for an Earth-
sized planet around a K5V-type star. However this analysis is
not complete enough to allow a precise determination of the
limit, as the noise treatment is incomplete (photon noise only
being considered) and one would need more runs per simu-
lations to compute meaningful errors on the false alarm and

4 i.e. the mean of the false alarm and missed detection rates.

Fig. 6. Example of posterior probability distributions arising from the
lightcurve shown in Fig. 5 (arbitrary units). a) Period: real value =
2912 hours, error = −2 hours. b) Phase: real value = 0.885, error =
0.005.

missed detection rates (sets of 1000 runs, as was done for the
limiting V = 14.5 case, should be computed for all cases).

The asymmetric shape of the distributions shown in Figs. 4,
7 and 8 implies that, even though the thresholds are chosen
to minimise false alarms and missed detections equally, the
optimal threshold results in more false alarms than missed
detections. This could easily be avoided, if needed, by replac-
ing Eq. (9) by:

Fpenalty = A × NFA + NMD (10)

where A is a factor greater than 1. Alternatively one could keep
the penalty factor unchanged but set a strict requirement on the
maximum acceptable false alarm rate.

As in any unbiased search for periodicity in a time-series,
the inclusion of a larger range of periods in the search will lead
to a higher chance of finding a spurious (noise-induced) period
signal in the data. The simulations used here to assess the algo-
rithm’s performance are based on a search through a relatively
small range of periods. In practice, lacking any a priori knowl-
edge of the possible periodicity of planetary orbits around the
star being observed, one will have to test a large range of pe-
riods, ranging from few days (the physical limit of the period
of planetary orbits) all the way to the duration of the data set
(searching for individual transit events).

5.2.3. Data gaps

Any realistic data set will suffer from gaps in the data. While
the orbits of both Eddington and Kepler have been chosen
to minimize gaps, 100% availability is not realistic, and gaps
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Fig. 7. Distributions of the detection statistics for an Earth-sized planet
orbiting a V = 14.5 star with period P = 4 months. Solid line:
lightcurves with noise + transit. Dashed line: lightcurves with noise
only. Vertical solid line: threshold value. a) Period: 190 false alarms
and 185 missed detections over 1000 realizations. b) Phase: 27 false
alarms and 14 missed detections over 1000 realizations.

will be present due to e.g. telemetry dropouts, spacecraft mo-
mentum dumping maneuvers, showers of solar protons during
large solar flares, etc. For this reason any realistic algorithm
must be robust against the presence gaps in the data, showing
graceful degradation as a function of the fraction of data miss-
ing from the time series.

We have therefore tested the algorithm discussed here using
simulated light curves with 5%, 10% and 20% data gaps, ran-
domly distributed in the data, i.e. 5% of the points in the time
series are selected randomly with a uniform distribution and re-
moved from the light curve. The gaps will probably not be ran-
domly distributed in reality, but as the typical gap duration is
expected to be of order 1 or 2 hours, simulated random gaps can
already be used to test the algorithm’s robustness. For reasons
of computing time, to avoid having to recalculate the “window
function” at each run, the distribution of the data gaps is the
same for all runs of a simulation. As the gaps are chosen one
by one there are rarely gaps of more than two consecutive time
steps, i.e. 2 hours. Note that e.g. the Eddington mission is de-
signed to produce light curves with a duty cycle ≥90%, so that
the case with 20% data gaps represents a worst case analysis.

The results are shown in Fig. 10. There is visibly very little
degradation up to 20% data gaps. When using S per alone or the
two statistics combined there is no perceptible difference. We
can therefore say this algorithm is robust at least for data gaps
of the type likely to occur due to e.g. telemetry dropouts, which
last only a few hours. One would also expect the algorithm to
perform well in the presence of longer gaps: the effect of gaps
is to render the number of samples per bin uneven, and this is
already the case for this particular method with no gaps at all.

Fig. 8. a) Contour plot and b) 3-D representation of the two-
dimensional distributions of the period and phase detection statis-
tics for an Earth-sized planet orbiting a V = 14.5 star with pe-
riod P = 4 months. Black: lightcurves with noise + transit. Grey:
lightcurves with noise only. Solid line: Optimal threshold line. (S ph =

42.47−1.191×S per), yielding 29 false alarms and 9 missed detections
over 1000 realisations.

5.2.4. Number of transits in the data

The planetary transits detection phase of the Eddington mis-
sion is planned to last 3 years with a single pointing for the
entire duration of that phase. There will therefore be three or
four transits in the light curve for a typical habitable planet.
However, other missions such as COROT are planned with
shorter (5 months) pointings and it is of interest for this type
of mission to study the degradation of the algorithm’s perfor-
mance as the number of transits in the light curve reduces. If the
algorithm performs well with 2 or less transits, in the context
of Eddington it may also allow the detection of “cool Jupiters”,
i.e. Jupiter-sized planets with orbits more similar to those of the
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Fig. 9. Evolution of the algorithm’s performance (in terms of frac-
tional error rates) with magnitude (P = 4 months, V = 14.5, Light
curve duration 16 months). a) Using the period statistic only. b) Using
the phase statistic only c) combining the two statistics dotted line: false
alarm rate. Dashed line: Missed detection rate. Solid line: mean error
rate.

gaseous giants in our solar system. This would be of relevance
to the question of how typical our solar system is.

Sets of 100 runs with the characteristics specified in
Sect. 5.2.2 for a star of magnitude 14.5 were computed for
light curve durations of 4, 8, 12, 16 and 20 months, contain-
ing between 1 and 5 transits. The results are shown in Fig. 11.
The degradation only becomes significant when less than three
transits are present. However, even mono-transits could be de-
tectable for larger planets at that magnitude.

Defaÿ et al. (2001a) compared a matched filter approach
with a Bayesian method based on the decomposition of the
light curve into its Fourier coefficients. Their results suggest
that the performance degradation in the low number of transits
case is faster for the Bayesian method than for the matched fil-
ter. This is because the matched filter makes use of assumptions
about the transit shape. It is also shown that when the Bayesian
method fails to detect a transit, it can still reconstruct it if the
detection is performed using a matched filter. Our algorithm
has not been directly compared to a matched filter. Its very de-
sign is based on the search for a short periodic signal in an oth-
erwise flat lightcurve, which is itself an assumption about the
shape of the signal. The matched filter makes use of more de-
tailed knowledge of the transit shape and is therefore likely to
perform better in the low transit number limit. However our
algorithm with n = 1 may provide already a very good ap-
proximation to the relatively simple shape that is a transit, and
therefore perform nearly as well.

Fig. 10. Evolution of the algorithm’s performance with data gaps (P =
4 months, V = 14.0, Light curve duration 16 months). a) Using the
period statistic only. b) Using the phase statistic only. c) Combining
the two statistics. Dotted line: false alarm rate. Dashed line: missed
detection rate. Solid line: mean error rate.

5.2.5. Differences in the two statistics

The two a posteriori probabilities show a different behavior.
In general the phase statistic is far more discriminatory than
the period statistic. The period statistic’s lesser effectiveness
may be explained in the following way. If the phase is wrong,
even if the period is right, it is likely none of the transits will be
matched. If the phase is right, whatever the period, at least the
first transit will be matched by the model. First we consider
the likelihood distribution a function of phase, normalised over
all periods. For an incorrect phase the contribution from the
correct period is nil as all transits are missed, but for the cor-
rect phase all trial periods produce a non-negligible contribu-
tion (the correct period of course contributing most). The like-
lihood distribution as a function of phase is therefore sharply
peaked. Then we consider the likelihood distribution as a func-
tion of period, normalised over all phases. The contribution
from the correct phase is non-negligible whatever the period.
When the period is correct, the contribution from the correct
phase is washed out by the contributions from all the incorrect
phases. The likelihood distribution as a function of period is
therefore less sharply peaked.

However the combined use of the two parameters is more
successful than the phase statistic alone. The reason for this
is illustrated in Fig. 8: in 2-D space the two distributions are
aligned on a diagonal, such that no single value cutoff is opti-
mal in either direction, compared to the line shown. In an up-
coming paper, the direct use of a combined statistic shall be
investigated. The global odds ratio described in Sect. 3.3 could
be used for such a purpose. We have noted in Sect. 3.5 that the
global odds ratio for a given lightcurve cannot be used as an
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Fig. 11. Evolution of the algorithm’s performance with the number of
transits in the light curve, i.e. the light curve duration (P = 4 months,
V = 14.5). a) Using the period statistic only. b) Using the phase statis-
tic only. c) Combining the two statistics. Dotted line: false alarm rate.
Dashed line: missed detection rate. Solid line: mean error rate.

absolute statitstic in the context of the present method. It can
however be used as relative detection statistic, like S per & S ph,
combined with bootstrap simulations.

6. Discussion

Efficient data processing is one of the challenges for the
upcoming generation of large scale searches for exo-planets
through photometric transits. While radial velocity searches
concentrate on limited number of stars, transit searches will
investigate simultaneously large numbers of stars, and pro-
duce large amounts of data (photometric light curves) for each
of them. A computationally efficient and robust algorithm for
the processing of these data sets is necessary to make tran-
sit searches feasible. It is likely that the photometric time se-
ries which represent the observational product of the tran-
sit searches will be analyzed in different stages, using more
than a single approach. In particular, a first level of processing
(after instrumental effects have been removed) should concen-
trate on singling out high-probability transit candidates, while
efficiently pruning out the large number (more than 90%, even
if all stars have planets, due to the low probability of transit
events) of light curves in which no transits are present. In this
first stage of analysis the ability to efficiently screen real tran-
sits in the data – even at the price of a moderate number of false
alarms – is a key requirement for the algorithm. The candidate
light curves in which a transit is suspected will then later be
subject to a more detailed processing, which can then afford
to be computationally less efficient (given it has to operate on
a much smaller amount of data).

The algorithm we have developed and discussed here is
able to detect transit events at the limit of the photon noise
present in the light curve. It shows a graceful degradation of its
performance as function of different parameters of interest, e.g.
the noise level in the data, as well as the presence of data gaps
and the number of transits actually observed. Its strong sensi-
tivity to the phase of periodic transits supplies significant ad-
ditional information to be then used by further steps of pro-
cessing for e.g. the reconstruction of the transit parameters.
Thus, while little used in astronomy, Bayesian algorithms ap-
pear to be a powerful tool in the processing of transit data.

7. Conclusions and future work

A novel algorithm to detect transits due to extra-solar planets
in stellar light curves has been developed and tested. The al-
gorithm, based on a Bayesian approach, has proved successful
in the tests performed so far, which include the effects of pho-
ton noise and data gaps. Using the photometric accuracy and
throughput expected for the Eddington mission, we are able
to detect an Earth-sized planet orbiting a K5V-type star with
a period of 4 months down to an apparent stellar magnitude of
V ' 14.5. Randomly distributed data gaps lasting up to two
hours each and covering up to 20% of the light curve do not
significantly affect the performance of the algorithm. The min-
imum number of transits in one light curve required for high
confidence detections is three, however the algorithm’s perfor-
mance degrades gracefully for small number of transits, so that
detections are possible for individual transits, albeit at a lower
confidence level. This will allow for the detection of larger
planets in long-period orbits (analogous to the gaseous giants
of our solar system), likely to transit only once in the three year
planet detection phase planned for the Eddington mission.

The most serious additional noise source to perturb plane-
tary transit detections from space, is likely to be intrinsic stellar
micro-variability (mostly activity-induced). At the moment it
is also the least well investigated. The consequences of activity
on the detection efficiency (using simulated light curves based
on the solar light curves recorded by the VIRGO instrument
on board SOHO, which spans all solar activity levels, from so-
lar minimum to solar maximum) will be the subject of a future
paper, in which the feasibility and effectiveness of using color
information, as well as a number of pre-processing techniques
such as whitening, will also be investigated.

The algorithm we have developed and discussed here has
the potential to form part of a powerful, multi-stage approach
to analysing transit lightcurves. A more optimised processing
method will be discussed in a separate paper. It will include
a variability filtering stage, followed by distinct detection and
parameter estimation stages, using a combination of a matched
filter approach and of the present algorithm.

The performance of the algorithm presented here shows
that the search of planetary transits with amplitudes compa-
rable to the intrinsic noise level of the data set is fully feasible,
and thus represents an important element in the development of
the future generation of transit-based planet finding missions.
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