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Abstract

This thesis demonstrates a practical solution to the pnobliestfective observation of time-
varying phenomena using a network of robotic telescopes.bEst way to place a limited number
of observations to cover the dynamic range of frequencipsimed by an observer is addressed. An
observation distribution geometrically spaced in timepisrfd to minimise aliasingffects arising
from sparse sampling, substantially improving signal ck&te quality. Further, such an optimal
distribution may be reordered, as long as the distributicspacings is preserved, with almost no
loss of signal quality. This implies that optimal observsigategies can retain significant flexibil-
ity in the face of scheduling constraints, by providing ségr on-the-fly adaptation. An adaptive
algorithm is presented that implements such an optimal Baghjm an uncertain observing en-
vironment. This is incorporated into an autonomous sofvwagent that responds dynamically
to changing conditions on a robotic telescope network, autrexplicit user control. The agent
was found to perform well under real-world observing candis, demonstrating a substantial im-
provement in data quality for this mode of observing. As aaneple of an observing programme
performed in the classical visitor mode of a non-robotiesebpe, a survey of temporal stellar
variability in the 13 Myr-old cluster h Persei is describdthe inherent problems of such an ob-
serving programme are explored. Nevertheless, a signiffcaction of the cluster members are
found to be variable. Importantly, these variable member@und to lie almost entirely below
the radiative-convective gap, suggesting a possible latlwben the change in energy transport in
the stellar core and the topology of the surface magnetid. fiel
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Chapter 1

Introduction

1.1 The rise of robotic telescopes

A simple definition of a robotic telescope is a telescopedhatmake observations without explicit
human control. It is robotic in the sense that its low-leveth@viour is automatic and computer-
controlled. Such a telescope is typically run under the robraf a scheduler, which provides
high-level control by indicating astronomical targets dfaservation. The scheduler itself may be
highly automated, as in the case of the Liverpool Telesc&teefe et al., 2004), using sophis-
ticated optimisation algorithms to determine the best nfadi®ns to make in real-time. Other
robotic telescopes are scheduled in a simpler manner, arglibject to an external plan provided
at the start of each night by a human astronomer. They aredeved robotic only insofar as
individual observations are carried out automaticallye Pphivately operated commercial Tenagra
Il telescopé is a modern example of such a system.

The field of robotic telescopes has a long and venerablerhisdoound 1965, the Wiscon-
sin Automatic Photoelectric Telescope, an 8-inch reflecboipled to a PDP-8 computer with 4KB
of memory, was capable of making a number of operationatysdéxisions based on external sen-
sor data. Once programed with the list of targets, the tefmsavas capable of running unattended
for several days at a time, shutting down with the dawn oreimgnt weather (McNall et al., 1968;
Code, 1992). At around the same time the 50-inch Kitt Peak ®ei@ontrolled Telescope also
came into operation, managed by a control centre 90km awawdson, Arizona. In this case
scheduling was provided by a (graduate student) operatomaiuld manually set the observation
programme at the beginning of each night, and then perithgigeonitor the performance of the
telescope as the run progressed (Maran, 1967).

The motivations that have driven the development of robaltiserving systems are myr-
iad. The pioneers of the field were motivated by a desire tadwg observing ficiency and
to alleviate the tedium associated with long term monitpgimojects. Even in those early days,
the benefits of real-time data processing were apparenga@okt al. (1975) used a microwave
link to connect an automated 30-inch telescope at a remotmtaio location with the significant
computer resources located 30km away at the main univaraitpus of New Mexico Tech. This

Ihttp://www.tenagraobservatories.com
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1.2. ADVANTAGES OF ROBOTIC TELESCOPES 18

was driven by a need for real-time processing to identifyesnpvae quickly, in order to acquire
follow-up spectra as early in the lightcurve as possibldd@te et al., 1975).

1.2 Advantages of robotic telescopes

1.2.1 Speed

The theme of removing the human from the loop to allow fastereovation response time has
continued into the present day. Modern time domain astrsiphyhas successfully harnessed the
speed advantages of robotic observing, perhaps most stdbesn the study ofy-ray bursts
(GRBs), where very early slews to target have led to sigmfiealvances in our understanding
of these extreme events. For example Vestrand et al. (2088 able to acquire unprecedented
early lightcurve information for GRB041219a by automdticaesponding to an alert broadcast
by the INTEGRAL satellite (Gotz et al., 2004), initiatingetfirst exposure with their ground-based
network RAPTOR within 8 seconds of receiving the message.

1.2.2 Automating the routine

Simple automation works well for telescopes with relagvetatic, long term observing pro-

grammes, such as dedicated survey instruments. One suuh @Garlsberg Meridian Telescope
(Helmer & Morrison, 1985), built in 1952 and initially opeea in Denmark. In 1984 the tele-

scope was moved to La Palma and fully automated. Driverfligiency and cost considerations,
the telescope was upgraded for remote operation in 1998.sEtiip obviated the need for an ob-
server to be constantly present at the telescope, an ursaegas/erhead for such a well-defined
observing process (Evans, 2001).

1.2.3 Remote and extreme environments

If an observing site is very remote then there may be linuitetion network bandwidth and site per-
sonnel which can make a robotic telescope desirable. TheSEAT telescope network comprises
four telescopes strategically sited across the globe irtraliss, Texas, Namibia and Turkey. Al-
though situated close to existing observatories for maariee purposes, the remote nature of the
sites dictates an automated observation strategy withrddtaction taking place at the telescopes
themselves. Image files are stored locally until the disKledfi when it is manually swapped out
(Yost et al., 2006). This approach works particularly wetlam the science goals of the instrument
are focussed enough to naturally give rise to relativelypséntelescope schedules. In the case of
both ROTSE and RAPTOR, alerts from the GCN gamma-ray burstark (Barthelmy et al.,
2000) trigger override observations, enabling thesedeless to pursue their primary science ob-
jectives. For the vast majority of the time when a GRB is natuming, however, these telescopes
perform systematic sky surveys, building temporal mapsefsky for variability analysis, and
looking for interesting or unusual transient phenomenaziWak et al., 2004).

The advantages conferred by making a remote observatopticadre accentuated when
that site is in addition located in an extreme environmenhe RAntarctic plateau is one such
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environment. During the winter months, the ambient tempegadrops below-60°C, low enough
to present significant fliculties for human instrument operation (Ashley et al., 20Qhder these
conditions, a robotic telescope is likely to be cheaper,ametiable and morefgcient than an
equivalent non-robotic counterpart.

1.2.4 High volume observing

The sheer volume of observations that may be acquired byeatke$s robotic observer such
as RAPTOR marks a patrticular niche which has been explodgqubtform novel science. The
Thinking Telescopes project (White et al., 2006), an exjpenef the original RAPTOR design
goals, seeks to leverage the potential wealth of informatigried in the dataset of night-to-night
observations by applying artificial intelligence techréquo identify trends and anomalies in the
data. In this case the project seeks to maximise scientificrreon the instruments by deriving
interesting secondary science from the data.

The SuperWASP project is an example of a wide-field survetyungent that takes advan-
tage of high volume observations. It aims to detect tramgi@ixtra-solar planets by monitoring
the varying fluxes of large numbers of bright stars<{ 13). Horne (2003) estimated that roughly
1000 hot transiting planets with masses of the order of dupibuld be observable at a limiting
magnitude ofV < 13 (corresponding to a search depth of around 400 pc), andvila angle
planet searches could expect to discover 3—10 planetgh. Wide, shallow searches have the
advantage that candidates are excellent targets for highigion radial velocity followup, but the
bright limiting magnitude dictates extremely wide fieldsvidw, with only 2—3 objects expected
per 10 by 10 field (Horne, 2003). The SuperWASP instrument compriselst&§0 mm camera
lenses, each with a& by 7.8° field of view. Observations, including exposure, slew aratioait
times, take around a minute each and generate 8.4 MB of dait@age (Smith et al., 2006). Thus
it was a requirement that the entire observing process geliaautomatic, including the use of a
custom real-time data reduction pipeline to deal with thgenvolume of incoming data.

Unfortunately, after the first observing season the pragjaet no detections with signal-to-
noise> 10. This is believed to be due to the presence of correlatiedl’ ‘poise in the dataset,
which was not considered by Horne (2003). Simulations egid¢hat extending the time series
of the same fields by another season will enable detectiohs tonfirmed, albeit at a lesser rate
than had been originally hoped (Smith et al., 2006).

1.3 The robotic observing paradigm

One interesting consequence of automating a telescopensystthat the observing paradigm is
altered. In a traditional observing run, an astronomerl@cated a block of time on a specific
telescope. He travels to the remote telescope site and mertia@re for a period of some days,
using the instrument to try to acquire the observations heires. If the weather is poor, the
seeing bad, or the observations interrupted by target obrbypity requests (typically overrides
for fast transient phenomena such as supernovae or GRBs}jhbestronomer is unable to use
some fraction of his allotted time, and must make the bestlaftwbservations he was able to
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obtain. There is a finite risk that he will not accrue enougta @ suficient quality to adequately
address his science problem. In this caseffextively leaves empty-handed. Regardless, the total
length of the baseline of his observations may not be lorger the length of the allocated run.

In the robotic observing paradigm, these constraints daged. Time on a network such
as Robonet (Bode et al., 2004) is typically allocated peresten on the basis of scientific merit
as a number of hours of on-sky time, not tied to any particdite. An observer submits an
observation request or sequence of requests over the éntend then simply waits. Whether
or not an observation takes place is at the discretion of dnéralling scheduler, whether this is
implemented by a human or software. This has a number of gopsees, described below.

1.3.1 Charging for time

Time is only debited if it is actually used. If an observattakes place, the time allotment of the
user who requested that observation is debited accordifigig means that as long as the obser-
vations are requested and scheduled before the expiry tewfied by the telescope allocation
committee (TAC), which is typically the end of a semestegntltheobservations are implicitly
guaranteed to take place. The model does not explicitly manage the possibility ohbeystemat-
ically weathered out and thus leaving empty-handed. Amradteve formulation of this principle is
thata user isonly charged for the time they have used. This change in the nature of the observing
risk arises because the telescope scheduler has muchrdtesitsility with regard to placement
of individual observations than in the traditional obsegvscenario. Because multiple users are
scheduled in an interleaved fashion throughout the obsgisg&ason, the risk of failures is spread
across all users. This is particularly important becaush $ailures are generally correlated in
time, for example because of poor weather or instrumenir&ilwhich will render consecutive
blocks of time unusable.

Note that while users gain by the guarantee of equitablegai@rthe service provider car-
ries the cost of service downtime. In the traditional motglthe end of the semester all time will
have been been accounted for, one way or another. Obsexvaiiher took place, or they did not.
In the robotic paradigm, a user with an allocated number affionay make the reasonable as-
sumption that their observations will happen at some painind the semester, and they will have
a fair chance at the observations despite the presence af gétrhaps higher priority scientific
programmes also allocated. Thus the provider must eittgirenthe load on the telescope closely
matches the predicted availability of the service, or mugli€itly disclaim any guarantee that
the observations will actually happen, or must seek to maitag risk between allocated projects
in some more explicit fashion. For exampervice mode observations at the European South-
ern Observatory's (ESO) Paranal facility in Chile, whilet technically robotic, share a number
of similarities with the robotic mode. Around 60% of the ohsdions at the Very Large Tele-
scope (VLT) in service mode are performed by a support astnen at the telescope without the
presence of the principal investigator of the scientificpgmsal (Comeron et al., 2006). The like-
lihood that the observations will be performed is determibg the proposal’s priority ranking,
as defined by the VLT TAC. Observations with priority ‘A" are@ranteed to take place if at all
possible. Priority ‘B’ observations only take place if thés no higher priority observation that is
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applicable, but are considered likely to happen before itk the semester (when the proposal
will be terminated if not completed). Finally, category ‘@presents low priority observations.
These generally have less stringent observational camstrand so may be used to fill gaps in
the observing schedule. By pulling observations from thiesse pools as circumstances dictate,
the schedule may be optimised towards the dual concerngbfduientific priority research and
efficient use of the resource (ESO, 2004).

1.3.2 Non-consecutive observations

Since no observer need be physically present at the telesttaye is no requirement that observa-
tions occur in a single consecutive block of tifeThis allows the somewhat peculiar scenario of
an extended run length without a corresponding increagdeinimber of observations. If the run
is concerned with acquiring signal information from a téyder example to determine the period-
icity of a variable star, then an observer may take advargétds feature of robotic observing to
extend the baseline of the dataset, typically to obtainiteitsto longer periods or to confirm a
periodic modulation through repeated observations. Hewextending a run in this way reduces
the fidelity of the sampling, and it is common for such obseguiuns to enter an undersampled
regime, where the number of observations, if equally spaceatss the duration of the run is less
than the minimum number required for Nyquist sampling ofshmallest period of interest. The
practical question of how to deal with this situation is thbject of much of the present work, and
is discussed in detail in Chapter 3.

1.3.3 Self-referential observing

An observer can at any time change his observing strateggdbas the success or failure of
observations that have been submitted to the robotic pegs) so far. Although the total amount
of observing time available is normally static, the numbeolzservations that may bequested

is generally unlimited. Thus a valid strategy for a robotilescope observer is to vary the request
frequency dynamically in response to the success or fadtiearlier observations. As we shall
see in Chapter 4, this can be used to improve a user’s obgesliamces.

1.3.4 Multiple telescopes

Perhaps the most exciting feature of automated telescapesther fully robotic or operating
in service mode, is that they exhibit emergent observatipraperties when a number of such
telescopes are connected together in a network. For exait@ediurnal sampling problems
that plague single-site observations of periodic varglbbkn be avoided if an observer can acquire
data from a second, geographically distant site. Contiaueonitoring projects such as the Whole
Earth Telescope (Nather et al., 1990) and the BiSON netvasrgdlar observations (Chaplin et al.,
1996) indicate the success of this approach. Another adgantf a robotic telescope network is

20f course, there may be science requirements that dictafeoimlly close observations. For example standard star
observations are typically made as close as possible to\aligms of the science target.
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the ability to make contemporaneous observations, with Bohilar and diferent instruments
(e.g. one might desire object spectra in addition to photdmmeasurements in several filters).

1.4 Disadvantages of robotic telescopes

1.4.1 Scheduling complexity

The main disadvantage of a robotic system is that automatignires work. The more sophisti-
cated the degree of autonomy exhibited by the telescopgyréater the amount of work required
to enable that functionality. A human astronomer perfogninclassical observing run on La
Palma, for instance, has maximum control of the details ®bhiservation. There is no scheduler
to decide what he should or should not observe — his time hexs bleck-allocated, and the only
external scheduling consideration that coufiéet observations would be a rare target of oppor-
tunity override request. In a robotic system, the designiamdementation of the scheduler is
probably the single largest factoffecting performance. Dispatch scheduling, as used in efate-
the-art robotic systems such as the Liverpool Telescomséfi& Steele, 2004) and the STELLA
robotic observatory (Granzer, 2004) is perhaps the modtistigated scheduling approach at-
tempted in astronomy thus far. Such systems typically seekddel observational parameters
in terms of weighted merit functions, combining these fiorm in such a way as to enable an
unambiguous best course of action for the telescope at &Bayp gime.

The simple notion of a ‘best’ course of action belies the dempplexity of this kind of
problem. A robotic system is typically aiming to maximisewamber of long-term goals, such as
total observation throughput, fair allocation of obsegviesources amongst users, or completion
of high-priority science programmes. But on an observalipiobservation basis, there are many
short term goals that may be desirable: quality of data, fanwle, may depend on airmass and
proximity of the target to the moon or other celestial ohjastwell as the current seeing. There
are also operational constraints. Because slewing to a ametttakes time, many schedulers
implement some kind of slew-time merit, which penalisegets which are distant from the tele-
scope’s present position. This minimises the fraction eftitme the telescope spends slewing (and
not on sky) and helps to avoid pathological behaviour suc¢thesshing’ of the telescope between
widely separated targets. The general behaviour of mostdsiérs is governed by aobjective
function, which is a mathematical expression that encompassestthEcmstraints the scheduler
seeks to optimise.

More sophisticated scientific constraints may also exigmthe observation is considered
in the context of others in the same science programme. Atorormg campaign for a doppler
imaging target requires dense, evenly distributed obfensin rotational phase space (Mogt etal.,
1987). On the other hand for a variability search where tketion rate of the target is not known
and there is a wide range of possible periods, a geometritirgpaf observations provides the
best way to evenly spread sensitivity to periods (Saundeak,2006b). These sorts of observing
programmes are among the most challenging to implemenessitdly for dispatch schedulers.

More generally, a science programme which is nearing caimplenay be more of a pri-
ority, because significant resources have already beeméggeon the acquisition of this dataset,
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and it may be useless unless all observations are compldtitdough superficially similar to
the fallacious logic of the sunk cost fallacy (encapsuléatethe idiom ‘throwing good money
after bad’), this behaviour is in fact rational, if there aeasonable grounds for believing the pro-
gramme can be completed, and if no alternative observiagesty would produce a higher return
from the remaining time available. In terms of scientific piiythe value of those final observa-
tions is much higher, given that the previous observati@ve lbeen acquired. Handing in a thesis
generates a large amount of value for the submitter, giveriithe invested in the research. On
the other hand it may be that the data remain useful even ththeydataset is (from a request
standpoint) incomplete. Perhaps the observer asked fag timoe than was actually required, or
part of the science question is still answerable. Adegua@ling context-sensitive questions of
this type remains a classic open problem in artificial irdehce (see for example Bratko, 1990,
Ch. 14, and references therein).

Difficult questions also arise when observing programmes hiateedy broad timing con-
straints. Consider the following scenario. A high-prigritoservation must be made. It is accept-
able to perform the observation at any point in an eight-wandow, but the best location of the
target in the sky will be near the end of the window. It is cleaw, and the load on the telescope
is relatively low. Should the telescope schedule the olagienv now, or wait and gamble on a
potentially superior observation, risking possible badther or increased load?

The complexity of these issues has lead most schedulingemmoitations to make drastic
simplifying assumptions in order to keep the real-worldratienal problem tractable. The Liv-
erpool telescope scheduler, for example simply ignoreg-term constraints. Whenever an ob-
servation can be made, the scheduler looks at the list ofidatedrequests, calculates the current
observing merit of each potential pending observation,sahetts the highest scoring observation.
Fraser (2006) notes that although simple and robust, this ¢f simple dispatch model can only
evaluate local optimisations, and there is no guaranteethbaglobal solution arrived at by this
method is in any way optimal. The STELLA system of GranzeO@Qorovides some relatively
sophisticated merit functions including phase coheremckeaa ‘after-pick’ merit for limiting cy-
cles (these are analogues of the eSTABNAN metrics described by Saunders et al. (2006a), and
explained in more detail in Chapter 3). However the schedibes not attempt to apply these
merits itself — the parameters required for their correcinfiglation are left to be configured by
the user. This makes the system very flexible, but at the mfiaequiring the user to supply
optimised observation requests.

1.4.2 Interface limitations

One might argue that handing astronomers the respongitaiticreating and managing favourable
observing requests is reasonable. After all, astrononrergha experts with respect to their sci-
ence, and have traditionally been entirely responsiblegHerchoice and manner of their obser-
vations. However, in a dispatch scheduling context this ssilatle misrepresentation of the true
situation, because full scheduling control hat been returned to the astronomer. Only high
level decisions areft¥loaded by dispatch schedulers; they are still respon§ilbldetermining all

telescope-specific constraints, and only the telescop&rmam what the global request load looks
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like. In addition the priorities of the facility, while hofdly in sympathy with those of individual
users, are not in general the same. Thus the interactiorecfdheduler and the astronomer be-
comes the critical limiting point in the system. This is wéérne translation of what the astronomer
needs into terms a scheduler can understand takes placéevEhef sophistication of the system
as a whole is largely driven by the richness of this interfage a corollary, one could say that
the degree of approximation that the interface enforces upe precise communication of the
scientific requirement to the observatory directly detemsithe sophistication of the observations
that can be performed. An interface that only allows indigdobservations, or several equally
spaced in a series, does not contain the basic grammaredduiispecify an optimal geometric
series for undersampled variable star observations.

In the symbiotic ecology of robotic telescopes and their Anmbservers a niche thus ex-
ists. While telescope systems evolve to better accommaoaatdypes of observations and require-
ments, and astronomers learn what kinds of science are easgllesuited to remote observing
and bend their forts in those directions, a third party able to communicaité e telescopes
to provide a service that astronomers need is a useful eahmt to the system. Such a higher-
level service enables the envelope of what is currentlyiplest be extended and tested without
immediate large-scale infrastructure or sociologicaingfea The eSTAR project fills such a niche.
It aims to provide advanced client software to conduct sofrtheocomplex dialogues with tele-
scopes that are required to do some of the most interestingcecdesired by the astronomer.
Chapter 4 of this thesis concerns the implementation of ol system, an autonomous soft-
ware agent capable of running an optimised variable starghton programme without human
intervention.

1.5 Robotic telescope networks

1.5.1 Early networks

The idea of connecting a number of robotic telescopes tegéthcreate a global network is not
new. As early as 1988, researchers had begun to consideothstipl of a global network of
robotic telescopes (Crawford, 1988). Crawford (1992) pemul the creation of a robotic network
consortium, andfbered a number of elierent potential use models. Drummond et al. (1995) pro-
totyped a robotic telescope system called the AssociateiBal Astronomer (APA), and claimed
the firstimplementation of a new observing paradigm, in Wiaistronomers submitted observation
requests to a remote telescope by means of carefully craftedls. The requests were written in
a specially-designed instruction set called ATIS, whicbved a rather cryptic ‘magic-number’
based syntax by which observations could be specified (Bogl,6993). The language was rich
enough to allow the specification of concepts such as olmgpgroups and cadenced observations.
The APA itself was conceived as a parsing and scheduling toal acted to filter the incoming
observation requests and perform basic observation &dbocalhe system explicitly assumed a
human support astronomer, who was responsible for hantim@ine details of adjusting or im-
proving the schedule, and of ensuring observation quaiuirements were being met. However,
lack of funding and the loss of key project members meanttti@project stagnated, and never
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received wide-spread adoption. Actual implementationgibhal network was to stagnate for the
next ten years.

1.5.2 Homogeneous networks

It was not until the mid 1990s that the rate of appearancelftiotelescopes and semi-automatic,
service mode telescopes began to accelerate (Hessmara)2@écreasing computational and
instrument costs, particularly CCD technology, meant thatconstruction of small automated
telescopes to address specific science cases becameimglseesasible. This situation has lead
to a not inconsiderable number of widely dispersed roba&liescope projects, each with access
to small numbers of telescopes, most funded to executefspstience directives. At the top end
of this group stand the research-grade robotic 2-metrereditseies: the Liverpool Telescope on
La Palma in the Canary Islands, and the two Faulkes telescope located on the Pacific island
of Hawaii, the other sited at Siding Springs in Australiae®maller telescopes run the scientific
gamut, with science goals that include GRB detection, ¢datiah surveys, transit photometry and
supernovae detection, among many others (Vestrand et0@i2; 2.ehner et al., 2006; Christian
et al., 2006; Quimby et al., 2006).

1.5.3 The benefits of networking

There are clear scientific advantages to joining a networkmamdividual telescope operator,
or to connecting disparate project-specific networks togret Some of the advantages that can
be leveraged include resource sharing, better coveragenefdomain observations, improved
response times and follow-up capacity, and glofétiency gain across the network.

Naylor et al. (2006) described how the evolution of curreditatic observing programmes
would benefit from the introduction of heterogeneous ohiagrkesources, by allowing many dif-
ferent types of instruments to be brought to bear on the probEnabling telescopes withiidirent
instruments and capabilities to communicate amortizesgfteetive cost of specialised hardware,
while increasing the range of science that can be perform#dtiaat hardware. This concept of
adding value is the same basic mechanism that governs thepbe of trade or barter of goods
(“A voluntary, informed transaction always benefits botintiea,” Smith, 1776).

Certain science cases benefit from the unique advantagegltsite observations. Obser-
vation programmes requiring very good phase coverage setparticularly sensitive to aliasing
effects are greatly aided by the continuous coverage that aordetwan provide. Although a
number of such networks exist for specific projects, a gémengpose network would make this
advantage accessible to any who could benefit from it, asautligfroperty of the network. Thus
periodicity measurements that might previously have beadearirom a single site by observers
without dedicated instruments could be moved to the netwwith substantial improvements in
data quality at no additional cost.

A general network of telescopes is ideal for rapid followdipransient targets. A network
with the capability to receive alerts from orbiting earhgwming satellites such as Swift (Burrows
et al., 2005) or specialist ground based instruments likelifirge Synoptic Survey Telescope
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(LSST) (Sweeney, 2006) can perform reliable, inexpensoleviup observations with a large
range of available instrumentation.

Networks of telescopes with even a limited ability to trateet are able to to ffload or
take on observations dynamically according to circum&ancThis improves the global load-
balancing behaviour of the network. This technique is veoaltlly applicable, arising in problems
as diverse as bandwidth management of large computer netwdistribution of power across
the electricity grid, and the logistics of supply chains ifudustrial goods (Foster & Kesselman,
1999; Istergaard, 2005; Erera et al., 2005). This potefatidbad-balancing is one of the ideas
that has driven interest in the concept of formalising théoms of supply and demand in this
telescope economy. Although several authors have propiogéal concepts for how such an
economy might work (Etherton et al., 2004; Hessman, 2006anz&r, 2006; Steele et al., 2006),
a number of significant issues have yet to be resolved. lricp&at, the metaphor of telescope
time as a kind of currency, although appealing, may not berate. The basic notion is that an
observer is allocated a given number of hours on a parti¢elascope network, and is then free
to trade that time in any way he sees fit. There are severalgmsbwith this model. Unlike
money, telescope time cannot be hoarded indefinitely. Bedbes its value remain constant, or
even approximately constant. An observer can convert gettiene’ into pending observations
at any time, by making an observation request. Whether pgnéiquests can or should be traded
is an open question. Pending observation times that arenfdrei future are intrinsically less
valuable than nearby times, which will be at a premium. Adked time therefore becomes more
valuable as the date approaches, but that value drops tdf zkeeodate of the observation passes.
Another issue is the problem of ‘runs’ on a particular ‘cagg: if everybody in the network
wants one specific kind of time (perhaps an instrument omgeebnstraint that is unique to a
single telescope), then in principle they could all tradsgrthocal’ currency for that time, and thus
oversubscribe that resource at the expense of the restoéthverk. This is a pathological case not
only because it destroys the load-balancing propertigseofietwork, but because as a result of the
over-subscription the value of the traded time drops interahs. The likelihood of an observation
on this telescope succeeding falls (because it is too basy),some number of ‘customers’ are
likely to be dropped. These issues arise because the geaéoal of ‘telescope hours’ is too
broad, and there is an implicit assumption that if hours &eglable, they can be redeemed to
produce real observations. Note especially that unlikeepotihese observations are not generic
— they are specific. Eight hours of time on Robonet only hagerilit can be redeemed for eight
hours of observations of an object of interest, with the minin observing conditions required
for the execution of the science programme. Additionakyestific value may be predicated on
all the observations being performed, or observationseplat a specific cadence, and so on —
the list is limited only by the creativity of the science casigat can be proposed. No satisfactory
system has yet been advanced that can successfully adgunaieresource availability to science
problems, which is ultimately the only way to measure thecess of the scheme. Fundamental
work remains to be done in this area before any kind of markeb@mics can be implemented
successfully for robotic telescope networks.
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1.5.4 Interoperability - building heterogeneous networks

A willingness to tackle the challenges and a shared desinatieroperability within the field lead
to the formation of the Heterogeneous Telescope Networlk\NHIonsortium in July 2005. As
well as providing a specialised forum for discussion andwkedge transfer between interested
parties in the field, the HTN has three explicit aims (Allarlet 2006):

1. Interoperability between robotic telescope networks.
2. Interoperability with the Virtual Observatory for evattification.

3. Establishment of an e-market for the exchange of telestiope.

The most common way of enabling interoperability betweenjguts is through standardisa-
tion, and this is the primary focus of the HTN’s work. Allan &t (2006) defined a simple,

implementation-neutral protocol that defines the interfdoat an HTN-compliant telescope is re-
quired to present to the network, and a standard set of wangptocols (Allan et al., 2008) are

also specified. The standard was deliberately designedltodpdy optional, in order to make the
process of joining the network as easy as possible. A minirhldiN interface need only imple-

ment two phases of message dialogue: the exchange of thevalise request and accompanying
response, and the data return step. These mandate the useecffac XML-based communication

language, RTML (Pennypacker et al., 2002; Hessman, 2008b¢h defines the set of standard
terms required to describe telescope instruments and itiipatand to process observations.

1.5.5 Non-robotic networked telescopes

Although it is often generally assumed that a telescope orétlike the HTN should be based
around robotic hardware to allow the system to behave in t@raied a fashion as possible,
this is not actually aequirement. In principle any dynamically scheduled telescope coultept
observation requests or alerts from the network. This igqudarly true for observatories that run
primarily in service-mode, such as GEMINI and the VLT, or mewelescopes such as the 9m
Hobby-Eberly Telescope (Hill, 2000) and the 10 m South Adnic.arge Telescope (Stobie et al.,
2000), which run entirely in service mode. The United Kingdinfrared Telescope (UKIRT)
(Humphries & Purkins, 1980) provides a good example of thegiration of a large, 4-metre class
research-grade telescope into a heterogeneous telesstwpmk A collaboration with the eSTAR
project enabled the telescope to join the eSTAR network &SdAR observing node. In this case
the non-robotic nature of the telescope is immaterial — tierface presented to the network is
identical to other telescopes on the network. Specificalbgervations can be scored, and then
requested. At some later date they take place and the datatareed, or they are not made
and expire. The details of how the scheduler and observatiechanism are implemented are
of no concern to the network. In this example, an eSTAR agkaaing a target of opportunity
observation request with UKIRT enters the observationlbloto the queue database. It is then
executed by the observer at the telescope, who is autortatcampensated for the time by the
dynamic scheduler (Economou et al., 2006).
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1.6 Event notification

Event notification has been a field of growing interest witthia time domain astronomy com-
munity. They-ray burst Coordinates Network (GCN) provides a fast, pabksed mechanism
for distributing alerts from GCN sources to clients aroulne world interested in performing fast
followup (Barthelmy et al., 2000, 1994). One of the main fims of the GCN servers is to
broadcast event information triggered by dedicated spased alert systems such as the Swift
satellite.

Event-driven observing is not limited to GRBs, however. Bhgernova Early Warning
System (SNEWS) provides notifications of supernovae evdgtscted by neutrino experiments
such as Super-Kamiokande. The approach takes advantage fatct that the neutrino flux from
a collapsing stellar core emerges some hours before thespamding photon signal (Antonioli
et al., 2004). There are a number of other project-specifmtemechanisms in use by specific
groups (White et al., 2006).

Although they have enabled important new science, thesemmgsevertheless have some
significant limitations. While the alert notifications etell by the GCN are rigidly formatted and
therefore easily parsed, GCN email circulars generatedidiyts, which often contain refined co-
ordinates, are plain text, natural language messages sigingéel for computer consumption, and
this has handicapped automated indexing and searchimgse(White et al., 2006). This is a par-
ticular concern for projects that wish to leverage the datsing potential of historical databases
of such messages, for example to identify recurring or penst trends associated with particu-
lar sources (Vestrand et al., 2004). Thed@dlilties led workers within the Virtual Observatory
community to seek a way to define a standardised messagetféeading to the formation of the
VOEvent working group in early 2005 (White et al., 2006).

The VOEvent notification format (Seaman et al., 2005) was frmm a single clear vision:
to take the best feature of the existing mechanisms, narelgdancept of simple, timely, useful
messages, and create a generalised formalism that coulast garsed by machine. By using
XML (Bray et al., 1998) to specify the syntactic relationshibetween concepts, it was possible
to satisfy the desire for human-readability while enfogcthe requirement that the metadata be
exact. The format aims to provide a concise description efdtitical parameters required to
describe an astronomical observation. Conceptuallyetbas be thought of as answers to the six
basic journalistic questions: who, what, when, where, winy lsow (White et al., 2006; Kipling,
1902).

For the significant fraction of the robotic telescope comityuwho rely on such alerts,

a precise, transparent, searchable format for event messa@ great advantage. However, the
relevance to an HTN in general is more subtle. Hessman (3Q@iated out the architectural
similarities between a system in which events are produnddcansumed, and one in which ob-
servations requests are produced and resulting obsersatinsumed. Indeed, the two systems
of events and observations closely co-exist. Producerscansumers of both kinds form inter-
twined logical networks mapped onto the physical topolofjthe telescopes themselves. Events
in themselves make no demands of any actor on the network.ettowbecause entities inter-
ested in making observations often do so on the basis of thet®they receive, theyfectively
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drive some subset of the observing behaviours that take pia¢hat network. At the same time,
the ability to generate alerts provides the potential féivaaollaborations and opportunistic be-
haviour which could enhance théieiency of the network as a whole. For example, a GCN alert
triggers observations within the RAPTOR sub-network. R&RTthen broadcasts the details of
its observations to collaborators as VOEvent messages. SAAR agent with time on a tler-

ent network determines that followup observations with i@aar instrument would be helpful.
Having successfully requested and obtained the data, an massage is broadcast, which may
lead to a change in the observational priorities of the nagRAPTOR network in turn.

1.7 The future: scaling the network

The robotic telescope projects discussed each control bisamaber of telescopes (typically less
than five). The emergence of the Las Cumbres ObservatoryaGTaescope (LCOGT) project
marks a significant step change for the field. LCOGT is a pelyafunded initiative to build a
global network for performing science as well as educatiofieach activities. It will comprise
a core based on two of the former Robonet 2 m telescopes (thedrtl FTS), and a widely
distributed secondary group of smaller robotic telescafegrying sizes. The ambitious aim
of the project is to perform novel science that utilises tbeptial of a true distributed network
(Rees et al., 2006). Because the telescope is operated arabethby a single administrative
entity, the sociological problems faced by groups such a4HfiN in relation to the exchange of
telescope time do not apply internally to this network. éast, the major outstanding challenge
is how to coordinate and schedule the network in such a waythieacomplex global behaviour
of the system is well-optimised. This question is multidesd and complex, since the ultimate
operation of the network is fundamentally defined by the meatdi the instrumentation and control
software, the network architecture, the data reductionggssing, storage and transfer, as well as
the higher-level problem of making decisions about whaukhbe observed, where and when.
Nevertheless, for the foreseeable future, the questionshgfand how observations should be
performed remain the province of astronomers.

1.8 Thesis summary

This chapter has described the use of robotic telescopestfieir inception to the present day.
Some of the unique advantages and possibilities enabldudsiethnology, as well as the specific
challenges inherent in these systems have been examingdrticular the problem of telescope
scheduling has been discussed. Finally, a brief appraiaalmade of the state of the art in the
field, namely the linking of multiple telescopes to creatsarational networks for particular
science goals, and more recently, the first steps towards¢lation of truly global heterogeneous
telescope networks.

This sets the scene for what follows. This thesis is conckwith the exploitation of the
unique environment of a modern robotic telescope netwofladititate time series observations.
Chapter 2 presents a variability analysis of the youngasteluster h Persei obtained in the tra-
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ditional, non-robotic manner. The dataset was time-comsgirand costly to obtain, and Sars
from classic problems such as diurnal aliasing, the inbigtaonsequence of constraining all ob-
servations to take place from a single geographic locatibeerves as a typical example of the
type of observing programme that this thesis addresseamvitth greaterf@ciency in the robotic
paradigm, and without recourse to human interaction. Tha dee scientifically interesting in
their own right, however, and so a detour is made to considemntplications that the distribution
of temporal stellar variability as a function of colour andgnitude has for models of the stellar
interior, in current theories of pre-main-sequence steNalution.

Chapter 3 asks a deceptively simple question: What is thevimgs to make time series
observations, if the total observing time is constrained] sensitivity to a range of periods is
a scientific requirement? In particular, what is the besttsgyy for an observer using a robotic
telescope network, no longer compelled to complete allmbsiens within a single contiguous
observing block? The exploration of this question beginthwain analysis of what makes one
time series better than another. A set of tools for inspgdiive quality of time series datasets
are developed, and used to demonstrate empirically theeags of datasets with superior period
sensitivity when compared to equivalent datasets with dneesnumber of observations, the same
baseline, and the same total observing time. It is showrthieaémporal position of observations
in the dataset is critical to the ability of that dataset tookeer signals of dferent frequencies
effectively. An explanation in terms of minimisation of struia in the sampling window function
is presented. A simple prescription is then developed fl@atsthe generation of a set of optimal
observation timestamps, as a function of the period rangatefest and the total number of
observations to be made.

Chapter 4 solves the practical problem of applying the thtézal insights described in
Chapter 3 in an automated, reliable way in a true productiir@nment, that of a professional
robotic telescope network. The notion of an autonomoustagertomputational entity that man-
ages an observing run independently of an astronomer, laiegd and described in the context
of the eSTAR multi-agent system. Some of the pitfalls thatiathe unwary observer in the hos-
tile, self-oriented environment of a modern robotic tetgme network are described. Based on
these concerns, an algorithm is developed that allows ant agdlexibly respond to changing
observational conditions, continuously optimising theich of observation placement in order
to maximise the quality of the final obtained time series. &bent was used to autonomously
manage an observing run targeting the variable star Bl ¥d,its performance is evaluated in the
final part of the chapter.

Finally, Chapter 5 pulls together the disparate threadapsarises what has been achieved,
and presents the conclusions that may be drawn from this.work



Chapter 2

Variability in the Young Cluster h Persel

2.1 Introduction

In this chapter, a survey of temporal stellar variabilitytlre h Persei cluster is described. The
double cluster h angl Persei is a young, bright open cluster that has been thectufjdetailed
observations for seventy years (e.g., OostfrH®37; Crawford et al., 1970; Tapia et al., 1984;
Waelkens et al., 1990). More recently, attention has beensted on mass segregation (Slesnick
et al., 2002; Bragg & Kenyon, 2005). The cluster is rich in-prain-sequence (PMS) objects, and
is therefore an important target for observers interesteddar formation and accretion processes.
With respect to this thesis, the main purpose of this chagter describe in detail the process by
which an astronomer in the classical, single-telescop&wismode paradigm proceeds to acquire
observations, reduce these data to useful lightcurvesthemdextract useful scientific value. This
is the principal use case for which the work of Chapter 3 wagrally inspired, and the underly-
ing driving motivation for the software agent described ma@ter 4. Although the work in these
subsequent chapters is generally applicable to a much waage of time-domain studies than
this single science problem, it is nevertheless instradtivpursue this example, to thoroughly un-
derstand the scientific requirements, and also to idemtifyrovements that can be made through
the use of a robotic network and automated observing tools.

A very brief overview of star formation is presented in SectR.2. This is followed by
the details of the observing run (Sec. 2.3) and the procedatafreduction (Sec. 2.4). Section 2.5
describes the way that variable stars were identified ardtegl from the overall mass of observed
cluster stars. Section 2.6 presents the results, comptmngariable population with the cluster
as a whole in terms of distribution in a colour-magnitudegdian (CMD). A discussion of the
results and their relevance to the current state-of-th@atar formation is presented in Section
2.7. Finally, the chapter is summarised and conclusionsepted in Section 2.8. This chapter is
based on Saunders et al. (2008, in prep.).

2.2 A brief overview of star formation

Stars are formed within massive clouds of molecular hydnpgdaich are relatively dense in com-
parison to the surrounding interstellar medium. The clahdsmselves often appear opaque, their
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dusty composition absorbing the light from backgroundsstaks these ‘dark clouds’ disperse,
they reveal many visible young stars, the youngest of whiehttze T Tauri stars, the subject of
this chapter.

The process of forming such a star is remarkably complex. stéwedard view is that the
basic physical process is the accumulation of interstgléer and dust under the attractive force
of gravity. This idea was first articulated in 1692 by Newtdtegwton, 1756). Kant (1755),
based on the work of Swedenborg (1734), developed the dambular hypothesis, where he
proposed that the action of gravity upon a slowly rotatingudl leads to the formation of a disc,
eventually giving rise to a star and planets. Laplace (1#@pendently developed a similar idea.
A theoretical basis for initiating such a collapse, calipavitational instability, was provided by
Jeans (1902), who showed that small density perturbatioas initially uniform medium lead to
runaway gravitational collapse.

There are two main models for the collapse to form the indialid core, which represent
extremes of fast and slow collapse respectively. In thedrémimation model, initial instability
allows gravity to overcome thermal pressure, leading taway collapse (Hayashi, 1966). Alter-
natively, the slow collapse model of Shu (1977) considersra supported by a magnetic field,
which accretes matter gradually through ambipol&iudion. It is likely that the true situation lies
somewhere between these two extremes (Larson, 2003).

In either case, the density continues to rise, but the teatyer remains almost constant
at around 10K due to thermal coupling of the gas to the dustuat®n which continues whilst
the core remains optically thin. As the core collapses, agume gradient is created, because the
central region is growing in density while the other regiansnot. This outward pressure gradient
ensures that most of the initial mass remains in the exteadeelope, and the resulting protostar
formed at the centre of the collapse has a very small inite@dsn Rotation, while helping to ensure
that most of the remaining mass joins an accretion disc arthenew protostar, is not ficient
to prevent ongoing growth of the central density singwarit

Eventually the core reaches a critical density of 8@ cn3, and becomes opaque to ther-
mal radiation. This leads to a rapid rise in temperature. ddre can no longer be considered
isothermal, and enters an adiabatic phase, halting cellapghe pressure exceeds gravity. This
is the formation of the first hydrostatic core, with a masshaft Q01M,, and a radius of several
A.U. The stability is only temporary, however and the prtdogontinues to gain mass through
accretion.

Dissociation of hydrogen molecules can take place oncectimpédrature exceeds 2000K,
and the collapse resumes, because energy goes towardsgbeialion process rather than heat-
ing. This continues until the hydrogen has ionised, brigdgime collapse to a halt with the for-
mation of the second hydrostatic core. The protostar coesirto accrete matter, depleting the
surrounding envelope which becomes optically thin. Thisved the protostar to radiate energy
freely, enabling a constant radius of aboRt,40 be maintained. At this point deuterium fusion be-
gins. The protostar is a fully-fledged pre-main-sequenae wfith only a relatively small amount
of matter remaining to accrete.

While obscured by dust, the new ‘young stellar object’ (YS©dnly observable in the
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infrared or sub-mm. Once most of the accretion is compldteslpbserved spectra of the object
is a combination of infrared emission from the surrounditigr é&ind visible light from the star
itself. Finally, once the disc is gone, the light moves efyiinto the visible spectrum. These
observational properties have lead to the designation et afsclasses of YSO, corresponding
to their observational properties. Class 0 objects arearsthge of rapid early accretion (lasting
about 10 years), and are only observable in the sub-mm. Class | sbeetin the main accretion
phase, which takes about®lyears, and are visible in the far infrared. Class Il objentsciassical

T Tauri (CTT) stars whose spectra are a composite of thetsilf and an attendant dusty disc,
visible in the near infrared. This stage typically lastsdoound 160 years. Finally, class Ill objects
are the fully visible weak-line T Tauri (WTT) stars, whosedi are optically thin.

The initial radius for all low to mid-mass YSOs is approxielgtthe same. On a Hertzsprung-
Russell (H-R) diagram of temperature vs luminosity, thigleto a feature known as thigthline,
representing the range of points at which a newly obsensatbtecan enter the H-R diagram. From
its arrival on the birthline, a pre-main-sequence starwvitlergo a period of contraction of around
10 years, before the onset of hydrogen burning. This marks rildeoé the pre-main-sequence
stage of the star’s life, and the beginning of its progressiong the main sequence.

2.2.1 T Tauri stars

T Tauri stars are low mass, pre-main-sequence stars. Ina@op to main-sequence objects
of equivalent mass, T Tauri stars appear over-luminous dukeir larger radii. As previously
described, these stars slowly contract as they move towladnain sequence on the H-R diagram,
and it is this gravitational contraction, rather than hygno fusion, that provides their radiative
energy source. Surveys indicate that around half of allnpai-sequence stars possess dusty
circumstellar discs (Strom et al., 1989; Beckwith et al9@® A dusty disc absorbs light from
its parent star, re-emitting it in the infrared, and this eaplain the spectral signatures of many
CTT stars (Kenyon & Hartmann, 1987). Some CTT stars possésseéd components larger than
can be explained by disc re-emission. This ‘infrared exaems be explained by accretion infall
(Lynden-Bell & Pringle, 1974).

WTT stars exhibit coronal emission similar to that of the Sount at much higher levels,
indicating strong surface magnetic fields (Hartmann, 200h¥se magnetic fields hold the accre-
tion disc away from the stellar surface, but allow accretimgterial to be funnelled down to the
star along magnetic field lines, producing hot spots at tlhelsinterface between the accreting
material and the stellar surface (Koenigl, 1991; Hartma&@01). The rotation of the star causes
these surface structures to appear and disappear fromlegsling to a visible modulation in the
apparent brightness of the star with period equal to theioot@eriod (Bertout et al., 1988). This
is believed to be the principal cause of observed varighiifl Tauri stars.

2.3 Observations

The observations discussed in this chapter were perform&diart Littlefair and the author, using
a Sloani filter (Fukugita et al., 1996) with the 2.5 m Isaac Newton $etgpe (INT) on La Palma,
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using the Wide Field Camera with the four CCD EEV array. The spanned 16 consecutive
nights, from the 22nd September to the 7th of October, 20Bérd'were two photometric nights,
the 27th September and the 5th October. h Per was observetiadritiese nights, for around 2.5
hours per night. Exposures of 5, 30 and 300 seconds werenettalhere were 110 good frames
taken for the 5s and 30 s datasets, and 213 frames for the 2@8sed

2.4 Data reduction

The data were reduced, and photometry extracted using tmeadgxtraction algorithm of Naylor
(1998) and Naylor et al. (2002), with the modifications idoed by Littlefair et al. (2005). The
steps required to proceed from the set of observed frambe &&t of lightcurves for each observed
star are described here. Broadly, the data reduction derdithe following processes.

1. Bias subtraction, flat-fielding and defringing.
2. Offset determination.

3. Object detection and quality determination.
4. Optimal photometry.

5. Profile correction.

6. Relative transparency correction.

7. Astrometric solution.

8. Normalising instrumental magnitudes to produce the fiatdlogue.

These steps are described in detail below.

2.4.1 |Initial stages

The images were bias subtracted using a single master hia frcorrected for flat-fieldffects
using a master twilight sky flat-field constructed from imagétained for each night of the run,
and defringed by median stacking many frames to produce tenfdaage frame. At this point the
images are ready forfiset analysis. The aim is to determine the pix@et and rotation (if any)
between each frame and a chosen reference frame.

Stars to be used as reference points are identified by sivegssses of a peak finding
algorithm that identifies pixels with significant electrosuats. Beginning with an initial pass that
identifies the highest unsaturated values in the image, amgpihg the significance level with
subsequent passes enables a set of probable stars to brideterBy fitting an estimated point
spread function (PSF) based on the star with the highessaturated pixel value, rough positions
for the stars are determined. Magnitudes are determinel the fitting, by considering the full
width at half maximum (FWHM) of the PSF. The mapping betwesnreference frame and the
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remaining frames is then determined by comparing the patierdentified stars in each frame.
The result is a set of pixelffsets and rotation angles for each observed frame.

Before moving on to optimal photometry, more accurate steitijpns need to be deter-
mined, and a list of stars suitable for use as PSF indicatot@ireed. This is achieved in the
following way.

The level of background counts due to the sky (the ‘sky I@vgldetermined by measuring
the modal counts in a series of sky boxes, chosen to be lamgbrthat the presence of a star
within the box would not have a large impact on the calculatedlevel. This sky level is then
deducted from each pixel, and small variations in the remgibackground smoothed by passing
a top-hat filter over the image. In a similar way to the staedg@bn algorithm used to determine
the dfsets between images, a series of passes of decreasingcsigrefis made over the image.
At each stage, significant peaks are tracked and a two-dioresonnectivity condition applied
to identify adjacent pixels belonging to the same peak. is Way individual pixel values are
located as belonging to particular stars.

A number of data quality checks are made during this prodéestsiding the identification
of duplicate detections of the same star, and the flaggindgao$ shat contain bad or saturated
pixels, pixels with counts in the non-linear response rasfgle detector, or pixels with negative
counts. Stars possessing a PSF that is not point-like argeftafpr non-stellarity. This could
be due to the presence of another star nearby in pixel spabecause the target is an extended
object such as a galaxy or man-made object. Additional flamshe applied to stars that fall close
to the edge of the CCD or on a known bad sector of the detector.

The result of the object detection stage is a list of targsttjpms, flagged by quality. Stars
with no flagged problems are candidates for PSF templatetseie to be used in the accurate
photometry described in the next section.

2.4.2 Optimal photometry and profile correction

Optimal extraction is a technigue for maximising the sigtaahoise ratio of a given star. A de-
tailed description of the method is outside the scope ofdhépter (see Naylor (1998) for the full
details), but the key idea is to treat each individual pixeba independent estimator of the flux
in the stellar profile. This is achieved by normalising thgnsi in each pixel by the fractional
flux predicted in that pixel by the PSF. Independent flux estés from each pixel are then opti-
mally combined by weighting them as a function of their utaieties. The technique therefore
requires a PSF to be estimated. The closer this estimatehs toue PSF for the star, the higher
the signal-to-noise that can be recovered.

The brightest stars from the PSF candidate list are resantpléne pixel grid of the star of
interest by fitting a two-dimensional Gaussian to the ole®RSF. The PSFs are ordered by the
size of the corresponding FWHM, and the median of this ligteilected as the model PSF. This
provides a simple, automated way to select a reasonabheateti PSF for the optimal weighting.
Fluxes are then extracted for each star, by taking the geurmetan of the PSF in each axis and
integrating under the curve.

The extraction mask derived in the optimal photometry stadikely to be close to the true
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PSF of the target star, but in general is not exact, sinceubestellar profile is not an analytic func-
tion (see for example Diego, 1985). The profile correctiothéslogical analogue of an aperture
correction in standard aperture photometry, and emplyicalrrects for the dterences between
the extraction mask and the true PSF. A number of unsatustéed in each CCD provided the
profile correction for that CCD, which is a polynomial furgsti of position. It is measured by
comparing the flux measured for the objects using the optexihction with that obtained by
applying a somewhat larger aperture (although in this daserowded field limited theffective
aperture size). Note that, because in general the comestafunction of position on the detector,
this correction is still important, even though the phottmén this case is relative, and not tied
to any particular system (see e.g. the discussion in Latieft al., 2005).

2.4.3 Final stages: transparency correction and astromeyr

A relative transparency correction was applied to all theulténg photometric measurements, to
normalise any dferences between frames arising from variations in airmagamsparency. This
was achieved by selecting a subset of relatively brightagnag stars and using their average
magnitude to define a reference brightness for each framie.Wids done using an iterative pro-
cedure to identify the least varying stars based on conipuataf the reduced?, denotedy?, in
the same way as described in Littlefair et al. (2005).

To perform astrometry for each object, for each exposure {irs, 30 s or 300 s) a single
frame was chosen, and the combination of the three thentsshto create a master catalogue. The
objects were then matched to a 2MASS catalogue of the fieldoduge an astrometric solution,
providing a transformation from pixel coordinates to J2@@@atorial coordinates, with a mean

RMS discrepancy in positions of 0.1 arcseconds.

2.4.4 Normalising the combined final catalogue

An arbitrary zero point was applied to the instrumental niagie so that the observations would
be in a natural magnitude system approximately comparafile Sioani. Magnitudes in this
system are denoted by the symbolStars with meain magnitudes brighter than 17.5 but fainter
than 16.5 were recorded by both the 300 and 30 s dataset® tBmphotometry for each dataset
is only relative within the frame, the 5s and 30 s dataset& wamormalised relative to the 300s
dataset so that the three datasets could be combined intal aditalogue. This placed all three
datasets on the same scald,inlt was then possible to pick limiting mean magnitudes fahea
dataset. The 5s dataset was used for all stars brighter tharof15.2. For the overlap region
between the 30 s and 300 s datasets, a delineatimggnitude of 17.5 was chosen, so that stars
with mean magnitudes brighter than 17.5 were taken from @edataset, while stars fainter than
ani; of 17.5 were taken from the 300 s dataset.

The ultimate result of this data reduction process was afdaghcurves for all the stars
in the field, amalgamating individual flux measurements falhthree exposure sets. The work
of examining these lightcurves for potential variabilityubdd now begin, and is described in the
following section.
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2.5 Variable star selection

The identification of variable stars involved a set of distiselection criteria. First, the dataset
was stripped of stars flagged as problematic during the ddiaction process (see the discussion
in Section 2.4.1 for details of the flagging process). Dueidgh ignetting a number of spurious
variables at the corner of CCD 3 were also removed, using plsiooordinate cut. Poor quality
objects were then removed by applying a selection cut at anreigmal-to-noise (S-N) of 10 to
each lightcurve.

Having dealt with the most obviously problematic objecke hext stage was to evaluate
the stars at the lightcurve level, to ensure a minimum nunolbdlux measurements had been
made for each potential variable star. A requirement wasfsetminimum of 60 good datapoints
from the 5 and 30 second datasets (from a possible 110), ahddd datapoints from the 300
second dataset (from a possible 213), respectively. Tlmeés were chosen by considering the
theoretical probability of? for different numbers of observationg? was calculated by fitting a
constant value to each lightcurve. For more than 120 obsengaof the 300 second dataset, the
probability of exceeding a givep? was found to fall within a narrow band, indicating a suitable
detection threshold. A similar detection threshold wastbéor the 5s and 30 s datasets with a
minimum of 60 observations. Although it would have been jego choose thg? threshold
to be constant, this would have presented a problem, be¢hesgiality of the data is lower at
higher points on the sequence. Thus a congtatiireshold would produce a discontinuity at the
join between any two of the datasets. The combined CMD inelicéat this is not a problem with
this choice ofi? (see Fig. 2.1).

The optimal photometry measurements provided an uncgrtiiineach datapoint in each
lightcurve. Using these, the ratio of the mean flux to the uagety on every datapoint was
calculated for each lightcurve. Since this was an attemgatople an expected constant value, an
RMS was defined in terms of the weighted mean of the dataset.datapoint with the highest
value of the ratio of the flux to the uncertainty was discardadl the remaining datapoints used
to find the weighted mean. This improved the ability of thesmsjuenty? test to detect true
variability by eliminating spurious cosmic rays or othediids from the data.

Following Littlefair et al. (2005), a threshold gf > 10 was fixed as a cufbindicating
significant variability in the 300 s dataset. The corpggtimit for the 30 s dataset was then deter-
mined by considering stars falling within the overlap regi®tween the two datasets. Varying the
value ofy? applied to the 30 s dataset, it was found that a minimum tlotdsif y2 > 3 recovered
a number of variable stars in this region that was compatalitee number of stars detected in the
300 s dataset. Similarly, by considering variables idardifn both the 5s and 30 s dataset, it was
determined that a threshold gf > 3 applied to the 5s dataset recovered all variablés+015.2.
Magnitudes and colours were obtained by cross-matchinmstgde h Per catalogue of Mayne
et al. (2007), to obtain a CMD for the variable stars in théagbtbands V and V-I (Fig.2.1)
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Figure 2.1: CMD of the variable population, after combinithg 5s, 30s and 300 s datasets.
The dashed lines indicate the limiting magnitudes used tobiiwe the datasets. The unbroken
continuation across the dataset boundaries indicatesethetion criteria are not a function of
sensitivity.
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2.6 Results

Figure 2.1 shows a clear pre-main-sequence populatiorimyrtiagonally from approximately
14th to 20th magnitude in V. However, background contanonais also evident, and is clearly
visible in Fig. 2.2 (upper panel) where it is concentratei ia large, wedge-shaped area that
cuts laterally across the sequence. One common problenisintytbe of study is the presence
of contamination objects in the sample, which can obscuetpulation of interest. These are
additional stars in the observed region that are eitherdield, unassociated with the target cluster,
or stars of other types that may fall in similar regions of @D to the T Tauri stars. Below the
sequence at a V-1 of 1.0-1.5 contamination is likely due tardsy the tip of which carries on above
the sequence to around 13th magnitude. Additional contaioim at a V-l~ 1.6 is probably due
to background giants. In order to improve the membershigtira of variables for analysis a
10 arcmin radius circular cut was applied, centred on therfrc@stre-point atr = 02 18 5876,
6 = +57 08 165 (J2000). Although the size of this cut is rather arbitréryyas found that the
results were relatively insensitive to the choice of radilggure 2.2 (lower panel) shows the
variables remaining after this process. In order to traeeviriables as a fraction of likely h Per
members at dierent points along the cluster sequence, the same cirautlavass applied to the
h Per catalogue of Mayne et al. (2007) (Fig. 2.2, upper patedntical areas were deliberately
selected to ensure that no bias would be introduced by pgesaiiss segregation.

Looking at Figure 2.2 (lower panel), it can be clearly seeaat the density of stars falls
dramatically as we progress up the sequence. This is quitratit to the distribution of cluster
members (Fig. 2.2, top panel), which shows a strong sequegnt®around 15th magnitude.

2.6.1 Histogram analysis

Although it is clear from visual inspection of the sequerttat the density of variable stars in the
CMD falls dramatically at brighter magnitudes, additioaaklysis is required to investigate this
behaviour in a robust way. The idea is to quantify the prex@deof variables at lierent points in
the sequence. In order to be meaningful, this has to be dahe@gpect to the orientation of the
sequence itself. To examine the distribution of variables@the cluster sequence, histograms
are constructed according to the following scheme. A dtitdige was fitted to the central portion
of the sequence, running from 1.0 to 2.0 in V-I. Two cuts pedieular to this sequence line were
then taken, a bright cut crossing the sequence at 1.0 in Ml aafaint cut crossing at 1.66, with
widths of 0.4 in colour-magnitude space. The stars selduydtiese cuts were then pulled back
onto the cut centre-lines and binned in V-I. Fig. 2.3 illagts the cut placement for the variable
stars. In order to remove contaminating field variables ntimaber of variables falling outside of
the 10’ radial cut in each colour bin were scaled to match tka af the cut, and then subtracted
from the number of variables within the cut. Any remainingalensity is then taken to represent
the cluster variable population. These cuts produce thiedrams of Figure 2.4.

The histograms show in detail what can be seen qualitatbyefye in the CMDs of Fig. 2.2.
While the general cluster membership continues to relgtiseght magnitudes, the variability
dies out at magnitudes brighter than about 17. In the lefepahFig. 2.4, which shows the faint
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Figure 2.2: CMD of probable h Per members taken from Mayné. €2@07) (upper panel) and
variables (lower panel) after a 10’ radial cut centred on h e number of variables drops at
V-1 < 1.5.
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area as the cut and then subtracted. The histograms thusiéias number of variables at each
cut, after accounting for background variable contamamagiresent in the field.
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magnitude (lower) cut, the variables clearly trace the sage at 1.6—1.7 in colour.

In the brighter magnitude cut (Fig. 2.4, right hand panelyéwxer the situation is very dif-
ferent. There are relatively few variables present eithéhé background or in the sequence. In
fact, the number of variables is consistent with a scenarishich there are no variables present
in the sequence. The main point to take away from this is tlabegh it seems possible, when
looking at the CMD to trace the variable sequence at brighymtades by eye, closer investi-
gation indicates that the number of variables is not siediby significant. There is therefore a
genuine change in the number density of cluster variabléh,wariables dying out rapidly as we
move to higher brightnesses. This is in marked contrastagytmeral cluster behaviour, which
indicates the presence of a clear main sequence at thebé magnitudes. The implication is that
beyond the R-C gap, the natural evolution of a previouslhiatde young star leads to the complete
suppression of that variability.

2.7 PMS star magnetic field topology and the R-C gap

Stolte et al. (2004) and Mayne et al. (2007) find evidence faarsition region between pre-main-
sequence and main-sequence stars, which Mayne et al. (@00¥dhe radiative-convective (R-C)
gap. The distinct change in the variability of the stars apsitipn that corresponds closely to the
position of the R-C gap identified in Mayne et al. (2007), whig centred for h Per at \=[1.33
(V=17.66), supports the conclusion that the mechanisms giisedo the variability are a function
of convective processes in the star, and are curtailed bgigtielopment of a radiative core. The
obvious implication is that the stars below the gap haveslsaple spot structures, and thus large-
scale magnetic fields, whilst above the gap the spots areraitysent, or sticiently uniform in
their distribution that they fail to yield a modulation. Ththese observations are consistent with
the idea that whilst fully convective stars have large-saiucture in their magnetic fields, once
the stars develop a radiative core the spots become morby listibuted over the surface.

If this interpretation is correct, then we would expect te #ee same change in variability
in other clusters that show the presence of an R-C gap. dgydkas will be at difering masses,
depending on the age of cluster. Additionally, variabitityalysis should act as a tracer for the R-C
gap. This has important consequences as it can be used darecditidependent age estimator
(Mayne et al., 2007).

In Saunders et al. (2008), Naylor explores the implicatiohapplying a common theory
based on changes in the stellar core to the problem of botbltserved radiative-convective gap
for PMS stars, and the so-called ‘period gap’ observed idistuof cataclysmic variables (CVs).
For completeness, the argument presented there is bridfipemlihere as follows. Cataclysmic
variables are binary systems in which a higher mass whitafgwidls mass from a less massive
companion. Due to tidalffects, angular momentum is lost from the binary orbit as thesma
transfer proceeds. Ultimately, the smaller star reachesiret prhere there is no longer enough
mass present to allow radiative energy transfer to procé@deatly, and the core undergoes a
structural change to a convective mode of energy transfdnis leads to a change in magnetic
field topology that causes the ongoing mass transfer prdodsalt, and this is manifested as a
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range of CV periods that are not commonly observed.

The spectral type at which this angular momentum change Y& t@kes place is around
M4. In the work presented here however the radiative-cdiweegap is found to occur at KO-G8
in spectral type. This implies that a common theory cannist éor both PMS stars and CVs that
relies on internal structural changes to alter the field kmgppand hence create observable period
changes.

Since the full scientific implications of this line of arguneare tangential to the aims of
this thesis, it will not be further pursued here. The interdseader is directed to Saunders et al.
(2008) for a full treatment.

2.8 Conclusions

In this chapter | have described an analysis of variabilityhie young cluster h Per. It was noted
that variability declines sharply at brighter magnitudeshie region of the R-C gap. This result is
consistent with a cluster membership for which there areami@mbile stars at magnitudes brighter
than the R-C gap. This is also consistent with the idea thréhitity arises from cool spots caused
by magnetic field generation in the convective pre-maindsage stars, and hence is not observed
once a star reaches the radiative phase. Because the bpgmrat which the R-C gap occurs is
a function of age, if the variability is indeed linked to tleehtion of the R-C gap, then it should
not happen at a single mass at all ages — it must also be adarmtiage. This could be tested
by performing a variability study of another cluster at fietient age. If the variability is simply a
function of mass, then the variable drofi-will not coincide with the R-C gap.

An interesting avenue for this research is to identify tharibiution of periods for the vari-
able stars identified in this study, and compare these todtableshed literature. Additionally,
an analysis of period sensitivities would shed light on thesgtivity of this dataset to particular
periods. Analyses of similar datasets indicates that diuatiasing is an inevitable problem, mak-
ing periods around 1 day fiiicult to detect (see, e.g. Littlefair et al., 2005). Additimliasing
problems arising from the detailed timings of the obseoretimay also be present. Figure 2.5
demonstrates the problems apparent in this dataset. Wdigssevere, and the peaks are relatively
broad, indicating signal uncertainty. Although technigdier improving the signal quality after
the fact can make some impact on this problem, it is cleartieb& improve the original data by
placing the observations in the right place to begin witlthii is possible. A discussion of period
sensitivity, along with periods and lightcurves for theseiable stars will be presented in Saun-
ders et al. (2008). However, these issues are exactly tliedfiproblems that a robotic telescope
network is ideally placed to mitigate. In the following ctep this idea shall be explored in detail.



2.8. CONCLUSIONS 44

25 T T T T T

)
(=]
I
|

—
[9))
|
|

—
(=}
!
|

Power (arbitrary units)

3]
|
|

0 1 2 3 4 5 6
Frequency

Figure 2.5: Periodogram of one of the variable stars fromhtRer dataset, evaluated for periods
ranging from 4hrs to 12 days. The severe aliasing is manifest



Chapter 3

Optimal Placement of a Limited
Number of Observations for Period
Searches

3.1 Introduction

3.1.1 Motivation

Chapter 2 described an analysis of variability in the h Relsster. That work was based on 16
nights of contiguous observing from a single location (L&niRg. This is typical for observations
in the ‘classical’ mode. The long observing baseline wasvated by the desire to detect periods
up to 8-12 days, while the continuous observing each nigh¢dito provide good enough phase
coverage to unambiguously identify variability. Neveldss, even with continuous coverage each
night, the unavoidable, large, regular breaks in the timieseaused by the diurnal sampling make
periods of around one dayfiitult to detect in this dataset.

How well were these lightcurves sampled? The main chaiiatitsr of this sampling are
dictated by the classical observing paradigm. Would anl isieteof observations be placed in the
same way? As a purely theoretical question, could we have detter? Obviously, if observations
could have been made continuously through the day as welkasght there would have been no
phase coverage issues, and our sampling would be as dehsewdd be. But this is not comparing
like for like. The real question is more subtle. If we were $e thesametotal amount of observing
time, then the new observation baseline is likely to be lean half the length of the original réin
— leaving us insensitive to long periods. This suggests ttatideal set of observations is a
compromise between dense, continuous coverage, and gpdxservations farther apart in order
to obtain a longer baseline.

In practice, this problem does not appear in the classica¢ming scenario because the
limits are fixed and immutable. One can neither change tlirgrisf the sun, nor the practical
advantages (minimising the travelling time, cosfpd and inconvenience) of performing all the

1The actual fraction depends on the relative proportionsaginight at the observing location.
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observations in one long set of nights. However, in the riobparadigm, this is not the case.

Observations can in principle be placed anywhere, and atilmn@y so the length of the baseline

is theoretically unconstrained (although in practice ltkely to be bounded by the length of the

observing semester, this is still much longer than a claigiachievable baseline). If several

robotic telescopes are available that are longitudinabyadt with respect to each other, then an
observer canféectively break the diurnal observing limitation.

The situation of limited numbers of observations arisesoith lvobotic telescope and satel-
lite observing. Typically target acquisition overheads]uding slew time and CCD readout time,
as well as scheduler requirements are substantial enoagh tireater total target exposure time
(and hence signal-to-noise) can often in practice be aetliby limiting the number of observa-
tions. There is also the more general question: how manyradisens are required to adequately
address the science question under consideration? A@atygbserving runs oversampled? If so,
how much time is really required? From afii@ency standpoint this is a pertinent question for
telescope operators and time allocation committees (TAd3syell as observers.

It is the norm for robotic observing runs to be undersampled. In this chapter the basis for
this statement is discussed, and the implications for argéperiod-searching strategy in such an
undersampled regime are explored. A number of samplintegies are examined and discussed.
It is demonstrated that there is scope for significant ogttion of observation placement, and a
detailed description of how to implement such an optimal@ang is presented. The discussion
has relevance for general problems in time series astronamalis not limited to photometry. For
example, Doppler imaging of surface features (see e.gigC@hameron, 2001, for a review) is a
spectrographic method that could potentially benefit fromwork. The technique afeometric
sampling presented here represents the best solution to the und#isgmroblem known to the
author. However, it should be noted that the analyticaltgmiuto the general question of what
form an optimal uneven spacing should take, when the numbaservations and the length of
the observing run are free parameters, remains unanswétemain results described in this
chapter have been published as Saunders et al. (2006a) andess et al. (2006b).

3.1.2 The undersampling problem

The Nyquist-Shannon sampling theorem (Nyquist, 1928; 8ban1949) states that

Exact reconstruction of a continuous-time baseband sigoi its samples is possi-
ble if the signal is bandlimited and the sampling frequerscgreater than twice the
signal bandwidth,

Baseband describes a signal that has the lower bound of its range qtifrecies at 0 Hz.
Bandlimited means the signal has some limiting maximum frequency abdwehthere is no fur-
ther power. Thus the theorem describes a signal boundeddaodncy. For an arbitrary signal, one
can explicitly assume frequency limits, discarding infatimn outside of the range. In this case,
the theorem describes the conditions for complete reagrt&in of the signal within the specified

°This formulation of the theorem is taken fromttp://en.wikipedia.org/wiki/Nyquist-Shannon_
sampling_theorem. For the formal proof, see Shannon (1949).
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limits. Equivalently, the theorem states that the requsaupling rate for perfect reconstruction of
a signal, called thélyquist rate vy, must be twice the bandwidth (highest frequency component)
of the sampled signal.

The determination of the Nyquist rate assumes regular)ygpaced sampling. It is simple
and unambiguous for the case where one can sample evengsamnoentire observation run.
However, astronomical observations are typically irragylplaced in time, with both short time-
scale ‘jittering’ (intervals between observations may betprecisely the same) mid-range gaps
(e.g. diurnal holes in coverage) and long gaps (e.g. longgebetween successive monitoring
campaigns of a single target). Robotic observations ane e irregular, typically with much
larger gaps between individual observations. The deviafiom regular, ordered sampling is
significant.

A simple example shows that even if observations could belgy#aced, there are many
observing scenarios where the required observing frequisnanachievable. For example, an
astronomer observing T Tauri stars cdfeetively define a baseband, bandlimited signal by us-
ing the astrophysics of the problem to limit the frequenaiemterest. A minimum period to be
sought can be roughly determined by considering break-lgrie arguments, while the maxi-
mum period is limited by the coherence time-scale of thegaérifeature (for example, star spots
which may slowly change configuration over time), and mowectically, by the maximum fea-
sible run-length. For an evenly sampled dataset, the irignpakmay be correctly reconstructed
if the sampling frequency is at least twice the highest fesqy vimax to be detected. Assuming
the astronomer wishes to see two cycles of any modulatiam tthes lowest frequency detectable
is given by 2T, whereT is the duration of the total sampling interval (i.e. the tangth). The
value of the required sampling frequenay for equally spaced data can then be viewed as the
Nyquist frequency of the dataset, given by

Vmax < N/2T = VN, (31)

whereN is the number of observations. Plugging some typical numbreshows the problem:
if we assume a minimum period of around 4 hours, and a typiedimum period of around 2
weeks, then sampling at the Nyquist rate requires 0.5obsr 168 observations, evenly spaced.
On the Liverpool Telescope, a typical observation of a sirfigld of a young cluster such as
h Per requires around 300 s (5 minutes) of integration tinaai8ers et al., 2008). To observe a
reasonable fraction of the cluster, at least 3 fields aranedjwith an instrument such as RATCam,
which has a 4.6 square arcminute field of view (Steele, 200yus an evenly sampled proposal
would require 42 hours of on-sky integration time, beforerbeads — a substantial amount of
time. At the telescope, contention from other proposalsyelsas target acquisition overheads
and the need to cover the time evenly makes thidfecdit goal, and it is possible that the total
number of observations obtained will be significantly ldsmtrequested.

When there are too few datapoints to fulfill this sampling ditan, the case becomes
interesting. In this situation can we can sample in such a tlvayywe can recover a signal of
acceptable quality? Alternatively, we can reverse the lprabhow many datapoints do we need
in order to recover an acceptable signal? In particulas itniportant that the dataset for period
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searching is equally sensitive tdfdirent periods, lest the fraction of detected signals fé¢rdint
periods be misrepresented. This is a key problem, and ohbdakanot been addressed in previous
work.

3.1.3 Previous work

In the field of time domain astronomy, there is a relative tieaf literature regarding the best
way to sample data in time. In contrast, much attention has lbecussed on the problem of
signal extraction from fixed, finite datasets (e.g. Horne &ilB&s, 1986; Schwarzenberg-Czerny,
2003). This is perhaps unsurprising. The vast majority ohsiatasets are acquired in the classical
situation of a single extended observing run, where an@atner physically travels to a remote
observing site, accumulating data continuously each riagtthe duration of the run. In this case
the observer has relatively little choice about how to sphe@bservations, and normally opts for
the safe strategy of using all of the available time for amndius observing, acquiring a large total
number of observations.

A popular tool for the analysis of time series is the perigday (Schuster, 1898; Lomb,
1976), defined as the modulus-squared of the discrete Fdraigsform of the time series, ap-
propriately normalised (Scargle, 1982). It presents thegive strengths of the set of harmonic
frequencies making up the measured signal, and providesvarfud way of identifying periodic
signals in the data, and determining those periods. Scél§ig?) extended the statistics of the
Fourier transform to the uneven sampling case, and proadedtric, thefalse alarm probability,
to quantify the degree of uncertainty in any given peak inghgodogram. Horne & Baliunas
(1986) pointed out the sensitivity of the false alarm pralitgbto the choice of sampled fre-
qguencies, and derived an empirical formula for estimativegriumber of independent frequencies
required to calculate the false alarm probability in theuamesampling case. The false alarm
probability thus applied is often considered the primamjiéator of the fitness of peaks in the
periodogram, and forms the justification for many claimsighal detection to be found in the
literature.

One common phenomenon that can cause problems in the &tegipn of the periodogram
isaliasing. It refers to the presence of spurious power in the pericatagt frequencies other than
that of the true signal, which obstructs correct or unamtigudentification of the true period.

There are two principal causes of aliasing. In its commoroasmical context, aliasing
refers to power at incorrect frequencies in the periodogrering from the presence of significant
gaps in the phase coverage of the signal. The aliasing esgisesther possible periods which due
to a lack of data cannot be ruled out. They are thus the maaiies of cycle count ambiguities
(Kurtz, 1983). For example, Naylor et al. (1988) discuss ltogvsampling pattern of variations
in the continuum flux of an eclipsing dwarf nova left them ueato diferentiate between true
orbital modulation and a secular decline in flux. This was asghcoverage issue arising from the
observational constraints imposed by the use of a satellite

A second form of aliasing arises from the beatifiget between the sampling frequengy
and any true signal frequeneypresent in the data. The beating causes constructive packed
at regular intervals in frequency spacekag + v for all positive integerk. It follows that the
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maximum frequency that is guaranteed to be unique occurs Wwhkel, so that

Ymax = VS — Ymax

Vs
= 3.2
Ymax 2 ( )

(Kurtz, 1983). This is the Nyquist rate, and it defines thehbgl frequency at which the peri-
odogram can be uniquely calculated. Frequencies beyoadihie cannot be considered mean-
ingful, since the periodogram is symmetric about the Nyiguesquency and contains no further
information.

A number of authors have attempted to define finotive minimum sampling criterion
for the case of unevenly sampled data. Scargle (1982) saeimmply that the &ective Nyquist
rate is a function of the smallest sampled frequency (“Agirg the data increases thfextive
sampling intervalt, thus decreasing the Nyquist frequency” Scargle, 1982heRs et al. (1987)
mention that in the uneven case, frequencies smaller th@A i) can be recovered, whefgin
is the smallest interval in the dataset, but neverthelesssghto restrict themselves to a maximum
limiting frequency of ¥(2Amin), presumably as a convenient practical value. Similarlyyrd &
Baliunas (1986) and Press et al. (1992) assume as an upjitethiniNyquist rate corresponding
to an average sampling of paoints over the total run. Eyer &ligddi (1999) pointed out that the
periodogram of an unevenly sampled dataset is not mirronsstmc about the Nyquist frequency,
implying the presence of useful information above this gallihey examined the practical limiting
frequencies that could be recovered from unevenly spadag alad demonstrated the recovery of
a period of 0.085 days from a dataset in whigh, ~ 0.8 days, a factor 10 smaller than predicted
by the conservative limits in the literature. Koen (2006)eexied this work, and provided an
explicit formula for determining thefBective limiting Nyquist criterion. A remarkable example is
provided of 53 unevenly spaced observations acquired beerdurse of 6.8 hours. The ‘average
Nyquist rate’ for this run is 1462 s, implying that the minimum period that can be accurately
reconstructed from this dataset is around 460 seconds. Woweoen (2006) demonstrates the
recovery of a 5 second signal that is clearly visible in theqagram.

These various authors have provided a framework for uraletsig the recovery of high
frequency signals in classically undersampled datasetgoitantly, they demonstrate that by
breaking the degeneracy between observations, unevetisgmakes meaningful reconstruction
of signals below the classical Nyquist rate possible. Hagethe critical problem for variability
surveys is not the question of maximum frequency sensiti¥ior many practical observing situ-
ations this value isféectively limited only by the precision to which the obseiwat are recorded
(Koen, 2006). The real issuedsen sensitivity across the period range of interest. Althouglyv
high frequencies may be detected, typical astronomicarebgy runs remain undersampled. In
extremis, a dataset could claim sensitivity to very higlgfirencies but be blind at periods of a
day, because of aliasindfects. It is therefore possible to have good high frequenogiteity,
but very uneven sensitivity across the full period rangee thdersampling generates ambiguities
in an astronomer’s knowledge of the signal, while the chaitsampling changes the relative
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sensitivity of the periodogram tofierent frequencies. It is therefore desirable to seek thargpa
that maximises the information about the frequencies irctvlan astronomer is interested.

Clearly some unevenness can be coped with and correctegt gamiollation, if an observer
is only interested in determining thdkstribution of periodicities. This works as long as at least
some of the variable population in the region of poor sensjtiare detected. However, if an
observer is interested in obtaining specific periods thentdthnique cannot be applied. If stars
are being analysed individually, then not having sensjtiat a given period is gambling.

Deeming (1975) showed that the observed Fourier transférendiscrete dataset can be
expressed as the convolution of the true Fourier transfexfy) with a spectral windowy (v)
that fully describes the interferencéects between the sampled frequencies, such that

Fn() = F(v) = on(Y), (3.3)

whereF(v) is the complex Fourier transform of a functidft) and is defined as

F@yiﬁmfm¥mm, (3.4)

(o)

and the spectral window is given by

N

OED IR (3.5)

k=1
whereN is the total number of observations aftg is the set of observation times. The window
function is even, so only positive frequencies are evatliafEhe physical interpretation of the
window function can be seen by considering the Fourier fonmsof an infinite sine function (a
delta function) convolved with the window function, leaglito the observed Fourier transform.
Adjusting the set of observation timég} alters the window function, and hence the Fourier trans-
form. Deeming (1975) showed that aliasirteets in the observed Fourier transform arising from
the window function could be mitigated by introducing inadgyities into the sampling pattern.
Deeming (1975) termed the spurious power that is added tBdahger transform by the sampling
function near-frequency interference. In the discussions that follow, | shall refer to thi$eet as
spectral leakage, after Saunders et al. (2006b). By careful choice of sarggpliris possible to
reconstruct higher frequencies than therequired for an adequate equivalent even sampling, and
to acquire higher quality data over the range of periods tef@st.

Deeming (1975) illustrated the behaviour of the window fiortthrough the use of a sim-
ple single-variable model for thd = 25 case, empirically deriving a form for the spacing based
on visual inspection of the resulting spectral window fimtt Motivated by similar concerns,
scheduling for the Hubble Space Telescope programme “Tiphdél@ Distance to NGC 1425”
adopted a pseudo-geometric spacing as a way to maximisenttoennity of the acquired phase
spacing, but no details of the implemented optimisatioatsyyy were provided (Mould et al.,
2000).
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3.2 Metrics

In the analysis that follows, the method of Scargle (1982)fcamulated by Horne & Baliunas
(1986) has been used to construct periodograms from siedutehe series data. Many other ap-
proaches to period detection exist, including phase dispeminimisation (Stellingwerf, 1978),
string-length methods (Dworetsky, 1983) gyrifolding (Horne et al., 1986). The periodogram
was chosen for reasons of convenience, simplicity and farityl.

The metrics presented here aim to explicitly formalise sahthe major processes by
which astronomers arrive at a judgement about the validityperiod in a given lightcurve. Each
metric provides information about a specific aspect of thkttiurve. The metrics are simple and
unambiguous, in order to aid interpretation of the resaltgl for the other reasons discussed here.

In the literature, judgements about lightcurve perioglitiave a somewhat qualitative na-
ture, and often possess a significant subjective elemembgtet al., 2000, is a typical modern ex-
ample). This is perhaps an inevitable consequence of tHiappn of detailed expert knowledge
to the evaluation of complex astronomical datasets. Bymndating some of the key elements of
the knowledge required to understand and interpret suaselatin the form of metrics, something
of the decision-making process has been made explicit,falusercise in itself. The metrics can
also be used to evaluate existing datasets or partial datasel have proved useful to classical
observers seeking to determine how best to utilise a seeondfdata to improve phase coverage
or period sensitivity.

The metrics also provide objective functions that can fdne hasis of a directed optimi-
sation process. They can be used to unambiguously spedify, @nd thus provide a way for a
computer program to interpret lightcurves. In Chapter é,uke of such metrics in the practical
implementation of autonomous agents for the eSTAR proj&iarg et al., 2004a,b) is discussed.
By providing empirical measures by which the fitness for psgpof a lightcurve may be deter-
mined, it is possible for software agents to reason aboujuhéty of a given time series, and use
that information to plan future observing requests.

In the results that follow, the use of the well-known falsarad probability of Scargle (1982)
has been avoided. The false alarm probability measuresikely b peak of a given strength is
to have occurred by chance, and thus provides an insighthetalegree of structure present in
the data. However, it says nothing about the validity of theqal. Each peak of a periodogram
with a serious aliasing problem has a low false alarm prdipabSimply quoting the false alarm
probability without acknowledging the other peaks is thasply misleading.

Additionally, the accurate calculation of the false alarrolyability is non-trivial for the
uneven sampling case. Horne & Baliunas (1986) note thatéimelard formula they provide is ac-
curate only in the even-sampling case, and significantherestimates the false alarm probability
for severely uneven sampling. This is a serious issue fdriyigrganised, non-linear observation
timings such as those that may be acquired through the usdatlites or robotic systems.
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Figure 3.1: Folded lightcurve wit8 = 2, generated from the dataset of Littlefair et al. (2005).

3.2.1 Phase coverage uniformityg)

In practice, many astronomers look at the folded lightcas@ good test of periodicity. Consider
Figures 3.1-3.3. Each figure is an artificial lightcurve, guter sinusoid of fixed period sampled
using the observation times of a real, classical observimgdescribed in Littlefair et al. (2005).
Figure 3.1 would be considered a reliable period. Figurei8.@asonable, but by no means
definitive. Figure 3.3 is simply unacceptable. The reasothiese judgements is clear: Figure 3.1
covers the phase space well, while there is far too much pghasenation missing in Figure 3.3.
In order to quantify this heuristic, we therefore need somd kf phase coverage metric.

The normalised phase coverage metric, S is defined to be the sum of the squares of the
distances between consecutive points in phase space, lismunby the value of the sum for an
ideal spacing (i.e. one in which all the observations arealtygjgspread across the phase space).
For an ideal spacing, of n observations we have

g =-, (3.6)

1
n
giving
n 2
1 1
S = 2 _nlzl = = 3.7
=2 (3] - @7

If the fractional part of an observation with timestampfter folding on a periodP is defined as
¢ = (x/P) — int(x/P), then normalising the general case against the idealrspgalds
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Figure 3.2: Folded lightcurve wit8 = 20, generated from the dataset of Littlefair et al. (2005).
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Figure 3.3: Folded lightcurve wit8 = 200, generated from the dataset of Littlefair et al. (2005).
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n
S= 2 =n(n-1-0f+ DICETEE (39)
wheren is the final observation in the folded sequence. The e — 1 — ¢1)? represents the
wrapping property of the folding, by adding the contribativom the gap between the first and
the last datapoints. This statistic is related to a variagheace the choice of the symi®s|

The normalisation allows us to compare the phase coveradatasets that haveftkrent
numbers of observations. The metric provides an idea of helivanlightcurve has been sampled
by the observations. To have confidence in a potential périsimportant to know that the range
of possible candidate periods has been minimised, i.e.vibdtave enough information to rule
out other potential periods. As a result, lightcurves wipolssess better phase coverage tend to
have much sharper peaks (i.e. much better frequency pcalit periodogram.

Figures 3.1-3.3 illustrate ho® acts to trace the overall phase coverage of lightcurves. A
low S indicates good coverage, while a hi§hmplies large phase gaps. Perfect phase coverage
has the value unity.

The S metric as we have defined it here is simple and robust. Howthexe is a caveat.

If we define therelative period to be the ratio of the perio#® to the run-lengthL, such that
Prel = P/L, then forPy > 0.5 the value ofS is likely to be much closer to optimal, because there
is no folding back of observation times, eliminating the gibiity of redundant datapoints. It is
normally good practice to sample over more than one sigriécgampling over multiple cycles
allows the repeatability of the signal to be tested. Howeeen the existence of multiple cycles
may not be enough to avoid ambiguity. For example, a datasepled at 1.1, 2.2 and 3.3 cycles
could once again confuse a temporal with a periodic modwuiats alone tells us nothing about
how many cycles have passed in a given run-length, and gifedseindication of improvement
out of proportion to the true value of the lightcurve fég, > 0.5.

3.2.2 Interconnectivity (N)

The number of cycles over which a signal has been sampledim@ortant quantity, because it
provides evidence of repeatability. Most astronomers dial loath to accept a period based on
less than two cycles of data. An extension of this princigl¢hat a folded lightcurve made up
of consecutive points that are temporally distant in thgioal time series can be considered to
have a more reliable period. Alternatively, the number @ley can be used as a way of providing
bounds for correlation timescales. How observations ateillited over cycles of the modulation
can thus provide a measure of signal coherence.

We define thenterconnectivity, N as the sum of the absoluteffidirence of the integer part
of the times of all adjacent observations, after dividingabperiodP, such that for a set af
observations

n
N = fint(fy = fo)l + > lint(f; = i), (3.9)
=1

where f; = x;/P, x is the timestamp of thgth original observation, an@ is the period under
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consideration. Note that is different from the definition o used in Eqn. 3.8.f is the integer
part of an observation after phase foldingis the fractional part after phase folding. The term
(fy — f) represents the wrapping property of the folding, by addimg d¢ontribution from the
difference between the first and the last datapoints. The sylhtsoémployed for this metric, as
it is a sum of integer values.

Together,S and N provide the tools to identify properties of the dataset sastperiod
sensitivity and spacingfigciency. They have the great advantage that they are purebtifuns
of time. They are independent of any properties of the adbsaérved data themselves, such as
the signal shape or noise characteristics. They thereforaat be biased by the lightcurve mag-
nitudes, and are thus general tools for evaluating the sagfauinction of arbitrary datasets. This
makes the application of these metrics straightforwardwidely applicable. From a computa-
tional standpoint they are fast to calculate, scaling lilyeaith the number of observations.

3.2.3 Peakratio A)

The quality of the periodogram is assessed by calculatiagehk ratio, A, which is defined as
the ratio of the powers of the peak corresponding to the tareg@ and the highest other peak
in the periodogram. There are three regimes of interesthisrmetric. Figure 3.4 illustrates the
‘alias’ regime, where the metric indicates the extent toaitpower has been lost to other strong
signal candidates. When aliases have been largely supdressvhen the overall level of noise
in the periodogram is large, the metric instead describepitbminence of the peak relative to the
spectral leakage, or to the background noise. These twatisitis are illustrated in Figures 3.5
and 3.6 respectively. For well-sampled datasets, aliamkigan be suppressed to the level of the
background noise. In this cagebecomes a simple measure of signal strength. The relaijpnsh
to the alias property or peak amplitude is the motivationdemoting this metric.

The accuracy required for a given period measurement chakgén observer would not
be interested in all nearby peaks or sub-peaks, but the acaldich structure in the periodogram
is important is highly dependent on the nature of the scigmogramme. In the simulations that
follow, periods within 10 per cent of the true period are é¢desed to be adequate, in line with
typical accuracy requirements for rotation rate histogrdhittlefair et al., 2005). It is assumed
that the periods have an infinite coherence length, i.e. thiggphase information does not change
over time.

3.3 Simulation parameters

3.3.1 Assumptions

The metrics discussed above were used to investigate thevibeh of a range of simulated
datasets. The general problem of ideal observation plageimextremely complex. Parameters
that could &ect the quality of an observed lightcurve include:

e The total number of observations.
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Figure 3.4: Periodogram illustrating how tAemetric can be applied as a measure of relative alias
strength.A; andA, are the amplitudes of the true signal peak (in this case,itifeht peak) and
the highesbther peak in the transform. The rat@2 is the value of thé\ metric.

e The total length of the observing run.
e The choice of sampling strategy within a fixed window of olvaéons.

e The period range of scientific interest (both the limits af thnge, and the relative impor-
tance of diferent sub-ranges).

e The nature of the science performed. For example a surveyasfia number of potential
variables looking at general trends in variable populati@y not require period determina-
tion to be as precise as an extended campaign on a singld objaterest.

e Observing constraints imposed by the telescope itself.

e The shape of the underlying signal. For example pulsatimgivigs such as Cepheids have
a distinctive saw-tooth shaped lightcurve. Observatioaderduring the short, steep descent
of the lightcurve may be more valuable than observationsendading the slow rise.

e Noise, both correlated and uncorrelatgdorrelated noise is noise which is a function of
time, and thus is linked to the value of the noise at previdaseovations. This isfBectively
a second signal in the data that obscures the primary sigivgkoest. For example, a linear
trend in the photometry may be due to some systeméigctewithin the detector, while a
second periodic signal in the data might be due to a binarypamion. Aperiodic variation,
arising for example from changes in starspot configurati®another source of correlated
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Figure 3.5: Periodogram illustrating how tRemetric, defined as the rati%, can represent the
power at the true period relative to the spectral leakagendise has been added to this signal;
interference ffects are due to the (relatively poor) choice of sampling. 3igeal is a simple
sinusoid withP = 0.10163, sampled with 100 datapoints using a geometric bage=01.10,
randomly respaced (see Sec. 3.7). The inset gives the adwldf the corresponding window
function, as a function of frequency.
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Figure 3.6: Periodogram illustrating how tRemetric, defined as the rati%, can represent the

power at the true period relative to the overall level of eggesent in the signal. The input signal
is the same as for Fig. 3.5, but with the additional appliratf noise equal to half the amplitude
of the signal . In this case, the geometric sampling basewasd = 1.03, to minimise the fects

of spectral leakage (see Sec. 3.6). The inset gives the taplof the corresponding window
function, as a function of frequency; note the relativelyariinterference contributions.
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noise, if the timescale for such changes is of the order aftthdength.Uncorrelated noise
arises from the detector setup, the number of photons detecteasurement uncertainties
and so on.

In the simulations that follow, timestamps in the range O-ekengenerated according to
the sampling scheme under consideration. Where the valdeasfthe behaviour of the peri-
odogram itself was considered, a range of sinusoidal sgolahmplitude 1 with random phase
were generated and the value of the signal evaluated at eagfling point. Realistic levels of un-
correlated noise were also applied (see Section 3.6.2dduthdetails).S andN were calculated
by evaluating the timestamps after phase folding at the knpsviod.

3.3.2 Peak-finding algorithm

The determination oA was achieved by running a custom peak finding algorithm or-theier
transform of each sampled signal. The peak-finder verjiqgaibcesses the Fourier landscape,
beginning at high amplitude and working down with successiweeps. At each stage, a list
of current peaks is updated by considering whether adjdcegtiencies in the transform have
amplitudes that fall within the current sweep. The highedti® of the peak found so far is stored.
The edge of a peak is defined by the imposed accuracy thref@sa®ection 3.2.3), and individual
frequencies may only be part of a single peak. In the caseeddithulations that follow, this cufb
was set at 10%, so that any frequencies within 10% of the cuhighest peak with amplitudes
above the current sweep level were evaluated as part of dal. pThis strategy allowed the
algorithm to avoid being trapped by sub-peaks and spuri@isenwithout compromising the
peak resolution by looking at too broad a range of frequenddnce the full transform was swept,
the value ofA was calculated by simply taking the ratio of the two highestlpvalues.

3.4 Linear placement

The simplest strategy for placing observations is even ingipt is obvious that an evenly spaced
sampling with enough observations will correctly sampleedqa range. Since the behaviour of
such a regularly-spaced time series is well understoodpitiges a useful baseline from which
to investigate how the behaviour of the various metrics rilesd in Section 3.2 respond to both
adequately and undersampled datasets.

Figures 3.7-3.9 illustrate the variation of the three nisth, S and N for three linearly
sampled datasets, with 12, 100 and 1000 observations.

341 A

The undersampling problem is dramatically highlighted ty behaviour of thé\ metric. Figure

3.7 provides a clear illustration of théfects of undersampling in a regularly spaced sample set.
The period range of interest spans two decades, from 0.01-+élative period. For Nyquist
sampling an even spacing would correspond to 200 or morenaigms. For the two smaller
datasets, this level of sampling is not achieved, leadinth¢éopresence of alias features in the
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Figure 3.7: Variation ofA with period for three linearly sampled datasets. The alggiroblem
dominates the metric ifi lies below the Nyquist sampling threshold of 200. A sharfegiccurs
for then = 100 dataset when the alias falls within the 10 per cent sépardistance.

periodogram with power similar to the true period. This i#e&ted in the behaviour d&, which
remains nearly constant at around 1iior 12 andn = 200, indicating the presence of a minimum
of two very similar peaks in the periodogram. In contrastnfe 1000 (Fig. 3.7, bottom panel) the
sampling is adequate, and the valueda$ relatively high. Even in the case of adequately sampled
data, applying a small ‘jitter’ to the placement of indivadwbservations can help suppress aliasing
effects. In practice, some degree of jitter is automaticaliplied to real datasets, since it would
be highly unusual for observations to be made at precis@ys#ime time on every night of an
observing run.

If the period range searched for each of our datasets is ohggeh that the minimum
period corresponds to the maximum recoverable frequendhddnumber of observationgax =
vn/2), then aliases do not arise. Figure 3.8 shows the valdefof the three datasets, when the
period search space is thus reduced.
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Figure 3.8: Variation ofA with period for three linear observing regimes for which thaximum
recoverable frequency has been set to the Nyquist frequé&iong as the frequency sampling
regime lies above the Nyquist limit, the value Afis invariant with respect to the number of
observations.
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This behaviour demonstrates how the false alarm probaislimot useful as a metric here.
Although the false alarm probability provides the prohbiibthat a peak could have been produced
by chance, it says nothing about how many such peaks canesxastesult of aliasing.

3.4.2 SandN

A pure linear sampling, where observations are placed at fixervals in time, illustrates well
the severe phase coverage issues that can arise from a ptaardyl sample set. Figure 3.9 shows
the dfect of this sampling in terms of th® metric. Large spikes occur in the value $fat
periodic intervals corresponding to multiples of the spgovalue. These spikes arise because
evenly spaced observations in time map back to the samesgaoiphase space for a significant
subset of possible periods. Such observations contrilmiténg to the total information content of
a folded lightcurve and are thus redundant from a phase ageeyerspective. This is particularly
bad for finding periods, because it implies an uneven seitgitio periods of diferent lengths,
which could introduce a systematic bias into a set of peretémininations.

As the number of observations in a dataset is increased ataset becomes more stable,
reducing the degree of structure. This arises becauseimseases, the impact of any single
observation on the overall phase coverage becomes lesficsigh See Figure 3.12 (discussed in
section 3.5) for a clear demonstration of this.

Figure 3.10 (top panel) indicates how the interconnegtitvaries for a linear sampling
with n = 100 datapoints. The structured nature of the period spamadent for relative periods
of 0.5 or less (corresponding to true periods sampled byahdbserving run over twice the period
length) — the preferred regime for most observers. Shagodiguities occur when a favourable
mapping interleaves many observations (producing a Nighwhile other mappings, very close in
period space, lead to poor interleaving.

3.4.3 Conclusions

Linear undersampling demonstrates extreme behaviour &throfpgical cases with unfortunate
periods. This makes it unsuitable for period searches witlidd observations. Nevertheless, a
linear sampling is the preferred sampling strategy whenl#taset possesses enough observations
to adequately sample the smallest period of interest. lotipeg most of the problems of linear
sampling described here can be overcome by ‘jittering’ aihgication of a small random compo-
nent to the placement of each observation (Beutler, 197k i$ efectively the combination of a
linear and a random sampling strategy. To understand hexti@inges the situation, we move in
the next section to consider a purely random sampling giyate

3.5 Random placement

While linear sampling provides a simple, unambiguous samgpiule when there are ficient
observations, robotic telescopes are in practice oftearghon-limited. Robotic telescopes can
quickly become overhead-limited because of the fixed, fitite required to perform target ac-
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Figure 3.9: Variation ofs with period for three linearly sampled datasets. Structsievident at
all dataset sizes, but is much more pronounced when thertotaber of observations is small.
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Figure 3.10: Comparing hoM varies with period in the linear, the strictly random and gjge
ometric case. For a pure linear sampling, (top) severetsting is evident at lower periods.
Outside the linear regimé is less informative, because the relatively good phaseniglcheans
that the plot is dominated instead by the number of intentegss



3.5. RANDOM PLACEMENT 65

quisition. Space-based system#fsufrom a similar problem. Once the overhead for each obser-
vation becomes a significant fraction of the total telesdiipe, a regime of sharply diminishing
returns is entered, where taking additional observatismauch more expensive than increasing
exposure time. Random placement, an extreme form of jitydri the limit where the jitter length

is equal to the total run-length, is an obvious alternativa pure linear spacing. Each observation
is placed at a randomly determined point somewhere alonguiidength, and no observation
position depends on any other.

351 A

Figure 3.11 shows the variation #fwith relative period for the three datasets. In all threeesas
the value ofA is greater than unity, substantially so for the= 100 andn = 1000 datasets.
This behaviour is in sharp contrast to the linear sampliridigure 3.7, where the undersampled
regimes remain largely static with respecttdndicating the presence of strong alias peaks. Thus
randomising the spacings has enabled coverage of the &etjtgency range of interest.

The trade- is increased background ‘grass’ across all frequenciebefperiodogram.
Comparing then = 100 datasets of Figures 3.8 and 3.11 makes the point. Whdaomdy sampled
(Fig. 3.11, centre panelf remains relatively constant at an approximate value of etw4 and
8, indicating a peak several times stronger than the baakgraoise. In the linear case (Fig. 3.8)
with the reduced period search space, Ahalue is much higher in the short period regime, and
at its lowest point remains twice as strong as the equivatardom metric.

The background disturbance is present even when the randtased has many more ob-
servations than would be required for Nyquist sampling,eleample in then = 1000 regime.
There are two main causes of this noise. Because the olisessate placed purely at random, it
is quite possible for many of the gaps between observatmbe tmuch smaller than are required
by our period range. These gaps are thus sampling frequeauiside of the range of interest,
and do not contribute as much useful information to the sarapt. Similarly, because the gaps
are not precisely assigned, it is possible for particulaaarof the frequency space to experience
clustered sampling when pairs of observations fall, by chawery near to one another in the
frequency space. Both of thesffexts are manifestations of spectral leakage, and ariselgnti
from the choice of sampling.

3.5.2 SandN

Figure 3.12 shows the behaviour®for a random distribution at each of the three dataset sizes.
In this random regimeS shows the stabilisingfBect of increasing the number of observa-
tions. Asn increases, the amplitude of variation ®fwith period becomes much smaller. The
extra observations essentially provide a kind of stabtlityghe S metric by guaranteeing an av-
erage spacing between folded points which converges toatine salue for large, moderating
the clustering ffect described above in the discussionfofThis has important implications for
period sensitivity. If the number of observations is too ,ldkaen the structure introduced &
implies that not all periods are equal: some periods willehiarinsically better phase coverage
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than others. When enough observations are made, randoen@at pusheS towards a value of
2, rather than the ideal best sampling of 1. This arises ftaédct thatS is essentially a measure
of variance.

Figure 3.10 (centre panel) shows the variatioiNdbr a randomly distributed dataset. The
fine structure evident in the linear regime is no longer V&sif his fine structure, the manifestation
of the second term in Eqn. 3.9, is obscured by the large integjae of the interleaving provided
by the first term.

3.5.3 Conclusions

By replacing a linear sampling with a randomised one, it issgile to cover frequencies below
the Nyquist rate for even spacing. This coverage comes axhense of increased background
distortion in the transform (spectral leakage), the irshl# result of reducing the global signal
coverage by spreading the observations over a greatedpgarnge. However, aliases arising from
the undersampling are completely removed by moving awan fitee linear sampling regime. It
is also seen that to some extent the periodogram is degradadite of redundant sampling, both
by sampling frequencies outside the regime of interest,ametlsampling frequencies within the
regime as a result of chance. This suggests an improvememplieity choosing the size of the
gaps between observations.

3.6 Geometric placement

The results of the random sampling experiments describ&Eation 3.5 show that the critical
issue is the spacing of observations. This is obscured ipé¢he@dogram by the complicating
presence of a signal, as well as any applied noise. DeemBigb)Iconsidered the sampling
problem in terms of the window function alone, deconvolveahf the signal itself. This is an
elegant and very general way to evaluate any arbitrary sagygbecause it is independent of
signal shape or amplitude.

A set of observing times specified by a single variable poaer dllow a wide range of
gap spacings to be considered while limiting the vast segpette of possible samplings. An-
other attractive feature of such a scheme is its intrinsdesinvariance, a requirement for any
truly general solution. We generate our observation timids aigeometric distribution using the
scheme

k
ty = X(L(T_)_llT, (3.10)
wherety is the (time) value of the point in the seriesis the base of the seriek,is the number
of the current data point\ is the total number of observations afids the duration of the total
observing interval. This produces a geometrically-spatisttibution such that & tx < T.

The parametek, which shall be termed thgeometric base, may be (almost) arbitrarily
chosen. The generating function given by Eqn. 3.10 diveajes= 1, which is the value cor-

responding to the limiting case of linear sampling. Values o- 1 produce increasingly tightly
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packed sets of geometrically spaced points. Since the wiridioction is in general complex, for
comparison with Deeming (1975) we follow the convention xdiraining the normalised ampli-
tudeA(v), defined as the square of the amplitude of the window functiormalised by the square
of the number of datapoints, such that
I5()1*

Alv) = :\lg .
The optimal base, xopt can then be defined as the value for which the overall degre&udture
present inA(v) is minimised. The root mean square (RMS)AgP) relative to the mean, given by

(3.11)

n
Xms = J % Z{ (A6 - AG) (3.12)
whereA is the mean amplitude, provides a straightforward metniédentifying structure. Min-
imising the RMS thus represents the desire of the astrontmaathieve relatively even sensitivity
to periods. Note that this RMS is a function of the normaliaetplitudeA(v), not a direct RMS
of the window function amplitudé(v).

In order to retain sensitivity to the higher frequency stnoe, A(v) is evaluated for frequen-
cies in the range.Q < vy < 5 (in units of the Nyquist frequency for an equivalent evemséng).
In practice, the range of the window function that needs todyesidered will vary depending on
the degree of undersampling of a given dataset (which isetibtmof the number of observations
and the length of the dataset), and the maximum frequencg ttetected. Since what matters is
the frequency with respect to the total time interval, werdethe dimensionlesg! ative frequency
as

Vrel = VT. (3 13)

Then the relative limiting frequency in units of the relatiMyquist frequency is simplymax/vn.
Although in principle the geometric base can be arbitrarilgsen, practical considerations
provide a strong constraint. Consider a long observing with a baseline of one year. If ob-
servations are to be placed (for example) no closer thanexwnd apart (although they could be
spaced wider), then the maximum geometric base that pddacings greater than this min-
imum is strongly constrained by the total number of obsémat as illustrated in Figure 3.13.
Thus the investigation is limited to the fraction of the poveav space bounded by the curve.

3.6.1 Comparison with Deeming (1975)

Deeming (1975) generated 25 datapoints according to theular

(3.14)

. kY (k=1...12)
(25- k)Y (k= 13...24).

Figure 3.14 plots the window function for this distributievith « = 1.0. This is a near-
optimal value ofa by visual inspection and RMS comparison. Figure 3.15 pitesie window
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Figure 3.13: The maximum practical geometric base as aiumof the total number of observa-
tions, for a given ratio of shortest period to run length.
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Figure 3.14: The window function (where the amplitude isegiby [5(v)|?/N?) produced by
Deeming'’s distribution, with a close to optimal valuesof 1.0. The RMS is 0.0361.
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Figure 3.15: The window function for a typical random distition of 25 data points. The RMS
is 0.0386.
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Figure 3.16: The window function for the optimum geometr@gengling of 25 data points, for
x=1.124. The RMS is 0.0201.
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Figure 3.17: RMS as a function of geometric baseNot 25. The optimum value is = 1.124.

function for a randomly spaced set of 25 datapoints. The#a}@ize of the interference structures
at high frequency are comparable, as indicated by the sifRIMS values of the two graphs.
Figure 3.16 is the window function for an optimal geometpacng, where the value ofwas
chosen according to the minimum of Figure 3.17. The geomsepacing exhibits much better
high frequency suppression, with an RMS roughly half thagitifer of the other spacings, at the
price of a slightly broader true peak (centred by constomctity = 0). This broadening is a
consequence of the undersampling. Although tiiecive limit for frequency reconstruction can
be pushed to higher frequencies, we sacrifice some of ourlkdge of lower frequencies in order
to do so. In particular, the precise frequency of the trueaids less clearly represented in the
window function.

Note that the choice of geometric base is critical to the asgof the sampling. Figure 3.18
shows how structure can be reintroduced into the windowtfondy a poor choice of geometric
base. This situation occurs because a sub-optimal geanfietsie essentially ‘wastes’ informa-
tion, oversampling some frequencies and undersamplingr&thThe pathological case of even
sampling is a limiting example of this problem, where a langenber of the sampled frequencies
are massively oversampled, and therefore redundant. Faseta with more than 25 datapoints,
the correct choice of geometric base is much more imporkgtire 3.19 plots RMS as a function
of geometric base for datasets with 25, 100 and 500 obsengtiThe larger datasets possess
much narrower minima ‘valleys’ than the= 25 dataset. At these dataset sizes, any substantial
deviation from the optimal base will lead to rapid deteriimna of the window function.
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Figure 3.18: Window functions for three geometric spacmg
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Figure 3.19: Comparison of the variation of RMS with geomeebase, for three dataset sizes.
Whenn = 25, a relatively broad range of bases lie close to the minirRit$. For larger numbers
of datapoints, the choice of optimal base is much more ygtihstrained.

3.6.2 Noise

Whilst in the idealised case without noise a suitable genmsampling is the correct sampling,
the dfects of noise on the result must be considered. If noise dawesnthe periodogram, then
there may be little point in optimising in the manner desedib A range of equally plausible
‘optimal’ geometric bases will exist, since the quality bétfinal observed Fourier transform is
noise-limited rather than window function-limited.

When making actual observations, an observer must decidethalivide a fixed total
amount of telescope time (exposure time plus overheadsis choice impacts signal-to-noise,
since for most practical observing scenarios the signabise increases as the square root of
the total exposure time. However, the window function hasaise dependency. The quality
of a specific window function as a function of frequency isedetined entirely by the choice of
sampling time. This means that noise will only be of prad¢tamncern to the observing strategy
if it is greater than the mean amplitude of the spectral lgakéhe level of power added to the
background frequencies by the choice of sampling.

To explore the practicalfiects of noise on the ability to recover a signal from a set of
observations requires a return to the sinusoidal signatiign method described in the earlier
results for linear and random sampling (see Sections 3.84%)d For a 100 observation dataset,
noise is applied equal to one third of the full amplitude & ignal (Figure 3.20) and equal to the
amplitude of the signal itself (Figure 3.22). This yieldsgnal-to-noise of 3.33 and 1 respectively.



3.6. GEOMETRIC PLACEMENT 75

It should be noted that this is not the signal-to-noise ndlgntpioted by astronomers, where the
time-varying signal is superimposed upon a constant flux.cBmparison, in a typical observing
scenario where the full amplitude of the signal modulatiaghtimake up around 10 per cent of
the incident signal flux, the simulated noise described hendd correspond to an observational
combined signal-to-noise of around 33 and 10.

In Figure 3.20 the noise level is comparable to the speaeddge, and we see the optimal
base choice clearly picked out by themetric. Lighter pixels indicate higher (and thus better)
values ofA. For comparison, Figure 3.21 gives the RMS of the window fimncas a function of
geometric base for the same dataset. Figure 3.22 illustthgedegradation of the periodogram
under the #&ects of extreme noise. Under these conditions, the choigeahetric base is much
less important, because the amplitude of the noise is tfpicaich greater than the amplitude of
the spectral leakage.

The conclusion is that noise is not a contributing factorhi ¢hoice of optimal base for
standard astronomical applications.

3.6.3 A

The existence of an optimal geometric base is generallyftnuany number of datapoints. How-
ever, there are some interesting qualitativfedences. Figures 3.23 and 3.24 plot the three-
dimensional space of possible power law base againstuelpériod in terms ofA for the 12
and 1000 observation datasets.

The critical feature at all dataset regimes is the presehadght vertical band of optimal
bases, for which the value &fis maximised. The optimal base shows no variation with perio
because it is governed solely by the window function, whectisielf independent of the signal. In
all cases, optimal bases lying above this limit produce ptibb@l samplings. The precise value
of the optimal base depends on the number of observationsth&a = 1000 dataset of Figure
3.24, the lightcurve has been sampled with many more dattgptiian the 200 uniformly spaced
observations required to achieve Nyquist sampling. Inghigtion the result that linear sampling
provides the best coverage of the period range is recovered.

If the number of observations is small, as in Fig. 3.23, thélegree of structure is intro-
duced to the base-period plane, because the size of the gapsam observations is large enough
to allow poor folding for some period ranges. Thifeet is simply a manifestation of the degree
of coarseness of the sampling. The areas of poor phase gevappear as long dark swathes that
grow in width as the period of the signal approaches the ength. As the number of observa-
tions in the geometric series is increased, these gapsshithough very fine structure can still
be discerned even for the= 1000 dataset.

The geometric base that maximis&$or a given number of observations is that which gen-
erates a sampling distribution that best covers the defieggiency range. By placing observa-
tions geometrically, broader frequency coverage can teinmed, at the expense of detailed cover-
age of narrower frequency bands. Without adequate brogddrey coverage, aliasing problems
dominate the periodogram, as previously discussed foritear case. Thus the ideal geometric
base represents the balancing point between sharp perioduities and a generally poor phase
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Figure 3.20:Afor anN = 100 ordered geometric lightcurve with noise equal to 30%efsignal
amplitude, as a function of geometric base and injectechsigequency.
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Figure 3.21: RMS of the window function, as a function of getne base, foN = 100. The
optimum value isx = 1.032.

coverage that produces power over a wide range of frequendias the spacing at which the
maximum value of the spectral leakage falls to the level eftthckground noise.

A higher geometric base corresponds to a greater clustefimtata points towards one
end of the observing run (for timestamps generated from Ejd0, this clustering occurs at
the beginning of the run), which alters the frequency samgpin favour of smaller gaps. This
is beneficial until the point at which the gaps become so sthatl a disproportionate number
of very high frequencies have been sampled, at the expensevefage at lower frequencies.
Naively, one might expect this limit to occur when the sizéhef first gap is around half the width
of the minimum period of interest. However it was found erngpilty that in fact the optimum
choice of geometric base has a minimum sampling frequenogwhat smaller than this number.
This is consistent with the descriptions in the literatuiscdssed in Section 3.1.3, where it was
shown that it is possible to accurately identify smalleliqués than expected.

An intuitive way to visualise what is happening is as follo@nsider a sampling of only
two points. This provides only one gap, and hence only ongpkatrfrequency in the resulting
Fourier transform. If a third point is added, however, iteratcts with both of the previously
placed points, producing a total of three frequencies. ¢t far n observations, the total number
of frequencied= sampled is a triangular number (the additive analogue dftterial) given by

F=(n-1)+(h-2)+...+1 (wheren>2) (3.15)

Thus if the smallest gap is exactlyfBuaient to sample the highest frequency of interest,
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Figure 3.22:Afor anN = 100 ordered geometric lightcurve with noise equal to 100%hekignal
amplitude, as a function of geometric base and injectedasigequency. High noise dominates
the periodogram, washing out structure in the plane.
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Figure 3.23:A for a 12 point ordered geometric lightcurve, as a functiogedmetric base and
period.
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Figure 3.24:A for a 1000 point ordered geometric lightcurve, as a functibgeometric base and
period.
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then that frequency is sampled, but only once. But if this igggpmewhat smaller still, then the

highest frequency is sampled several times by the gaps betm@n-adjacent points. The price is
that the very smallest gaps are sampling some frequengbsthiihan the regime of interest. This
means irrelevant frequencies are being acquired at thenegpa coverage in the desired range.
Hence the position of the optimum base is a traffedmlancing small numbers of useless high
frequencies with the additional useful frequency covetagé observations provide.

This picture also explains the roughly triangular regioropfimality in Figure 3.24. For
any choice of distribution, including linear or random, thajority of the covered frequencies lie
at the mid-range of the period search space. Simply pute twer only a few very short and very
long frequencies. This means that mid-range periods havéeht frequency coverage, and are
the most resilient if the geometric base is increased. & @ses an interesting possibility: since
for any distribution the mid-range of frequencies is rathiermilar, the distinctions between sam-
pling strategies are largely governed by the extreme fregjgs. Therefore slfling a geometric
sampling, preserving the individual smallest gaps but ghenthe set of mid-range gaps, is an
interesting idea. It is explored in the next section.

3.7 Randomised geometric placement

Given the favourable properties of a standard geometricpbag) a good question to ask is
whether the order of the sampling matters. The choice ofisganay be preserved while modi-
fying the order in which observations take place. This is\edent to shiffling the gaps between
observations. One motivation for doing this is that it akowdividual observations to be placed
with much more flexibility than an ordered geometric spacgrgatly easing scheduling problems.

Figure 3.25 plots the variation of RMS with geometric baseaf@5 point reshfiled geo-
metric spacing. For comparison, the ordered geometridrspécoverplotted (dashes). In general,
a randomised geometric spacing has a slightly higher RM® tia equivalent ordered spacing
over the range of optimal bases. Figure 3.26 shows the wirfdaation for the base with the
lowest RMS. It should be noted that each random realisatarith own unigue window function,
and that for small values dfl the RMS values can vary markedly from run to run. However, the
range of variation in RMS across the space of possible ran@aifisations shrinks rapidly with
increasing\.

The diferent behaviour between the ordered and randomised georsgficing is more
clearly illustrated in Figure 3.27. The optimal range ofdsmsemains almost the same as for the
ordered case. In general, the smoothness (as measuredRyitealue) of the window function
of the best randomised geometric spacing is not quite as getlde equivalent ordered spacing.
However, the randomised spacing degrades much more smaedgthlincreasing geometric base
— for sub-optimal choices of the geometric base, a randaispacing out-performs the ordered
spacing. This has important implications for observinggpaonmes in which the total number of
observations is a highly dynamic quantity which cannot beueately predicted in advance. In
such a context, choosing a randomised geometric spacinfghatiow the observing programme
more flexibility with the total number of observations andittspacings, while seeking to optimise
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Figure 3.25: RMS as a function of randomised geometric bfageN = 25 (solid line). For
comparison, the ordered geometric spacing has been ottetpldashes).
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Figure 3.26: A typical window function for an optimum randiged geometric sampling of 25
data points, wherg = 1.128. The RMS is 0.025.
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Figure 3.27: Randomised geometric base as a function of RMI\ = 100 (solid line). For
comparison, the ordered geometric spacing has been otterp(dashes).

the schedule based on the current estimate of the run sizduaiation. Such an algorithm could
form the basis of aadaptive scheduling agent, an autonomous software entity which encapsulates
sampling knowledge and attempts to exploit it in a real werigironment. Chapter 4 describes
such an algorithm.

3.8 Practical application

Figure 3.28 presents the optimal geometric base, found bymising the RMS of the window
function, for each of a range of randomly respaced geoms#iupling scenarios. By taking
the period range and run-length of interest, convertingntieto a relative limiting frequency,
and then estimating the total number of observations to be#gemihe ideal geometric base for
different observation regimes can be found. Expressing thérgrfrequency in units ofy, and
substituting Equation 3.1 gives

(L) _ 2Ty _ 2ve (3.16)

YN N N
As an example, an astronomer with access to a robotic neig/pt&nning a 3 week observ-
ing run, searching for periods ranging from 5 hours to 10 ddyss corresponds to a minimum
relative period of 0.0099, and thus a maximum limiting rie@afrequencyv g of 101. If the total
number of observations is likely to be around 100, themwy) ~ 2. Applying the lower curve in
Figure 3.28, the ideal sampling base is found to lie at ardu@a.
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Figure 3.28: Optimal geometric bases, as determined bynmimi RMS, for datasets spanning 10
to 500 datapoints. For a relative maximum limiting frequen€ 2 (lower panel), optimal bases
tend to be closer to linear sampling than an equivalent sampixtending over a much higher
dynamic range (upper panel). Simulations out to a relatiesgimum limiting frequency of 12.5
show almost no deviation from the optimal bases calculatethE vima/vn = 5 case.
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Although Figure 3.28 has, in principle, to be recalculatadefich particular value ¢#/vy),
in practice no change was found in the set of optimum basexfative maximum limiting fre-
quencies greater than 5, and the optimal minima afgcgntly broad that crude interpolation
should stfice for smaller values. If the relative limiting frequencyfésind to be below 1, then
enough datapoints exist to sample evenly. No further opairon is required.

Thus the observer should apply the following procedure fitdlan observing schedule.
The signal range of interest must be identified, and theylikele of the dataset and its duration
estimated. This allows the optimal geometric base to beitzibd. Having ascertained the optimal
base, Equation 3.10 may be used to calculate a series of/abeartimes. The resulting gaps may
then be reordered as desired as the run proceeds, for examagieommodate practical constraints
such as weather conditions or telescope maintenance, aciliddte a single night's intensive
coverage during a period of dark time.

3.9 Conclusions

The work in this chapter has sought to answer the questioowftest to place a limited number
of observations in such a way as to minimise aliasifigats arising from undersampling. A series
of metrics for measuring phase covera?, (cycle count (interconnectivityN) and the quality

of the periodogramA) have been presented. The properties of various types gflsmym have
been analysed in these terms, and a detailed understarfdingersampled behaviour developed.
By applying a simple geometric sampling rule, the abilitystgnificantly improve the quality of
the periodogram has been demonstrated. This placemetaigstrautperforms previous sampling
schemes from the literature. It has the advantage thatasig ® apply at the telescope for datasets
of arbitrary size, has calculated empirical solutions fiéfedlent observing scenarios, and exhibits
surprising flexibility arising from theféects of reordering. By careful sampling the improvements
that can be made in data quality, or alternatively the savihgt may be accrued in telescope time
are substantial.



Chapter 4

An Agent for Variable Star Observing

4.1 Introduction

4.1.1 Motivation

In the previous chapter an optimal sampling technique wasgmted that was based on the ge-
ometric spacing of observations. This provides a way tordete the ideal set of observations
for a particular period-sampling problem (Saunders e2@Dg6b). It was argued that such a series
was ideally suited to a multiple-telescope paradigm bexadighe potential to observe at very
specific, widely separated time intervals, and the abibtp¥ercome diurnal breaks in coverage
by the judicious use of longitudinally distant telescopes.

However, observations are not guaranteed. In the dispatctehof telescope scheduling
users request observations, but it is up to the telescoplslgr to decide whether such requests
are honoured. Observations may still fail even when subnhitth an entirely cooperative sched-
uler, due to the possibility of telescope downtime or, maemonly, inclement weather. Thus,
any system seeking to reliably implement an optimal gedme&impling techniqgue must in prac-
tice deal with the issue of observation uncertainty.

This chapter describes the implementation of an adaptieardically determined algo-
rithm that addresses the practical problem of observing@rsasinpled, periodic, time-varying phe-
nomena. The system is an implementation of a branch of canpguaience known asultiagent
systems, a relatively young field related to artificial intelligenda the multiagent software model,
the atomic component of the system is is an autonomous emtitgble of making its own deci-
sions called amgent. Individual agents interact with one another, communigatiith each other
in order to achieve a greater goal. The general behavioureo$ystem is thus the product of the
interactions of the multiple agents from which it is comphse

A brief overview of multiagent systems follows, that higjtits only those aspects immedi-
ately relevant to this chapter. This is followed in Sectiok dy a discussion of the architecture of
the eSTAR multiagent system (Allan et al., 2004a), and thesighl network of telescopes called
Robonet-1.0 over which it operates.

Section 4.3 describes the design and implementation ofébisidn-making algorithm of
the adaptive scheduling agent. Section 4.4 describes stinggrocess, including network sim-

86
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ulations. The results of the on-sky observing run (managkghamously by this agent) are pre-
sented, and the performance of the agent is discussed iioisdch. Finally, conclusions are
presented in Section 4.6.

4.1.2 Whatis an agent?

Perhaps rather surprisingly, the question of how an ageméfised is not as straightforward as
it may at first appear. Definitions of agency tend to fall betweéwo extremes. At the most
reductionist level, an agent is any automata which behaséshas been programmed. This ex-
tremely broad definition thus includes most computatiomatesses, including ultra-fine-grained
processes such as addition. At the other extreme, agertsraseious, cognitive entities. Since no
software agents have ever been developed which would &ufith a criterion, under this definition
the entire field of agent research is inadequate.

It would seem that the first definition is too permissive to sefully applied, while the
second is so far beyond the current state of the art that ilitdaspractical use. For the purposes
of this discussion, a definition amalgamated from WooldzidgJennings (1995) and Huhns &
Singh (1998) shall be used here:

Agents are active, persistent software components, wheotepve, reason, act, com-
municate, and are capable aftonomous action in order to meet their design objec-
tives.

4.1.3 Autonomy

One of the properties which makes agentfidilt to define is the notion cutonomy. The
problem arises because there are a numberfigrdit kinds of autonomy which may be exhibited
by ‘autonomous systems’. The following are described byr$uta Singh (1998).

¢ Absolute autonomy.An absolutely autonomous agent is one which may choose gionac
it likes. In general, absolute autonomy is not a desirakd¢ufe of agent systems, because
useful agents ordinarily have some purpose envisaged lrydbsigner, which constrains
them.

e Social autonomy. Coordination with others reduces the autonomy of indivicagents.
For example, by choosing to queue at a bus-stop, an indivglues up some portion of
their autonomy (their freedom to get on the bus first), in otdecoordinate with others
attempting to board the bus. In this way, the good of the whoheaximised at the expense
of the individual. Social autonomy is the case where an aggempts to coordinate with
others where appropriate, but displays autonomy in itsgghof commitments to others
(e.g. in making the decision to join the queue).

¢ Interface autonomy. To perform useful functions, agent autonomy is typicallpstoained
by an API (application programming interface). Interfackomomy describes the level of
autonomy hidden behind the API of an agent — what the agentlvamse to do subject to
obeying the API. It is therefore autonomy with respect teinal design.
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e Execution autonomy.The extent to which an agent has control of its own actiorts isvel
of execution autonomy. This flavour of autonomy arises beeaun agent that is controlled
to some extent by a user or other process may appear to beoeudas to other agents,
but is clearly less independent than an uncontrolled agemexample of the constraint of
execution autonomy is an e-commerce agent that requesteatson from a user before
proceeding to complete a transaction (Chavez & Maes, 1996).

e Design autonomy. The extent to which an agent design is constrained by oufaitters
is described by design autonomy. For example, communitatith other agents may re-
quire an ability to represent beliefs, or for communicatiom be implemented in a specific
language. The design is therefore constrained by thes@eatgnts.

4.1.4 Multi-agent systems and other fields

The field of agents overlaps a number of other areas of comgcience. It is therefore useful to
describe how agentsfiier from other areas of research.

¢ Objects. Agents and objects seem at first sight to be rather similajec®are defined as
‘computational entities that encapsulate some state, ldeeta perform actions, or meth-
ods on this state, and communicate by message-passing’ldidyz, 2002). However,
there are three mainftierences between the agent and object models. Firstly, ohijéets
may exhibit autonomy over their internsthte (through the use of public and private vari-
ables, for example), they exhibit no control over their deghaviour — that is, they do
not possess any degree of execution autonomy. Secondlgbjbet model has nothing to
say about reactive, proactive, or social behaviour — allfeeyures of agent systems. Fi-
nally, multi-agent systems are by definition multi-thredydeoncurrent systems, possessing
many threads of control. Critically, an agent encompadsesvn thread of control. While
some form of threading is commonly implemented in obje@fied languages, it is not a
requirement of the standard object model.

This is not to say that agents cannot be implemented in arcebjinted manner. The
agent abstraction is simply a higher level view of the syséeahitecture, and is concerned
with different issues.

¢ Distributed and concurrent systems.As described above, multi-agent systems are a subset
of concurrent systems. Therefore all the problems assatiaith concurrency, such as
deadlock, synchronisation, resource sharing and so otsaresaues in multi-agent systems.
However, the focus of the two fields is ratheffdient. In particular, multi-agent systems
frequently require synchronisation to take place dynalyicat run-time. Also, because
entities in concurrent systems typically share a commom, goablems of negotiation and
cooperation with other self-interested entities are na@dure of the concurrency field.

¢ Artificial Intelligence (Al). There are two main flierences between the agent field and the
broader field of artificial intelligence. Firstly, Al is lagty concerned with the components
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of intelligence. These include learning, understandingnming and knowledge represen-
tation. Agent systems are concerned with the integrated fiaghine — how to build an
autonomous, decision-making agent, and interact suaglysgfith other agents to solve
problems. It turns out that it is not necessary to solve thien@rous) problems of Al in or-
der to build successful agents. Secondly, multi-agenesaystare concerned with problems
of societies — cooperation, coordination, negotiation, and so on. Altheditionally taken

a much more reductionist approach, concentrating on theiéhl, and consequently has
little to say about these problems.

e Web and Grid services.The fields of Web services and Grid computing are concerntd wi
solving the problems of integrating heterogeneous regsuaiad processes in complex, dy-
namic, massively distributed systems (the Internet andahieus Grid environments). They
overlap with agent systems in areas such as concurrenoyroesbrokering, trust, commu-
nication, wrapping of legacy components and reaction togba of environment. However,
Web services are much more like objects than agents. Thppmdgo external requests,
and do not display behavioural (execution) autonomy. Therotlifference is situational
— agent systems need not be based inside Internet or Gricbanvents (although this is
likely to become the dominant trend within the field). Mostlué successful agent projects
to date have been bespoke applications situated in veryfispgo/ironments such as indus-
trial processing and air tfiac control, for example (Jennings et al., 1996; Ljunberg &asic
1992).

4.15 Reactive architectures

Reactive or situated approaches to agent-building arga f rejection of the classical Al ap-
proach of logical or symbolic reasoning. Authors such asoBso(1991) and Rosenschein &
Kaelbling (1996) propose that thevironment in which an agent system is situated is a critical
feature of intelligent, rational behaviour, and cannot be@med from the internal agent archi-
tecture. In particular, intelligent behaviour can be vidves a function of the interaction of an
agent with its environment. This radical idea has given tisthe field ofemergent systems —
systems built from individual components which do not eithibasoning capabilities, but which
interact with each other and the environment to produce mmtelligent behaviour. This idea
of ‘intelligence without reason’ (Brooks, 1991) takes asilitspiration examples from the natural
world such as ant colonies and bee societies, as well adagical ideas such as theories of group
behaviour (such as crowd motion) and large scale trendssenxiety (such as the emergence of
fashions or fads).

In physics, it has long been understood that non-trivialergmnt behaviour can arise from
systems governed by relatively simple rules. Macroscopienpmena such as phase changes
arise as a consequence of the dimensionality of the systditiharfiorm of the interactions between
components, irrespective of the individual propertiedhobe components. Thus we observe phase
changes in liquids and gases, but also in magnetism and doeytlof inflationary cosmology
(Guth, 1981). More recently, statistical physicists andnetnists have begun to apply the study
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of large-scale systems to theories of society, and havewksed phase changes in properties such
as marriage statistics (Ormerod & Campbell, 1998) and Heetdipping points’ - the way that
abrupt social changes take place, in an epidemic-like mg@uhelling, 1978; Gladwell, 1998).

4.1.6 Pros and cons of reactive agents

Adopting a reactive agent architecture has a number ofctitteafeatures. The architecture is
conceptually simple and computationally extremely ecaiedivecause there is no computational
reasoning taking place). It is a robust architecture, b&eaoulti-agent systems constructed using
this model tend to be tolerant in the face of dynamic, unagegavironments (the loss of a single
ant has a negligible impact on the performance of the colag avhole). It neatly sidesteps
the issues of individual agent intelligence by consideiimgjead arising emergent behaviour as
the mechanism for intelligent action. Finally, it is an elagand novel architecture which draws
parallels with a wide variety of successful distributedteyss in nature.

However, there are some serious limitations to the reaafiypeoach to agency (Wooldridge,
2002). Perhaps the most serious is that, in general, reaatjents do not model their environ-
ments, and consequently cannot make decisions based onyhistpredict the future. Conse-
guently all actions are inherently short-term, and aredbasgirely on local information (informa-
tion about the current state of the environment). Additilgnaurely reactive agents do not learn
from experiences, and therefore cannot improve performarer time. The other major problem
arises from the reliance on emergent properties to solveriidems of the multi-agent system.
This overall emergent behaviour isflitult to predict, and consequently engineering agent sys-
tems to fulfill specific tasks is hard, potentially reduciogatprocess of trial and error that can be
uncertain and time-consuming. Indeed some researcheesdgimed that emergent properties
cannot be derived, even from a perfect understanding ofitination, with less computation than
direct simulation (Darley, 1994).

4.2 The eSTAR project

The eSTAR project (Allan et al., 2004a) is a multi-agent system funded as phathe UK e-
science programme, and aims “to establish an intelligdmtio telescope network” (Allan et al.,
2006). The project is a collaboration between the AstrogsyResearch Institute of Liverpool
John Moores University, the Astrophysics Group at the Usitye of Exeter, and the Joint Astron-
omy Centre in Hawaii.

There are two main types of agent in the eSTAR netwddker agents act on behalf of
an astronomer, and are responsible for carrying out indalidcience programmeblode agents,
sometimes also callesmbedded agents, provide the interface to observational resources such as
telescopes or astronomical databases. A user agent typsegks to fulfill its scientific mission
by interacting with multiple node agents and negotiating doitable observations. Figure 4.1
illustrates the high-level view of the system.

le-Science Telescopes for Astronomical Research
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Figure 4.1: A high-level view of the eSTAR architecture. tsgents run an observing programme
with parameters specified by a scientist. Node agents prdkiginterface to the telescope control
system (TCS) which implements observation scheduling disasdower-level telescope control
functions.

4.2.1 Communication architecture

eSTAR is a peer-to-peer software network that overlays aenlying physical collection of dis-
parate telescopes. The architecture is based on the sefasa service model, where individual
code components are made accessible as web services. Mtleh @dmmunication that would
normally be handled internally by variable passing is @i passed using transport protocols
such as SOAP or lower-level socket connections. This apprpeovides a generalised abstrac-
tion to the physical location where the code runs, allowimgdode components to be arbitrarily
distributed across a physical network. The disadvantagleeofipproach is that interprocess com-
munication is more complex than in a traditional monolitbazle, and the possibility of commu-
nication failure makes it impossible to ever guarantee es&fal message-passing, necessitating
additional layers of error-handling code.

In the sense that logical components may be physically atgghthe architecture is highly
decentralised. However, at the level of individual scigpicgrammes the system is centrally con-
trolled and managed, with a single instance of a user agemagiag a single science programme.
Individual user agents interact with many node agentsndfieglobal broadcast (one-to-many),
but no currently implemented user agent communicates wigrother. Similarly, individual node
agents are unaware of one another, but typically interaitt many user agents on a one-to-one
basig. Thus in general one-to-many (user agent—node agent) adliddstional one-to-one com-
munication between members of these two distinct agent lptpns is typical (see Fig. 4.2).
This type of communication scales well because each new ages onlyn new communication
paths, wheren is the number of agents in thather population. Thus the communication load
scales approximately linearly with additional agents {cast this with the polynomial increase in

2There is no architectural limitation that would prevent eabents from communicating. A proof of concept
experiment, where the FTN and UKIRT node agents commurdditectly, has in fact been performed (Allan 2007,
priv. comm.).
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Figure 4.2: Types of communication in the eSTAR system. ldgents and node agents can both
send point-to-point messages.( User agents can also broadcast the same message to all node
agents If). Adding new agents to the pool increases the number of canwation paths by,
wheren is the number of agents of tlother population €).

communication overhead in a general many-to-many agetdrays

4.2.2 User agents and node agents

User agents in eSTAR are rational and self-interested, eskl @nly to fulfill their science goals.
Internally they are mostly implemented as partial-plannégjewith a set of simple behaviours
specified for diferent situations. Such behaviours include negotiating) artd selecting node
agents for observations, requesting follow-up obseraatisending emails or SMS text messages
to an astronomer, and responding to real-time alerts. Tapta# scheduling agent (ASA) is an
exception. It implements a combination of hardwired betawifor particular scenarios, and a
dynamically calculated observing strategy based on safidesbservations to date.

A node agent does not itself implement self-interested \iehg but it does convey the
state of the telescope scheduler that it represents. The ageht provides an indication of the
scheduler’s inclination to perform observations througbrs responses to individual user agent
queries. The node agent also conveys the ultimate outconiesefvation requests. In this way the
node agent appears to a user agent to be both rational aridteedfsted. It provides information
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about its ‘state of mind’ and indirect information abouttitge ‘attitude’ by the actual observing
actions it performs. The point is that although user agam®atly perform no modelling of node
agents in terms such as beliefs, desires and intentions,assomdelling is entirely feasible.

4.2.3 Robonet-1.0

The three Robonet-1.0 telescopes (Bode et al., 2004) arei®icalielescopes of identical design
manufactured by Telescope Technologies Limited. The piver Telescope was the prototype
instrument, and is situated on La Palma in the Canary Islamtie Faulkes Telescope North is
located on the island of Maui, Hawaii. The Faulkes Telesc®path is located at Siding Springs
Observatory in Australia. The telescopes run identicglatish schedulers, and accept observation
requests from users as well as eSTAR user agents. The Fael&ssopes also dedicate part of
their available time for use by schoolchildren around theldvoObserving time for astronomers
on these telescopes is allocated by a time-allocation ctteertbased on scientific merit.

The Robonet-1.0 telescopes are completely autonomouy.cBinaot be compelled to take
the observations of a particular user agent (or user). Tleedepe scheduler seeks to optimise
the usage of the available time for all observing projeats, @ such reserves the right to refuse
observing requests, or to default on existing queued régudshis situation is very similar to
the paradigm example of a computational resource in Gridpetimg, which is typically owned
by a service provider anxious to retain control of their aace. Nodes in a computational grid
retain the right to refuse job requests, and to default ostiexj jobs subject to quality-of-service
constraints. The constraint of resource autonomy is vilatause it allows service providers
to join the network safely — there is nothing to lose. This Eiadamental tenet of the eSTAR
approach, and for this reason the network is sometimesidedas an ‘Observational Grid’ (Allan
et al., 2003).

4.2.4 Implementation of the eSTAR network

The eSTAR code is written entirely in object-oriented P¥ral( et al., 2000). The eSTAR agents
communicate with one another using the XML dialect RTML (Rgracker et al., 2002; Hessman,
2006b), with network alert messages implemented using tB&wént Protocol and Transport
standards (Seaman et al., 2005, 2006). RTML provides aatdised and carefully designed set
of elements that aims to allow an observation request to bedpecified. The actual transport
protocol used for conveying the XML from node to node is SO8Pr(ple Object Access Protocol)
over HTTP. SOAP is a well-known application layer protocekigned for the transfer of data
between web services. It provides a robust way to send messeliably between network nodes.

The HTN protocol

If RTML is the language of the eSTAR network, then the HTN poad (Allan et al., 2006) is

its social customs. It specifies the steps that any HTN-camiptesource should pass through in
order to negotiate the use of that resource with a user ageégtire 4.3 illustrates the process.
The first two steps of the protocol are optional, and are nptémented by eSTAR. The first step
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Figure 4.3: Sequence diagram illustrating the eSTAR implatation of the HTN protocol, for a

single agent-agent negotiation. Communication begink wiscore request from the user agent
to the node agent (dashed arrows indicate optional prottepls not presently implemented in

the eSTAR system). A non-zero score response leads to arvatise request, which is formally

acknowledged. The remaining steps are performed asynolstyn Update messages are sent

for each frame of the observation request (an eSTAR corenrt the content and triggering

of updates is not defined by the protocol), followed by a ceticlg message when the request

is completed. The message type indicates whether all (feedd, some (‘incomplete’) or none
(‘failed”) of the data were successfully acquired.
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allows for the dynamic discovery of new resources by query@n external registry service of
some kind. The second step (‘phase 0’ in the terminology efolbiservatories) allows resources
to return capability information that could prove usefulaio agent seeking a particular resource
configuration, for example the presence of a spectrografiteaability to observe in the infrared.
The eSTAR sequence begins with the third step, an optionatésrequest’, which is an RTML
message from a user agent that specifies a possible futueevatisn. The telescope responds
with a ‘score reply’ document, which provides a score betw@eand 1 indicating some sort of
likelihood-of-success function for the observation. A@és a special value that indicates the
telescope is certain the observation will not succeed. ihigpically because the observation
parameters are not resolvable (e.g. the object is not gisibthe requested time), or because the
telescope is aware of additional considerations such asesming downtime that will render the
observation impossible.

Based on the score, the user agent may decide to submit teevatisn request to the tele-
scope. An acknowledgement (or rejection) message confirthimagreed observation parameters
is sent back to the agent.

The remaining messages are sent asynchronously. ‘Updassages are not defined or
mandated by the HTN standard. Because a single observatijoiest can involve multiple expo-
sures, potentially widely-spaced, the eSTAR implemenatihooses to send an update message
back to the user agent after each successful frame. Thiwsalloe user agent to gain timely
feedback about the progress of individual components obtiservation.

Finally, the observation request resolves. The HTN prdtgoarantees observation ter-
mination, either because all frames were completed sutdigsdecause some of the frames
completed successfully, or because at the expiry time ofdhaest none of the frames were ac-
quired. These situations are indicated by the ‘observatiortomplete’ and ‘fail’ documents,
respectively.

Having described the eSTAR network topology in terms ofvgafe, hardware, and inter-
agent communication, | now move on to discuss the adaptivedsding agent itself.

4.3 Building an adaptive scheduling agent

This section describes the details of the eSTAR adaptivedzding agent (ASA) that implements

the theory of optimal sampling discussed in Chapter 3. 8eai3.1 discusses the internal archi-
tecture of the ASA, and provides the details of how messagegenerated and received. This
lays the groundwork for the explanation of the adaptive slenimaking capabilities that give the

agent its ‘intelligence’, investigating the assumptionsl @esign principles (4.3.2) and then the
design and implementation of the core algorithm itself {®es 4.3.3-4.3.7).

4.3.1 Architecture

Figure 4.4 shows the detailed architecture of the adaptiieduling agent. The core decision-
making algorithm is a multi-threaded Perl process thatrdetees when to observe, translates
between abstract theoretical timestamps and real datesaes] and monitors the progress of the
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Figure 4.4: Architecture of the adaptive scheduling agéie multi-threaded ASA core imple-
ments the adaptive evaluation engine, a SOAP submissiolanitn for making observation
requests, and a TQIP socket listener for receiving observation feedbackrmgation. Dat@ime
information is abstracted by a time server, which can bela@ted to allow fast simulations to
be performed. Actual RTML document construction and HTN@erol negotiations are handled
by the user agent, a web service that implements a SOAP densubmitting observations and
receiving asynchronous messages from the node agent. Weymus messages trigger a run-
time code evaluation based on the observation type, altparhitrary response behaviour to be
defined for diferent observing programmes. In this case, the polymorgdbiktstrips pertinent
information (primarily the observation timestamp) frone thcoming message and pipes it to the
dedicated socket listener in the ASA core. In this way thenageceives observation feedback as
the run progresses, allowing direct optimisation of thareitobserving strategy.
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observing run. Internally, the decision-making processwdstract timestamps, normalised such
that the run begins with the first successful observatioimastamp 0, while timestamp 1 repre-
sents the requested run end-point (e.g. 5 days in the acuairmed experiment). Abstracting
the times in this way makes the decision-making processecétfent much easier to understand,
because the log files, which contain the detailed record efatient’s train of thought, can be
directly compared with the gap spacings predicted by theory

The agent’s current knowledge of the run is stored in a ned@ hash that is shared
between all threads. Updates to this data structure byiduhl threads must be carefully co-
ordinated to avoid race conditions. The ASA core runs thineeaids of control. Thevaluator
thread polls the memory at regular intervals. It tracks the stiatsof the run (how many obser-
vations have succeeded, for example), and takes actiohgifotm of new observation requests)
depending on circumstances. Observations are requestpdshing the parameters onto a syn-
chronised data structure calledrmead-safe queue®. The submission thread continuously moni-
tors the queue, and dequeues the parameters to make anatiosergquest. A third thread, the
listener thread, monitors an internal socket connection for informatioowicompleted requests,
and updates the shared memory as necessary.

Observation requests are made by remote method invocdtitie aser agent web service
running on the same machine. As previously described, the agent makes scoring requests
of each telescope (by way of the node agent embedded at ¢ajhasid then picks the highest
non-zero score. A ‘request’ document is then submitted. ddndérmal conditions, a ‘confirma-
tion’ document is returned. This indicates that the obdemaequest has been accepted by the
telescope and is now queued.

Eventually the observation request is resolved. Althouglitiple exposure observation
requests are possible, the ASA always requests singleattieers, as this maximises the amount
of scheduling control retained by the agent. Either the nlagien was successful, and an ‘obser-
vation’ document is returned, or the observation did notead, and a message of type ‘fail’ is
returned. The return document is received by the user agelmtservice, and scanned for obser-
vation type. The agent compares the type to the set of typesits how to deal with, and if there
is a match, the code for that type is dynamically loaded amdw@wed. This plug-in architecture
allows custom actions to occur forfféirent types of observation, allowing a single instance ef th
user agent web service to handle RTML marshaling for martindisobserving programmes.

The algorithmic block for the ASA extracts the critical péscof information from the
incoming RTML document. These include the requested stad,tand if the observation was
successful, the actual start time of the observation, glédrom the FITS header included in
the ‘observation’ document. Any error messages are aldeg@icp here. This subset of key
information is then transmitted by a simple socket conoecto the listener thread of the ASA
core code. In this way the loop is closed.

Shttp://perldoc.perl. org/Thread/Queue.html
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4.3.2 Principles of algorithm design

The environment in which the adaptive scheduling agentaipsris inherently uncertain. This
fact was the fundamental design constraint from which therdele attributes of the agent were
derived. Four principal ideas drove the design.

¢ Robustness. Building software that will operate reliably over a netwaskcomplicated.
Therefore a guiding principle was to keep the algorithm e as possible, to minimise
the possibility of unforeseen interactions between systemponents. With a distributed
system it must be assumed that any remote part of the systeraitat any time, either
temporarily or permanently. The algorithm needs to be ablmake a reasonable attempt
to continue under such circumstances, and to ‘do the rigigth

e Cynicism. Although all the agents in the eSTAR system are under ouralprand so in
principle trustworthy, in practice it is much safer to assumothing binding about events or
entities external to the main code. The benevolence asgumpamely that agents may act
for the greater good of the system, at their own expenset igtid here. This is because the
telescope schedulers, and by proxy the actions of the naslgsagre not under the control
of eSTAR. Their goal is to optimise the schedule in some gty satisfactory way, which
may or may not coincide with the goals of the user agent. Thimast important with
respect to the scoring information returned by the obsgrviodes. Because there is no
penalty to the node agent for providing an inaccurate sa¢bege is no compelling reason
for the user agent to trust that value. Even if we believedhthte was acting in good faith,
we still have naoa priori idea of the accuracy of the information being supplied. &fwe
external information should be considered, but not relipdn) and in general we need to
consider whether we can adequately handle the worst casarazébeing supplied with
false information).

e Stability. A poor algorithm would require chains of specific events tabecessful in order
to achieve its design goal. If the future is highly uncertdiren an algorithm that is reliant
on that future to succeed is risky and fragile. Ideally, tleefgrmance of the algorithm
should degrade gracefully as the environment becomes nuatiteh so that it continues
to make a bestfeort to succeed. In practical terms, this means that pauias need to
be optimal, i.e. that whatever the agent has achieved tordagds to be the best set of
observations that it could make under the circumstancese sive cannot guarantee future
observations at the temporal positions we specify. Thisistraightforward. The optimal
sampling technique described in Chapter 3 says nothingtdioouto go about the practical
business of acquiring observations. It implicitly assumésbservations will be successful.

e Adaptability. Finally, the agent needs to constantly evaluate the custate of the run, and
the observing conditions, and alter its behaviour as nacgsa simple example illustrates
this point. The agent is aiming to acquire a set of obsematihat are spaced by both
small and large gaps, of particular sizes. If the agent hgsiged many small gaps, how
should it alter its behaviour to try to achieve larger gapdvat¥hould it do in the opposite
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Figure 4.5: Calculating the optimalityy, of a set of observations. The optimal and actual sets of
gaps are sorted, smallest to largest, and each gap comjdredum of fsets isw.

case? Indeed, how should it adapt to the general problem ef afgyaps that are not
quite correct? Another plausible scenario is that of a teles that consistently provides
low scores, but still manages to complete observationsesgbgly. How should that be
handled? The agent programming approach explicitly asswmeertainty and change, and
defines a feedback cycle to interact with the environmentw kosuccessfully implement
useful adaptive behaviour is therefore of critical imponda for the success of this approach.

4.3.3 Defining optimality

If an agent could place observations at any time and be giem@of success, then the choice
of observations is clear: they should be placed with the gegiags indicated by the optimal
sampling. However in the normal operating environment mabgervations can fail. When an
observation eventually does succeed, the gap between likatvation and the last successful
observation is unlikely to be of an ideal length — but it cob&lclose.

What the agent requires is some unambiguous way to deteimoiwenell its completed
spacings compare to the optimal set of gaps. It is not passibsimply compare the two sets
of gaps and ‘tick € perfect gaps as they are obtained, because even a ‘cootestrvation is
not precisely located. Telescope overheads mean that atiggaan acceptable window for the
observation must be provided, and the observation can take pnywhere within that window.
Some sort of fuzzy criterion could be used, but this must l@iaiy defined and is somewhat
arbitrary.

The optimality criterion, w, is defined by the following simple series of operatfans

1. Order the set of optimal gaps, from smallest to largest.
2. Order the set of obtained gaps, from smallest to largest.

3. For each obtained gap, find thifset of that gap from the optimal gap at that position in the
set.

“Note that this is just one of many possible choices of opiipéinction. This particular formulation was chosen
because of the desirable properties outlined in the text.
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4. The overall optimalityw is the sum of theseftsets.

Figure 4.5 illustrates this process. The optimal gap sekpsessed in theoretical time,
i.e. so that the run begins at timestamp 0, and the final oasenvoccurs at timestamp 1. The
obtained gaps are scaled to the same units. If the set ofl gichestamps is in perfect agreement
with the optimal set, then the value of the optimality metsi®. There is no upper limit on the
value since the length of the actual run can exceed that afftimal sequence.

Note that the simplicity of this approach is only possibledese of the reordering property
of the optimal sequence. This allows the gaps to be comparedder of size, regardless of the
actual observed ordering.

4.3.4 Choosing the next observation

The optimality function allows potential future obsereatitimestamps to be compared. The agent
seeks to minimise the value of the optimality, which will iease monotonically as more obser-
vations accrue. The question is, given the existing set séndations, what new timestamp will
achieve this? Since time is continuous, in principle theesaa infinite number of possible futures
to choose between. Once again it is the ability to reordan@btobservations that allows some
elegant simplifications to be made. Firstly, if all reordgs of a given optimal series are consid-
ered equally optimal, then the set is degenerate with réspeeordering: for any set of gaps we
need only consider one possible reordering. The most btfafgvard is to place the gaps in order
of size. Secondly, it is apparent that any new observati@uldhbe placed in such a way as to
exactly achieve one of the optimal gaps, since anythingvetsdd immediately increase the value
of w for no gain. This insight drastically reduces the searcltesd possible timestamps.

The situation can be illustrated as follows. If there aredieservations in the optimal series,
then there are nine optimal gaps that the algorithm is airdraghieve. If it has already achieved
four of them, then there are only five possible future timagts that need to be considered in
order to gain another optimal gap. Formally, fopbservations, thigh gap of a possibla— 1 can
be created in no more tham+ 1 - j ways, wherg is the number of optimal gaps already obtained.

A third consideration cuts the problem down still furtherorSider the situation at the
very start of the run. The first observation is requested idiately. Once the agent has a first
observation, it needs to consider where to go next. The dgerda choice afi—1 ideal timestamps,
each of which corresponds to one of the 1 optimal gaps. No gap istrinsically better than
any other. In the best case, the gap will be exactly optinral,the value ofv will remain 0. For
any other outcomey will be increased. However, the crucial point is that oplitgas calculated
by comparing gaps. This means that the magnitude of thedsergaw accrued from any new
observation is directly proportional to the distance ot tjap from its comparison gap. Because
we choose to order the comparison gaps from shortest todorihés means that large gaps early
on are penalised by relatively large increasesvinin fact, at this early stage in the run, even a
large gap corresponding to one of the required optimal galbgharease the value ofy, because
it will be compared to a small gap. Thus the agent is driverhtmse theshortest optimal gap.

This resultant behaviour is an important feature of theroglity definition. It makes good
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practical sense to go for the shortest useful gap at any given because the agent must wait until
that timestamp before it can discover whether the observatctually happened (and hence the
required gap collected). Going for a longer gap is much miskg,rbecause the agent is aiming
to make the largest number of well-placed observationsilplesi the finite space of the ideal
length of the run. This means it is imperative that the losgioftime to the uncertainties of the
observing process is minimised.

However, it is not sfficient to always simply track the shortest ‘uncollected’ gapserva-
tion after observation. This would indeed be the best gjyaifleobservations were always guar-
anteed to succeed, but in practice two types of forced demsmfrom optimality can be expected
to occur in a real observing environment. The first is thatsdimestamps are known prior to
observation to be inaccessible, and hence are guarantésti(®g. because it is day, the target is
not visible, the target is too close to the moon etc.). Thisrination is passed back to the agent
in the form of a score of 0. The second is that some fractiorbeéovations that were expected to
succeed will in fact fail ‘on the night’, due to uncertairgtim the observing process itself (weather,
telescope load, etc.).

These failures force the creation of sub-optimal gaps irotiserving pattern. The specific
shape of this observed pattern drives the choice of next Gas is because sub-optimality is
defined as a continuous spectrum — a gap of a similar size t@tmal gap is ‘more optimal’
than a gap of a very fferent size. Thefect of failed observations is to increase the average size
of gaps in the observed set. Although these larger gaps wepanned, they can nevertheless be
useful, since they will be nearer in size to the larger gapkéroptimal set. It may therefore make
sense for the agent to aim for a smaller gap, because thishwilit the larger gaps along in the
optimality comparison, improving the overall optimalitfitbe series. In other situations however,
it may make sense for the agent to choose a slightly longerayam if it has not achieved all the
shorter gaps preceding it, because too many short gaps wilem the optimality of the longer
end of the run.

A simple worked example demonstrates the functioning ofatigerithm. Figure 4.6 de-
scribes an idealised observing period, divided into intéigeesteps between 0 and 20 for simplic-
ity. Assume the agent seeks a six point, approximately geamsequence (Step 1)). The set of
gapsGqpt that describes this sequence has a perfect optimality of Gefinition.

Imagine that some observations have already been obtaith 2 shows the position
of three prior observations. One of them is in a sub-optirnahtion, giving rise to a non-zero
optimality. The agent’s problem is to decide where to obserext. It considers each possible
optimal gap in turn from the s&qp. In steps 3.1 and 3.2 gaps of size 1 and 3, respectively are
considered. The evaluation woffor these steps requires gap reordering from smallest gedsar
and the equivalent reordered timestamps are shown in thefiJine remaining gap choices do
not require reordering, since they are larger than anyiegistap.

Looking at the value ofv evaluated for each potential future gap, it is found thathef t
possible choices, a gap of 3 (evaluated in step 3.2) is thd amtenal. This gap is therefore
selected, and the observation placed (step 4).

So of the five choices, the lowest (best) optimality comesmfeboosing the second-shortest
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available gap, which in this case is the shortest uncolliegég. This is not an explicitly prescribed
behaviour; rather it is a natural consequence of minimisitngcture across the whole run, and
arises as a direct consequence of the optimality definition.

4.3.5 Algorithm summary

The continuous optimality function provides the agent tlith adaptability it needs to respond to
the changing landscape of the run-in-progress. The fumetidomatically penalises the agent for
choosing too many short gaps, but is similarly hostile todhasing of large gaps when there are
shorter, more valuable alternatives. In this way a balawndet 5 determined that unambiguously
defines the best option for the agent at any point in the rue.d8teptively simple rule sequence
for finding the optimality implicitly utilises the reordexy property of optimal sequences, max-
imises the agent’s cautiousness in the face of uncertaanty,provides a computationally cheap
and scalable way to unambiguously calculate the best cbaetion at any point. It is also stable
— a snapshot of the run at any point in time is optimal for thdiset of points, and minimises
the dfects of observation failure on the sequence. In the caserfifgp@bserving behaviour (no
failures), the optimal sequence is naturally recoveregholttantly, the degree of failure exhibited
by the network can also change dynamically without advgragécting the algorithm, because
it makes no assumptions about the stability of the netwankl, makes no attempt to model the
behaviour of the telescopes on which it relies.

4.3.6 Submission behaviour

Observation requests are made with a start and end time 4ét tainutes before and after the
actual required time. This gives the telescope a 30 minutalevi of opportunity in which to
place the observation. The rationale for these timing camgs was that a 15 minute deviation
from the required start time was quite acceptable, whilexaremely specific observing request
would be less likely to be successful. If the agent receivesoae of O from every telescope for
a single observation request, then it pauses further sginss for a period of 30 minutes (the
exact length of time is arbitrary). Although theoreticalhe agent incurs no disadvantage from
continuously requesting the observation, in practice tla€ Iplaced on the network infrastructure
and telescope server is not justified, and the agent has tiitthain from such behaviour. The
agent will continue to submit requests at 30 minute intaryaitil a request receives a positive
response. Once a request is queued, the agent moves intdirrgvetate, and will not submit
further observations until it receives a return messagieatidg the success or otherwise of the
observation. When the return message is received, the hegh@tion timestamp is determined,
and the cycle repeats.

4.3.7 ldeas not used by the algorithm

It is worth emphasising a number of things that the agent doegdo. The data are not examined,
so theA metric (described in Section 3.2.3) is never used. This ddsign; observing the Fourier
transform of the data during the experiment and changinganepling behaviour based on the
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1) Optimal sequence required:
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3) Consider alternatives:

_ 012 6

DA TTET T I TTITTTITTITITTIT] Gy =1I1,1,4]
w=0+2+2=!¢

- 01 4 8

)OI T T TEITTTITTITTITITIIT] Gy=I13,4]
w=0+0+0=C(

01 5 9

i) COT T T TTIATTTITTITTITTITT] Gy =1I1,44]
w=0+1+1=72

_ 01 5 10

VECT T T T[T T T TITTITTITITIT] Gy =[1475]
w=0+1+2=:

01 5 12
VWE TTTITTITTITTEATTITITITITIT] Gy =101,47]

w=0+1+4==¢

4) Place best observation:
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Figure 4.6: A worked example showing how the optimality ailgpon described in the text can
lead to the selection of gaps other than the shortest undirceircumstances. In step 1, the
optimal set of observations is defing@,p describes the optimal set of gaps. In step 2, the agent
calculates the current optimality, based on observatitnesdy obtained. In step 3, the possible
alternatives allowed by the algorithm are considered in.tufhe agent calculates the resulting
optimality w if an observation was placed with each of the gaps in th&ggt It is found that the
lowest optimality arises when a gap of 3 is applied (step. 3r2lact, for this example this choice
recovers the optimal sequence (with a perfect optimalit§)ofThe gap is therefore selected and
the new observation placed (step 4).
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results leads to a complex quagmire of interactions betweerobserver and the observations.
It is possible, for example, to converge on a spurious signtie periodogram, and to choose a
sampling that selectively reinforces that signal. Moréagesly, making decisions like this during
the collection of the data renders straightforward siaisianalysis impossible (Scargle, 1982;
Wall & Jenkins, 2003, Ch. 5).

The phase coverage met&and the interconnectivity metril are not used either. Al-
though they could be usefully applied to the problem, thecifipeissues that they address are
implicitly handled in other ways. The optimality criteriomplicitly deals with phase coverage
because it leads to a balanced selection of gaps, whichda®velatively even period sensitiv-
ity. The choice of run length and number of observations nigdine astronomer determines the
effective interconnectivity of the time series before the ruanebegins. These metrics are still
useful for evaluating the properties of the run after thé ffaut, unlike the optimality criterion, are
not suficiently coupled to the definition of the optimal sampling tiequately guide the behaviour
of the algorithm on their own.

One idea that was tested but ultimately abandoned was tidgrawvay for an astronomer
to specify a ‘redundancy’ parameter that would instruct algent to place observations more
frequently than required by the optimal sampling. The ratle behind this was to allow the
astronomer to provide some indication of the expectedrailate of the telescope network based
on prior experience. Many of the additional observationsildidoe expected to fail, but the total
number of observations made in a given time period would beased.

A lookahead window (a kind of decision horizon beyond whichpfans are laid) was im-
plemented to allow the placement of these ‘redundant’ easiens. Additional observations were
constrained to lie within the window, to ensure timely feackowhen the additional observations
was obtained. As more observations were completed sualigs#iie window was expanded to
allow the algorithm more freedom in its choice of timestampghis way the algorithm was able
to adapt to the actual performance of the telescopes.

Although the idea of redundant observations is conceptudpealing, no evidence was
found in any of the tests to indicate that adding such obtienaimproved the performance of
the agent. Although the number of observations completesl higher, the overall optimality
of the observed series was in every case markedly pooreardiegs of the failure rate of the
telescopes in the network. In particular, redundant olagienvs make it impossible to recover a
perfect optimal sampling even under ideal conditions.

In order to investigate the tradd¢Fdetween extra observations and poorer optimality a
lightcurve with a fixed relative period of 0.1207143 (copesding to a 1.69 day period in a
14 day run, a typical but non-integer period) was sampleti gifferent numbers of redundant
observations. Both noisy and noiseless lightcurves warergéed, and the resulting periodograms
compared. The quality of the inspected periodograms wasisigntly worse for every experiment
that made use of redundant observations. Closer analytsie €t of observation spacings showed
that the problem was that too many observations were plagbdxtremely short gaps, leading to
poor frequency sampling in the periodogram. This is the oftthe problem: demanding the gaps
be larger leads back to the optimal sampling, while demandiore observations makes the gaps
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smaller, with catastrophic consequences for the peri@ongie thus concluded that redundant
observations were not a useful concept.

4.4 Simulations

4.4.1 Implementing a virtual telescope network

The algorithm was tested in two ways. Concepts were intitdsted and refined by running
the core of the algorithm in a simplified test environment.e Tinogress of time was modelled
by a simple loop, and timestamps were generated in the rarbaddsimplify analysis. This
prototyping phase allowed ideas to be tested quickly, withinmal implementation overhead, and
modified or discarded based on performance.

Once the main features of the algorithm appeared stableggdtmoved to a second, much
more sophisticated test environment. This environmentd&aigned to provide a virtual telescope
network that would replicate as closely as possible theahctperating conditions under which
the agent was to run. This was facilitated by the highly maduleb services architecture of the
eSTAR codebase. The existing node agent code was modifieglace the backend connections
to the underlying telescope with a custom module that wouidlate some of the functions of
a real telescope. This was possible because the agentiatgractions are abstracted from the
underlying telescope implementation.

The virtual telescope makes use of thetro: : Telescope andAstro: : Coords CPAN
modules, written by Tim Jenness These Perl modules provide a convenient interface to the
SLALIB astrometry library (Wallace, 1994). Each instandédhe virtual telescope can be ‘sited’
at a diferent virtual location. This information allows the virtualescope to calculate sunrise
and sunset times, and to determine the rise and set timeithaylpoints on the celestial sphere.
In this way the virtual telescope can accurately calculatether an object can be observed at a
particular time, and use this information to return a sceqdy: To make the environment more
challenging, non-zero score replies have random valuegcleset0 and 1, and have no correlation
with the likelihood that the observation will in fact be sassful.

The passage of time in the simulation is regulated bytitme server. This is a simple
standalone process that provides the current simulatio@ ¥ia a socket interface. Internally, the
time server calculates the current simulation time by sgafie amount of real time elapsed since
instantiation by an acceleration factor, provided at sfariSince all agents in the simulation use
the time server as the canonical source for timestamps amdgticalculations, the time server
allows the simulation to be run many times faster than thewedd, enabling full simulations of
a likely observing run to complete in a reasonable timefra®etting the acceleration factor to
1 allows the timeserver to run at normal speed, and thergfiarédes transparent access to the
real-world time.

The probability of observation success is specified atugiedr the virtual telescope, and
a random number generator used to determine the succestuor & each observation at run-
time. For each observation queued at a virtual telescopetealescope periodically polls the time

Shttp://search.cpan.org/-tjenness
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server, and compares the current time with the requestedasthend times of the observation. If
the start time has been exceeded, the observation’s ssatasdlved. If successful, a fake FITS
header is generated, with the correct observation timgstdated within the header. This header
is encapsulated inside the RTML message of type ‘observdtiat is returned. Otherwise, a ‘fail’
message with no data product is returned. Using the exigBeg agent and node agent codebase
meant that at the protocol level the interaction betweernd&5domponents in the simulator was
identical to that in the real world, allowing most aspectd@fument exchange to be tested before
live deployment.

One limitation of the simulation environment was that faitas at the virtual telescopes
were not correlated, that is, periods of failure were notsegntive in time. This was not imple-
mented because of the complexity of choosing realisticetation behaviour and subsequently
inferring meaningful results from the simulations. Everthout such behaviour, the most criti-
cal aspects of the agent were able to be adequately testedrthiddess, this is an obvious way in
which the virtual telescope environment could be impro¥eddurate performance measurements
are desired.

4.4.2 Simulation results

The purpose of the tests performed in simulation was to ifyebtigs at several levels, and to
evaluate the performance of the algorithm and iterate ingrents in a tight feedback cycle.
This included analysis at the message-passing level fdoooance with the HTN protocol spec-
ification. The behaviour of the implemented algorithm waseftdly compared with the design
statement. A number of discrepancies were found and cededtlost importantly, the perfor-
mance of the algorithm under pseudo-realistic conditidizsvad a number of unforeseen corner
cases to be identified and correctly handled.

The scheduling algorithm was tested in a number of simulatezbrving runs, but the
discussion of a single experiment ifitient to illustrate the general performance charactesisti
In this simulation a 10 day, 60 observation run was attempAedhcceleration factor of 50, applied
to the time server, allowed a single 30 minute observing aintb complete in 36s. The start
of the run was set to a date of/B4/07, at which time the target was observable approximately
2/3 of the time from at least one of the three Robonet-1.0 Jitiei@ascopes. In this simulation,
in addition to the non-observable blocks (which returned¢@es of 0 to the agent), the virtual
telescopes were set to randomly fail observations at ma-tvith 50% probability (an arbitrary
fraction that seemed reasonable).

The experiment was halted after 10 days had elapsed in giorutime. It was found that
of all the observations submitted to the network, 40 hadesebed (i.e. been accepted to the queue,
and then been declared successful at some point in the secbserving window), while 50 of
the queued observations had failed (queued but not obge’tthe successful observations were
found to have close-to-optimal timestamps, subject to bseovability and success constraints.

The results indicated crudely that if the real network eibiba similar fail rate, then
a ballpark figure of approximately/2 of the observations to be completed successfully was a
reasonable expectation by the 10th continuous day of cinggrand additionally, that the spacings
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Figure 4.7: Bl Vir ephemeris from the Faulkes Telescope WNdiawaii at the start of the observ-
ing run.

between individual observations were likely to be neairopt As previously mentioned, the
chief limitation of the tests was that fail rates at the \afttelescopes were not correlated, a feature
which was found to significantly complicate performancel@ton in the real observing run, as
we shall see in the next section.

4.5 Observing with the adaptive agent

4.5.1 Observation parameters

The RR Lyrae star Bl Vir, with coordinates = 12 29 3042, = +00 13 278 (J2000, Hen-
den & Stone, 1998), was chosen as the target of the adaptieelgking programme, both for its
visibility from all three Robonet-1.0 telescope sites aedduse it has a short, well-defined pe-
riod of 0.3357 days (8.056 hrs). Additionally, at an R-banggmtude of 14.2-15 it is relatively
bright, allowing adequate signal-to-noise to be achievét velatively short exposures of only
5s. Figures 4.7-4.9 indicate the visibility of the targeinfreach site at the start of the run. These
observing windows are summarised in Table 4.1. The targedrehbility over the course of the
run is shown in Figure 4.10. The observability is defined lasréhe length of time the target was
above a horizon of 30 degrees while it was night (bounded trgra@mical twilight).

To create realistic period search constraints, the folgwparameters were adopted. To
ensure a significantly undersampled dataggty was fixed at 3. The calculation was based on
a run length of 5 days, to provide sensitivity to periods fdygn order of magnitude above the
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Figure 4.8: BI Vir ephemeris from the Faulkes TelescopedtSatSiding Springs, Australia at
the start of the observing run.
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Figure 4.9: Bl Vir ephemeris from the Liverpool Telescopel@Palma at the start of the observ-
ing run.
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Telescope First Observable (UT) Last Observable (UT) Damat

Faulkes North 06:00 10:45 4hr45m
Faulkes South 08:30 14:15 5hr45m
Liverpool 21:15 1:30 4hrl5m

Table 4.1: Observing windows for Bl Vir from the three Robbed telescopes, at the start of the
observing run (2D52007).
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Figure 4.10: Target observability as a function of time fog tluration of the observing run. The

observability is defined as the length of time the target vi@mv@a a horizon of 30 degrees while it
was night (bounded by astronomical twilight). After 40 dayre target was observable on average
for just under two hours per telescope per night. By 60 déys,had fallen to an average of just
over an hour per telescope per night.
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true period, after taking into account likely overrun froailéd observations. Sixty observations
was chosen as a reasonable minimum number of observatioasi$eful dataset, in order to keep
the total telescope time used for the experiment small. pglEqgn. 3.16 then gives

v\ _ 2vrg
w/) N
2Vrel
3=
60
Vrel = 90

which is equivalent to a minimum relative period of 0.011r Rdotal run length of 5 days, this
means the sampling should be sensitive to periods in thesrar8$ hrs< p < 2.5 days, providing
good period coverage around the true period of 8.056 hrs.

Factors outside of the adaptive scheduling agent’s costrct as telescope load can obvi-
ously impact the experiment. To negate tifii@et of such variations on the results, a control pro-
gramme was run concurrently with the ASA programme to allogveffect of external, telescope-
related parameters to be discounted. In order to make thagegyorous as possible, the control
observations were placed in a manner typical of an astronasitieout access to an adaptive agent,
and instead leveraged the telescope scheduler’s own alisgreonstraint model. The control re-
quests were monitor group observations, each requestmgltaervations, with an interval of 4.5
hours and a tolerance of 2.25 hours. These were placed tailyead fixed times using a simple
script. This submission strategy is typical of an astronoseeking a reasonably constant cadence
over the duration of the run. The relatively high toleranceans that the second observation in
each request may be placed anywhere between 2.25 and 6 a&thesfirst observation, provid-
ing significant freedom to the telescope scheduler. Thaands of a fairness metric used by the
scheduler to moderate the chance of selection for obsenvatas a potential concern, because
it could mean that the successful placement of control @atiens would adverselyfiect the
chance of success of an ASA observation. However, the fgdrneetric operates on a semester
timescale, so this was not considered to be an issue (S.rHoasecomm., 007).

45.2 Results

The target had originally been chosen with the expectatiahthe run would begin in mid-April
2007, at which point Bl Vir would be close to the zenith. Theatfiest observation was in fact
obtained on 3M4/07, but a wide variety of teething problems, as well as edlecommitments
(including the requirement that the author attend his owddiey!) meant the system was not
considered stable until Z1507. This date is therefore taken as théital day 0’ of the run in
what follows, and any earlier observations were discounted
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Halt Restart
Date Time Explanation Date Time Downtime duration
21/05 [ASA observations begin]
2805 00:47 Memory leak 205 18.49 18hrs2m
29/05 [Control observations begin]
0306 05:32 Power cut (66 15.59 2d10hrs27m
1106 19:38 Memory leak 16 03:16 5hr 38 m
12/06 11:18 Idling+ memory leak+ travel 2106 16:43 9d5hr25m
22/06 11:19 One month boundary bug /@@ 15:25 4hrém
2806 12:48 Pre-emptive restart /28 13:02 14 m
0507 14:05 Pre-emptive restart /05 14:08 3m
07/07 01:50 Notelescope return document /0@ 12:22 2d10hr32m
1607 02:38 Memory leak ye7 13:31 10hr 53 m
17/07 12:55 No telescope return document /Qr7 12:59 4m

2307 10:25 Memory leak (hung since/®Z) 2307 10:31 16 hr 31 m (Eective)
2507 21:11 [Last successful observation]
31/07 02:36 Memory leak 307 14:10 11hr34m
07/08 06:41 [Final halt]

Total downtime: 16.3d

Table 4.2: Log of agent halts and restarts. The majority @tkhwntime arises from a single event
(12/06). In some cases the downtime duration is very small - tldgcates a manual shutdown
and restart.

Downtime

For a number of reasons the agent was incapacitated at sagpmiats during the run, and was
unable to submit observations for some time. These werame s@ases due to a lack of protective
error-handling code. For example, occasionally errorstatescope would cause it to default on
the prescribed return of a completion document (‘obsesmatr ‘fail’) to the agent. This locked
the agent into a permanent sleep state, because no timedtytcdaecking had been implemented.
Another recurring problem was a persistent, slow memork lghich lead to a system crash
approximately every 10 days. The agent could be corredthjtisdised without loss of information
because of the serialisation mechanism by which all datdogged, but there were occasional
delays due to the lack of a human operator to initiate thareséquence. Other downtimes were
caused by network outages and in one case a power cut. Taldbalvs the full details.

Altogether the total downtime of the agent was 16.3 daysppraimately 20% of the total
run. The majority of this is accounted for by a 9 day outagecviias caused by a combination of
an idling bug and a fail state which was not detected for sdvkays, due to travel by the author.
Additionally, a series of bugs in the script for automatetrsission of the control observations
meant that there was a delay of approximately 7 days fromtéecf the ASA run until the first
successfully submitted control observation.
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Placement of observations

In all, 33 ASA observations were successful, out of a tot@5ff queued (recall that a successfully
queued observation indicates a positive score from at tbastelescope that has accepted the
observation into the queue). This is a success rate of 13r2é6ntrast, the control series achieved
only 26 observations, but the total number queued was gignilly lower, at only 69, yielding a
success rate of 37.7%.

These results indicate two things. In the first place, th@tdascheduling agent’s strategy
of speculative observation placement, always acceptiggan-zero score, leads to a greater rate
of failure, but produces a raw increase in the total numbsuotessful observations of almost 25%
compared to the control strategy. On the other hand, theehigiccess rate of the control strategy
indicates that when the telescope scheduler itself detidgigeue an observation, that observation
is much more likely to actually be successful. This secormliltas perhaps unsurprising. By
design, the degree of speculation exhibited by the agentelitserately maximised, because of
the threat of non-completion of the full number of obseasi. A more cautious agent could be
obtained by increasing the acceptable score threshold Willd be equivalent to placing more
‘trust’ in the telescope’s ability to judge its own obsernyiload.

On the other hand, the fact we can obtain an increase in sfatedservations of more
than 25% via a scheduling agent is quite startling. The icagithn is that the decision-making
of the telescope scheduler is rather more conservativettizrof the agent. This illustrates the
primary advantage that the eSTAR system gains by workirgedetel of the smallest schedulable
atomic block — a single exposure. The subtlety is that thecephof groups for the robotic
telescope scheduler is more than just a way of linking olagiems. Since the scheduler does not
know what fraction of the completed group is an acceptabteaoue for the user, it is forced to
err on the side of caution, and delay obtaining observationsss it is reasonably sure that the
whole group will succeed. This has theet of simplifying the decision-making process, because
the size of committed blocks is much larger. Working at thell®f individual observations, the
adaptive scheduling agent takes on the responsibilitydordihg whether individual observations
are worthwhile. Since the agent can dynamically adapt i@y strategy, it is possible to achieve
much finer-grained control than the telescope scheduldf,itsut the cost is the extra complexity
which must be handled by the algorithm in real-time.

This result clearly indicates that from a user perspective much more fficient to take
on the extra burden of micro-managing the observing plaoné possesses the ability to do so.
Regular cadencing and group specifications are conversghat help keep life tractable for the
astronomer, and mitigate against the uncertainty of theahctbserving run. But they are gross
simplifications when compared to the ideal specificationhef plan, one that can be adapted
dynamically in response to changing circumstances.

Be that as it may, this is secondary to the main result. Fopthposes of this problem,
the critical point is the size of the gaps in time that havenbeated between individual observa-
tions. Figure 4.11 indicates the positions of successfséplations with respect to the run overall.
Figure 4.12 does the same for the set of control observatiBoth runs indicate a dearth of ob-
servations between 16 and 32 days. This common behavicassaboth datasets indicates a lack
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Figure 4.11: The distribution of ASA observation timestaper the course of the observing run
(33 individual frames).

of resource, which is a function of available on-sky time #mel quantity of competing requests,
among other variables. Both runs peter out at around 60 detythis point in the run there is an

average window of less than an hour per telescope per nighihich to observe the target (see
Fig. 4.10, above, for more details).

Figures 4.13-4.14 plot the size of the gaps between comtuskeservations obtained by
the ASA. In Fig. 4.13, the gaps are indicated in the order iicwithey were acquired. This is a
combination of gaps requested by the agent, and other gagiedrby the absence of observations.
To give a sense of scale, the optimal set of gaps is overglottecan be seen immediately that
many of the gaps are much larger than desired for optimal lsagnT hese indicate large breaks in
coverage where no telescope on the network was willing @ tbbbtain the interim observations
necessary to keep the gaps small enough to be useful.

Taking advantage of the reordering property of the gapdfielaithe picture. Figure 4.14
shows the same data, but this time with the observed gapsedrffem shortest to largest. Around
half of all observed gaps lie on the line of optimal samplingore specifically, the agent has
managed to obtain the shortest third of the required setps.gBhe remaining gaps are almost all
much larger than required.

This result vividly demonstrates the algorithm’s succelsishplementation of the optimal
sampling strategy. Whenever possible, the agent has wiét & required gap. The agent has
concentrated on the shortest gaps, because they are mastantpgiven that (overly) large gaps
are inevitably being obtained as a result of telescope nopearation. At every stage in the run,
the agent will adapt to improve its circumstances, if it cinfor, example it was able to acquire
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Figure 4.12: The distribution of control observation tia@sps over the course of the observing
run (26 individual frames).
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Figure 4.13: The distribution of gap spacings acquired byA8A over the course of the observing
run. The ordinate axis is the logarithm of the relative gap Si.e. the gap as a fraction of the total
run. The set of ideal optimal spacings has been overplotteschle.
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Figure 4.14: Comparison of the actual gap spacings acghyrdide ASA against the ideal optimal
spacing. For ease of comparison the acquired observatamskeen ordered by size.

the final 27 observations in ideal locations, tiieet would be to shunt all the larger gaps to end
of the graph. Thus poor spacing positions early on in the rgdmot dictate the ultimate fate of
the run.

The 10th gap was not obtained by the ASA. This is because v agceived an ‘observa-
tion’ message from the telescope, indicating that this fasi®n had been successful, but during
the subsequent data processing stage the telescope aljimhbse to reject the observation, on
the grounds of poor focus. Since the agent was unaware thabtervation had®ectively failed,
it continued on the assumption that it had been successhis highlights a shortcoming of the
current system, namely that post-processing of obsengtian invalidate the message previously
sent to the agent.

The existing run is partial in the sense that only 33 out ofréguested 60 observations
were actually obtained. This is a typical risk associatett wie robotic mode of observing. The
agent has no knowledge of whether the number of observatibas obtained is adequate for the
science needs of its user. However, it can guarantee thtahservations as there are have been
placed optimally, as far as that was possible. Thereforpdnial dataset is the best sampling that
could have been obtained under the actual observing congdigxperienced during the run.

For comparison, Figures 4.15 and 4.16 present the equivals for the control run. The
difference in gap quality is abundantly clear. Like the ASA rine ¢ontrol run inevitably also
sufers from the problem of overlarge gaps, but without the famuachieving optimal placement,
those gaps that are of use are quite arbitrarily and waktgfakitioned. This is a common con-
sequence of regular cadence observing requests. Whilethardhy still be useful, the quality in
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Figure 4.15: The distribution of gap spacings acquired leycibntrol programme over the course
of the observing run. The set of ideal optimal spacings has bgerplotted for scale.

terms of period coverage must inevitably be poorer. It isartgmt to note that this would be true
even if the control run had managed to acquire the same nuohlodservations as the ASA run.
Both runs overran by many days, and achieved only aroundofdife observations that
were expected. A number of factors contributed to this ldakbservation success. As previously
discussed, the delayed start to the run meant the targetlweasia past the zenith at local mid-
night, so the total number of hours of potential on-sky timesgignificantly less than the ideal,
and this fraction continued to drop (see Fig.4.10) with tirfesecond significant issue was a
period of prolonged poor weather at Faulkes South. Fintdly,periods of agent downtime also
extended the run beyond the initial estimate. Although wWas bad from the perspective of the
science programme, it gives some idea of the wide range tdrkathat can and do contribute
to the network behaviour in the real world. From the perspeaif the experimental evaluation
of the agent, this was a useful feature of the observing rums Kind of unpredictable and hos-
tile environment is exactly the type of scenario the agenthodology seeks to mitigate, and a
demonstration of this kind is perhaps the only convincing teetest the success of this approach.

Lightcurve analysis

The data were reduced following a similar process to thatrieesd in Chapter 2. Optimal ex-
traction was performed to obtain photometry for the starednh frame. Uncertainties on the
flux values thus derived were calculated as described inl¢Na}998). To allow the datasets
to be combined, the flux for the target star Bl Vir was nornaliby dividing by the star at
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Figure 4.16: Comparison of the actual gap spacings acqbiydtie control programme against
the ideal optimal spacing. For ease of comparison the aadjoipservations have been ordered by
size.

LT FTN FTS Total
ASArun 7 6 20 33
Controlrun 2 4 20 26

Table 4.3: Final breakdown by telescope of the useful olagiems available from each run, after
data reduction.

a =12 29 3066,5 = +00 14 109 (marked ‘2’ in Fig. 4.17) in each frame. Finally, obsergati
time-stamps were corrected to barycentric time. Obsamatirom all three telescopes were com-
bined to produce separate lightcurves for the ASA-drivesh @ntrol runs. The final breakdown
of useful frames acquired from each telescope for each alitieis shown in Table 4.3.

Figures 4.18 and 4.19 present the phase-folded lightcdorethe ASA and control runs
respectively. Although the number of observations in eachwas similar, it is immediately
apparent that the phase coverage of the lightcurve achigyvéide adaptive agent is much better
than that of the control run. This distinction is explicitiyantified by thes metric. Recalling that
perfect phase coverage is indicatedy 1 (independent of the number of datapoints), operating
on the phase-folded lightcurves yiel8asa = 2.03 andScontrol = 3.05. The root cause of the
performance deficit observed with the control run is thigdagap in phase coverage. As discussed
in Chapter 3, the presence of many similar small intervalsr@hibitive to period sensitivity at
longer time-scales, and also makes the occurrence of |lgaes in the phase coverage more
likely.
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tions between the three telescopes, the flux was normalisedéference star in the same frame
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Figure 4.18: The ASA dataset folded on the true peri®d, 0.3356548 days.
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Figure 4.19: The control dataset folded on the true peifod,0.3356548 days.
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The sensitivity of each run to the period range as a whole @ajfied in Figure 4.20,
which gives the phase covera§eas a function of period, from a minimum relative period of
0.011 up to the target run length (see Section 4.5.1 forldetai how this minimum period was
chosen). For comparison, the phase coverage provided hgothect geometric sampling, that
sampling which the adaptive scheduling agent was aiming:liese, is also illustrated. Both
runs have substantially poorer period sensitivity thanidieal dataset, as expected. This is partly
a consequence of misplaced observations, but a more stisfaoblem is the general lack of
observations — each of the runs achieved only around haffeohtimber of data points present in
the ideal sample. Over the full range, the two runs have lyaachilar phase coverage properties.
Both exhibit undesirable spikes at a number of periods, awerage of shorter periods is in
general better than for longer ones. The mean valug fufr periods up to 0.5 is 3.194 to four
significant figures, fectively identical for both runs. At short periods, howetke ASA run has
substantially better coverage. For periods below 0.1, than8 values are 3.009 and 2.556 for
the ASA and control runs, respectively.

For completeness, Fig. 4.21 plots the interconnectivittheftwo runs as a function of pe-
riod. As before, the ideal geometric sampling is shown fanparison. This figure is not as easy
to interpret as the corresponding phase coverage diagrigmd(E0). Both runs have more inter-
leaved cycles than the theoretical sampling, which is arooisvconsequence of the much longer
actual run length, which was a factor 12 larger than the tatgelength. Interestingly, although
the ASA run appears from casual inspection to have a muchegragerage interconnectivity than
the control run, analysis of the data shows that the averalges for the ASA and control run are
83.6 and 62.1, respectively, a much smallé¢fadence than might be assumed. The standard devi-
ation of the ASA interconnectivity is much higher, howewar30.0%, almost double the control
run standard deviation of 18.0%.

The much more uniform interconnectivity of the control rampiies that for many periods,
phase folding does not split up consecutive observatiohs.ldwer spread to the points indicates
that the average separation in time between consecutiesat®ns is small compared to a typical
folding period. From inspection of the gaps between timmap&athis is seen to be the case (see
Figure 4.16, discussed previously). Not much else can leettiirinferred from the plot. If the
runs had been the same length as the ideal sampling (5 dags)the relative diierence between
each run and the ideal sampling would tell us broadly whetherdistribution of gaps was of
approximately the right size. If the gaps are on averagelsnthln the ideal sampling, then the
interconnectivity would be generally lower. A high intentctivity on the other hand would
indicate the presence of too many large gaps.

Why is it that so many of the control observations occur se&ltmgether? The answer
lies with the logic of the telescope scheduler. Control olméons were submitted with relatively
large, flexible windows, and it was left to the scheduler téydiecide when the observations
should be executed. Although the observation requests spemfied to be 4.5 hours apart, each
one was given a flexible window of 2.25 hours within which thservation could be obtained.
This meant that it was possible for the scheduler to plack bbservations close together, near
the intersection point of both windows. If conditions arelsthat a control observation has been
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Figure 4.21: Interconnectivity plotted as a function ofitile period for the two observing runs,
giving an indication of the number of cycles of data beinglénl at each period for the ASAop)
and control fniddle) runs. For comparison, the interconnectivity of the idgatirnal geometric
sampling is also presenteloftom). The vertical dashed line marks the true period of the targe
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scheduled, then itis very likely that similar further obsdions are also likely to be scheduled, if
and when they become eligible according to the request intst. This led to six close pairs of
observations for which the second observation adds vélgy fihase information to the lightcurve.
These are therefordfectively wasted. However, the fact that the submission aindias actually
much wider than the positions chosen indicates that thaedepe would not have made these
observations under other circumstances (if the windowsdeath smaller, for example).

This behaviour is quite reasonable for a scheduler condemith throughput, but illustrates
the dificult balancing act demanded of an astronomer wishing teaehiadenced observations.
If the astronomer’s constraints are too strict, the sequiéncinlikely to be successful (there are
few windows of opportunity). The more relaxed the consteaare made, the more opportunities
there are for the scheduler to place the observations, Iwecsely, the more likely it is that the
observations will not be placed with an appropriate spacing

Ultimately, the true measure of data quality must be deteedhiby frequency analysis.
Periodograms for the adaptive agent run and the controlneiprasented as Figures 4.22 and 4.23
respectively.

The first thing to note is that based on the highest peak in¢hegogram, both the ASA
and the control runs correctly recover the true period ofdigmal. The dierences lie in the
relative strength of the true peak with respect to the rett@periodogram. Calculating the peak
ratio A givesA = 1.40 for the ASA dataset, anl = 1.21 for the control run. This makes it clear
that the identification of the signal in the ASA dataset is encgrtain than in the control dataset.
This is a relatively crude metric in the sense that it igndhespower present in the rest of the
periodogram. The real win for the adaptive scheduling sehanthe conspicuous dampening of
spurious spectral leakage across the full range of fredegiconsidered in the periodogram. This
means that power in those other periods can be discountadwith more confidence than in the
equivalent control run periodogram.

The periodogram, while powerful and convenient, neveesgeddoes not hold all the infor-
mation required to dierentiate between alternative periods. The periodogramaide up of a
superposition of sinusoidal components, but the periodh@fabserved target is not in general a
pure sinusoid. Power in the periodogram can sometimes tilguddtd to possible sinusoidal fits to
the dataset that are in fact quite unrealistic, and this eagiebermined by visual inspection of the
lightcurve folded at one of these alternative periods.

Figures 4.24 and 4.25 illustrate the lightcurves that diigm folding on the other high
peaks in the periodograms for the two runs. In the case of A Ain (Fig. 4.24), the phase-
folding on the second strongest peak after the true peakmi®an unconvincing lightcurve. The
third-strongest peak is harder to dismiss, but carefulalimspection would likely favour the true
period, based on the overlap between error bars at equiyath@se positions. On the other hand,
the second-highest peak in the periodogram of the controtannot be easily ruled out using this
criteria (Fig. 4.25, upper panel).



4.5. OBSERVING WITH THE ADAPTIVE AGENT 124

16Periodogram — ASA dataset
I I I

-
S
I
I

<— True period

— [
o [V
I I
I I

Power (arbitrary units)
@
I
I

[ TR YRRV T 1 I L P P .._1..II1.I..I..

0 5 10 15 20 25 30
Frequency

Figure 4.22: Periodogram of the ASA dataset. The highesk peaesponds to a period of
0.335898 days, in good agreement with the literature valbe.value of the peak ratio A= 1.40.
Power at other frequencies is much lower than in the correfipg periodogram for the control
run (Fig. 4.23, below).
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Figure 4.23: Periodogram of the control dataset. The higpbeak corresponds to a period of
0.335670, in good agreement with the literature value. Tdleevof the peak ratio i = 1.21,
somewhat poorer than for the ASA periodogram. In generalgpat frequencies other than the
true signal frequency is substantially greater than foiAB& run (Fig. 4.22).
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Figure 4.24: Folding the ASA dataset on the next highest péakhe periodogram. The sec-
ond highest pealkupper panel) occurs at a frequency of 5.9988y (corresponding to a period of
0.16689 days). The third highest pedéwer panel) occurs at a frequency of 2.97@ay, corre-
sponding to a period of 0.33594 days. In the first case, afhaonsiderable power is present in
the periodogram, visual inspection of the folded lighteumdicates that this potential period is
incorrect. The third strongest frequency is not so easysmidis, because it is relatively close to
the true period. One way is to consider the overlap in erros batween observations at similar
phases. Careful comparison between these lightcurveséssary to choose between them, but
the strength of the true frequency in the periodogram is @ling.
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Figure 4.25: Folding the control dataset on the next higheaks in the periodogram. The sec-
ond highest peakupper panel) occurs at a frequency of 1.988@y (corresponding to a period
of 0.50379 days). Although messy, a potential signal atgkrsod cannot be ruled out by visual
inspection. The third highest pedk\er panel) occurs at a frequency of 27.10@ay, correspond-
ing to a period of 0.03690 days. In this case visual inspeatiothe folded lightcurve indicates
that this potential period is incorrect.
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4.6 Conclusions

In this chapter, an adaptive scheduling agent has beenilies$t¢hat implements the optimal geo-
metric sampling strategy for period searching describe@dhapter 3. The agent performs its role
in the context of an HTN-compliant network of telescopesg @S TARRobonet-1.0 network), and
is thus a proof-of-concept for this model of remote netwdrkdserving. The algorithm at the
core of the agent automatically penalises the agent forsthgdoo many short gaps, but is simi-
larly hostile to the chasing of large gaps when there argahanore valuable alternatives. In this
way a balance point is determined that unambiguously defireebest option for the agent at any
point in the run. The optimality calculation implicitly lises the reordering property of optimal
sequences, maximises the agent’s cautiousness in theffaceartainty, and is computationally
cheap. Itis also stable in the sense that any subset of adqo@ints are optimal, subject to the
extant observing conditions. In the case of perfect obegrisehaviour (no failures), the optimal
sequence is naturally recovered. The algorithm can resotighamic changes of the network of
an unknown nature, because it makes no attempt to modell@sedpes on which it relies.

The adaptive scheduling agent was used to run an obsenagggmnme on Robonet-1.0.
A control run was carried out concurrently, based on an ebsgrstrategy of staggered obser-
vations typical of an astronomer using the Robonet-1.0egystlt was found that substantially
more observations were acquired by the agent-based obgekagramme. More importantly, a
large fraction of the gaps between temporally adjacentrebiens made by the agent observing
programme were of the size specified by the optimal geomsainepling technique described in
Chapter 3.

The data were reduced and lightcurves obtained for the tws. riThe lightcurves were
phase-folded on the known true period and compared. Thet-difected run had better phase
coverage, both by eye and as quantified withShmetric. Fourier analysis of the two lightcurves
demonstrated superior identification of the true periochwéspect to power elsewhere in the
periodogram. The amplitude suppression of spurious peak®m@ad-frequency spectral leakage
in the agent-directed run indicates the successful mimitiois of the window function predicted
by the optimal geometric sampling theory. The contrast inogegram when compared to the
control run is marked.

The general conclusion of this chapter is that an adaptivediding agent that dynamically
implements an optimal geometric sampling strategy worke Use of such an agent leads to sub-
stantial improvement in the quality of the dataset that maplxained by an astronomer seeking
to utilise a robotic telescope network for variability work



Chapter 5

Conclusions

This thesis presents a practical solution to the problemffetcive observation of time-varying
phenomena using a network of robotic telescopes. Chaptesdried the context of the work,
charting the evolution of robotic observing, from its onigi inception as a handful of standalone
instruments for automatic observing, to the present sththe-art, the interlinking of multiple
telescopes and networks of telescopes to build an obsesyisigm greater than the sum of its
parts.

Chapter 2 investigated temporal stellar variability in yleeing cluster h Per. The aims of
this chapter were to explore a detailed example of the kintihof-domain observing this work
addresses, showing the technical astronomy involved ieralvgy and data reduction, as well as to
demonstrate an example of the astrophysical insight tledt aulataset can provide. Specifically,
variability was used as a tracer for cluster membershipjtamas argued that the sharp decrease in
observed variables at higher parts of the sequence lengsiup the hypothesis that the transition
from a convective to a radiative stellar core leads to a chamthe topology of the magnetic field
at the surface of the star. The lack of variables at magrstbdghter than the radiative-convective
gap corresponding to this transition in the colour-magtétdiagram was presented as a potential
tracer for this transition region. Finally, problems in tigality of the dataset arising from lack of
phase coverage were identified as an example of a problenadbkat be successfully addressed
by a robotic network.

Chapter 3 considered the theoretical problem of observatiacement in the undersam-
pled dataset regime, the common scenario for time-domaserghtions made using networked
robotic telescopes. A set of metrics was developed to alld@résting properties of the sampling
to be examined. Specifically, ways to quantify the phaserem the interconnectivity (a mea-
sure of the number of signal cycles sampled), and the strasfg given periodic signal relative
to the strongest other signal in a periodogram (called tlad p&tio) were presented. Simulations
were performed to empirically investigate the propertiea oumber of sampling schemes. Anal-
ysis of the window functions generated from each samplind,the application of these metrics
to periodograms created from artificial datasets demaestrifat a geometric sampling scheme
conclusively outperformed other sampling choices. Tofbecéve the geometric scheme requires
tailoring to the period range of interest, and a simple fiamcto generate such a set of temporal
positions was presented. It was also shown that the geansstries was largely insensitive to

128



5.1. FURTHER WORK 129

reordering, as long as the distribution of spacings waspved, an important feature for practical
application.

Chapter 4 applied the optimal sampling strategy to obseawvi@bility using a professional
robotic telescope network. An autonomous software agestdesigned and implemented that
took the optimal sampling as the basis for an adaptive dlgorthat could manage the uncertain-
ties of a true observing environment dynamically, and withexplicit user control. The reordering
property of the optimal series provided the agent with @lidéxibility, and the ability to recalcu-
late which reordered optimal sequence to pursue on-thes#yfanction of observation success or
failure was fully utilised in the implementation. The obhss target was the variable star Bl Vir,
and the data obtained were used to identify the period aridageathe performance of the agent.
It was found that the agent achieved a large fraction of iseolations at the spacings dictated by
the optimal sampling. Comparison with a simultaneous obmtm, placed with observing con-
straints typical of an astronomer using the network, dennatezl the significant performance gain
provided by the agent. More observations were completedesstully and the spacing between
them was much moreffective, a fact demonstrated by comparing the phase covefape two
runs as well as the quality of the final periodograms.

5.1 Further work

There are many directions in which this work may be taken. dténal sampling strategy de-
scribed in this thesis has been shown to fieative, and a possible phenomenological explanation
in terms of sampled frequencies has been proposed. Howevatiempt has been made to char-
acterise the smoothness metric of the window function, artalytically solve this to find the
global minima. One such approach would be to seek a miniioisaf the area under the window
function beyond the main peak. After integrating, it may begible to solve the resulting function
in the limit as the area tends to zero.

Another approach to the sampling problem would be to exhaalgtcalculate the smooth-
ness of the window function at every point of a discretisadr fubservation simulation. For the
dynamic range of frequencies assumed in the text, this dhmmub feasible calculation. The result
would be a visualisation of the surface of the window funtsonoothness in two dimensions, and
in particular, the variety and location of minima should beady defined. The shape of the sur-
face may provide clues to the likely topology in higher disiens, with the tantalising possibility
of generalisation to sampling problems of arbitrary size.

A third way of tackling the search for minima would be to cdgniterms of a classical
optimisation problem, and seek to numerically locate thsitipm of global minima through a
limited number of trials which are placed to take maximumaadage of the assumed correlation
between similar points in the phase space. Work is ongoirthignarea. Algorithms that are
currently being investigated include Nelder-Mead simplelder & Mead, 1964) and particle
swarm optimisation (Eberhart & Kennedy, 1995).

An alternative approach, currently under investigatiorih®yauthor, is to analytically iden-
tify the correct frequency distribution required for opahundersampling, and then to determine
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the correct distribution of points through general argutseealating Fourier space to the time do-
main. For example, minimising structure in the window fumatmay, in the limit, be equivalent
to choosing a delta function at= 0, and setting all other frequencies to zero. While this drd
may not be achievable in practice, the limit may provideghsias to the ‘maximum unevenness’
that a set of points can provide in practice.

Work on similar problems exists in the field of interferonyeti\n interferometer is made up
of a number of spatially separated telescopes which, ttrdiug technique of aperture synthesis,
can have their signals combined. The resulting networklasdme angular resolution as a single
instrument with a diameter equal to the longest baselined® telescopes. The pattern of gaps
between receivers determines the sampling ofvthdility, the set of amplitude and phase mea-
surements observed by the interferometer. The Fouriesftvem of this complex quantity is the
brightness distribution of the object, i.e. the image. Téash measurement of the visibility can be
considered a measurement of one of the Fourier componettie oésulting image. The position
of each receiver therefore determines which componentsaanpled. Significant work has been
performed to determine the ideal positions for the indigidweceivers, and the resulting config-
urations are calledhinimum redundancy linear arrays (Moffet, 1968; Ishiguro, 1980). They are
arranged to sample every wavelength up to some maximum.\v@bhrae wavelengths are unhelp-
fully sampled more than once; the array spacing aims to niggirhese repeated measurements.
Comparison of this problem with the time domain problem ipliogress by the author.

An obvious step would be to try and improve the reliabilitytled scoring mechanism. One
way to do this would be for an agent to track the history of pegtiests to individual telescopes,
and compare the score returned with the actual outcome aflibervation request. This would
effectively provide a way to ‘normalise’ the scores provideddach telescope according to a
trust factor. Since this trust factor is calculated heinddlly, this approach is not a function of
the scoring algorithm and requires no explicit knowledgéhef telescope scheduler’'s decision-
making process. Additionally it is dynamic, reflecting cbas in scoring behaviour promulgated
over time. Variants of such a learning mechanism could atsapplied to other agent experiences,
such as theféective availability of diferent telescopes atftérent times of the year.

Another direction for further work is applying currently wsed portions of the HTN stan-
dard. Although not used by this agent, affdrential’ score, which provides a continuum of
observation likelihoods over a range of time, is returnethigyRobonet-1.0 telescopes. This extra
information could potentially allow higher success ratgsnereasing the potential for fine tuning
by the agent.

Extending the HTN protocol is another way to gain flexibilityor example, if an agent
were able to check on the score of a queued observationnatiters to the ‘submit and see’
strategy become viable. For example, an agent could subbeéreations to many telescopes,
leave them queued, and, when the time for the observatiordmlis near, send abort messages
to all telescopes other than the highest score (T. Naylw,qomm.). From the agent perspective,
this is functionally equivalent to waiting until the last ment to place an observation, a technique
which is advantageous to the agent but harmful to a telesscipeduler. One way to discourage
such tactics, with a view to increasing the reliability aflividual schedulers, would be to penalise
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agents that submit observation requests close to the ist&rof the observation (Naylor, 2008).

The experiment of running the adaptive scheduling agenwvstidhat against the current
Liverpool scheduler, a reactive mode may achieve a highserehtion success rate for an indi-
vidual observer by allowing finer control over observatiobrmission. This becomes particularly
pertinent for the problem of long time series spread acregsral HTN telescopes. In this case,
there is no overarching scheduler responsible for managmgontinuity of the time series, and
therefore the burden of achieving observations with theecbrcadence falls on the user. This
would be an ideal case for a reactive agent to handle. Exanmuifude long-term monitoring of
variability, and monitoring of potential microlensing chdates with the aim of identifying the
anomolous outburst that would signify the prescence of énaesolar planet around a distant star.

The reactive component of the adaptive scheduling agemtgsined because of the un-
certainty associated with achieving any requested obsenvaThis is a specific example of the
general problem of acheiving a fully specified, arbitragjyaced set of time series observations.
If a telescope scheduling system supports regular cadeimsederies requests, which are a com-
mon way of specifying monitoring programmes, then it is oamlgmall step to support arbitrary
time series. Internally, the scheduler must handle thelpnolof observation uncertainty, but this
is not specific to the undersampling problem solved by th@tdascheduling agent. In such a
situation, therefore, the user would no longer require etigmcomponent in order to schedule un-
dersampled observation sequences — the technical detaitdu@lly acquiring the observations
would be firmly in the domain of the telescope scheduler. TWuaslld remove much of the risk
and uncertainty associated with the current mode of obsgnas well as drastically simplifying
the task of the user.
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