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Recent evidence indicates that the abundance of recurring elemen-
tary interaction patterns in complex networks, often called sub-
graphs or motifs, carry significant information about their function
and overall organization. Yet, the underlying reasons for the
variable quantity of different subgraph types, their propensity to
form clusters, and their relationship with the networks’ global
organization remain poorly understood. Here we show that a
network’s large-scale topological organization and its local sub-
graph structure mutually define and predict each other, as con-
firmed by direct measurements in five well studied cellular net-
works. We also demonstrate the inherent existence of two distinct
classes of subgraphs, and show that, in contrast to the low-density
type Il subgraphs, the highly abundant type | subgraphs cannot
exist in isolation but must naturally aggregate into subgraph
clusters. The identified topological framework may have important
implications for our understanding of the origin and function of
subgraphs in all complex networks.

aggregation | subgraphs

A number of complex biological and nonbiological networks
were recently found to contain network motifs, representing
elementary interaction patterns between small groups of nodes
(subgraphs) that occur substantially more often than would be
expected in a random network of similar size and connectivity (1,
2). Theoretical and experimental evidence indicates that at least
some of these recurring elementary interaction patterns carry
significant information about the given network’s function and
overall organization (1-4). For example, transcriptional regulatory
networks of cells (1, 2, 5, 6), neural networks of C. elegans (2), and
some electronic circuits (2) are all information processing networks
that contain a significant number of feed-forward loop (FFL)
motifs. However, in transcriptional regulatory networks these mo-
tifs do not exist in isolation but meld into motif clusters (7), while
other networks are devoid of FFLs altogether (2).

In general, all subgraphs have two important properties: their
topology and the directionality of their links. In cellular networks,
these two properties can be clearly separated from each other. In
protein—protein interaction (PPI) networks all links are by defini-
tion nondirectional. In contrast, in transcriptional regulatory net-
works information flow between a transcription factor and the
operon (gene) regulated by it is almost always unidirectional (1, 2).
Metabolic networks occupy an intermediate position between these
two extremes, because most, but not all, metabolic reactions are
reversible under various growth conditions. Despite the difference
in the relative role of link directionality, the large-scale organization
of the three different network types is quite similar, most being
characterized by a scale-free connectivity distribution and hierar-
chical modularity (8—12). The only exception is the incoming degree
distribution (i.e., the number of transcription factors regulating a
target gene) of regulatory networks, which decays faster than a
power law, because the number of transcription factors that can
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simultaneously bind to a target gene’s promoter region appears to
be limited by structural constraints (13).

A coherent understanding of a network’s topological and func-
tional organization requires the development of a single framework
that can explain the appearance of subgraphs and motifs, the
mechanisms responsible for their aggregation into larger super-
structures, and their relationship with the universal large-scale
features of complex networks. Here we present such a unifying
framework by focusing on five well characterized cellular networks
of a prokaryotic model organism and a eukaryotic model organism,
the metabolic and transcriptional regulatory networks of Saccha-
romyces cerevisiae and Escherichia coli, respectively, and the PPI
network of S. cerevisiae. We show that the subgraph density in these
networks can be fully predicted based on knowledge of the two
parameters characterizing their global scale-free and hierarchical
topology. Furthermore, we demonstrate that a network’s large-
scale topological organization and its local subgraph structure
mutually define and predict each other. We also show the inherent
existence of two distinct classes of subgraphs, demonstrating that in
contrast to the low-density type II subgraphs, the highly abundant
type I subgraphs cannot exist in isolation but must naturally
aggregate into subgraph clusters. These results imply a fundamental
unity in the origin of subgraphs and subgraph clusters in all complex
networks.

Materials and Methods

The transcriptional regulatory networks of E. coli and S. cerevisiae
(1, 2) are available from www.weizmann.ac.il/mcb/UriAlon. We
have studied their undirected representations, where transcription
factors and genes are represented by nodes and each regulation-
based interaction is replaced by an undirected link. The metabolic
networks of E. coli and S. cerevisiae were obtained from the
WIT/ERGO database (14) (http://igweb.integratedgenomics.com/
IGwit). Metabolites are represented by nodes, and undirected links
connect each substrate to each product of the same reaction. The
PPI network of S. cerevisiae was obtained from DIP (15) (http://
dip.doe-mbi.ucla.edu). Proteins are represented by nodes, and each
pairwise protein interaction is represented by an undirected link.

Results

The Abundance of Subgraphs in Cellular Networks. Table 1 lists the
density of several n-node subgraphs of the five studied intracellular
molecular interaction networks: the metabolic and transcriptional
regulatory networks of S. cerevisiae and E. coli and the PPI network
of S. cerevisiae. Our study is limited to subgraphs with n nodes and
m links that can be decomposed into a central node with n — 1
neighbors, the remaining m — n + 1 links connecting these
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Table 1. The frequency of selected subgraphs in cellular networks

Transcription Metabolic Protein Interaction
(n, m) E. coli S. cerevisiae E. coli S. cerevisiae S. cerevisiae
3,2 /\ 12 19 101 72 70
(3.3) ﬁ 0.30 0.31 5.0 5.8 4.1
4,3) /f\ 169 220 4,412 2,041 2,395
(4,6) @ 0.00 0.00 0.44 0.77 0.97
(5,4) W 2,492 2,587 2.1 X 10° 5.9 X 10 1.2 X 10°
(5,10) @ 0.00 0.00 0.055 0.20 0.66
(6,5) m 3.2 X 10 2.8 X 104 8.8 X 106 1.5 X 108 5.7 X 108
(6,15) @ 0.00 0.00 0.00 0.03 0.36
(7,6) w 3.4 X 10° 2.7 X 10° 3.5 X 108 3.7 X 107 2.4 x 108
(7,21) @ 0.00 0.00 0.00 0.00 0.00

The relative count Nyn/N of the least and most connected subgraphs in each of the five studied cellular
networks, where N, represents the number of the given (n, m) subgraph found in the network, and N is the total
number of nodes in the network. The first and second columns list the subgraph codes and show a representative

topology.

neighbors to each other. The comparison shown in Table 1 dem-
onstrates that the densities of specific subgraphs in the correspond-
ing E. coli and S. cerevisiae networks are comparable, underscoring
the absence of significant differences in the subgraph density
between the two organisms. There are notable differences, how-
ever, among the different types of molecular interaction webs even
within the same organism: The metabolic and PPI networks display
a much higher subgraph density than transcriptional regulatory
networks. The observed paucity of certain subgraph types and the
abundance of others suggest two possible scenarios for their origin:
Their number may be largely determined by local functional
constraints, such as the desirable signal processing properties of
feed-forward motifs (16, 17), or, alternatively, may primarily reflect
on the network’s topological organization.

To assess the observed paucity of certain subgraph types and the
abundance of others, we start by focusing on the two key topological
parameters of a network’s large-scale structure: the degree expo-
nent, vy (18), and the hierarchical exponent, a (19). The degree

exponent (y) characterizes the number of interactions in which a
node is engaged, capturing the overall inhomogeneity in the con-
nectivity of complex cellular networks: Whereas most molecules are
engaged in only a few interactions, a few hubs are linked to a
significantly higher number of other molecules (nodes). These wide
degree variations are captured by the degree distribution, which for
the studied cellular networks follows a power law, P(k) ~ k=7 (7,13,
20-23). In contrast, the hierarchical exponent («) characterizes the
networks’ innate modularity, indicating that many small, highly
interconnected groups of nodes form larger but less cohesive
topological modules (7, 19). This hierarchical modularity is cap-
tured by the scaling law (24, 38) C(k) ~ Cok~, where C(k) =
2T(k)/k(k — 1) is the clustering coefficient of a node with k links,
denoting the probability that a node’s neighbors are linked to each
other (25), and 7(k) is the number of direct links between the node’s
k neighbors. Empirical studies indicate that each cellular network
is characterized by a unique pair of (y, &) parameters, listed in Table
2, which were determined from the scaling of P(k) and C(k)

Table 2. Scaling exponents characterizing the studied cellular networks

Transcription

Metabolic Protein Interaction

Exponent E. coli S. cerevisiae E. coli S. cerevisiae S. cerevisiae
v 2.1+03 2.0 £0.2 20+04 2.0 0.1 24 +04
a 1.0 £0.2 1.0 £ 0.2 0.8 +0.3 0.7 0.3 1.3+05
B
Meas. 1.0 £0.2 0.8 +0.2 1.1+0.2 1.4 +0.2 0.7 £0.2
Pred. 0.97 0.95 1.2 1.3 0.7
B
Meas. 2.1+0.2 22 +0.2 1.8 +0.2 1.7 £ 0.2 23*0.2
Pred. 2.0 1.9 1.8 1.8 3.0

The y and «a exponents for each of the studied cellular networks, determined from a direct fit to the P(k) and
C(k) functions of the undirected network representation (see supporting information). We also provide the
measured and predicted values of the g and § exponents, characterizing the average number of triangle (3,3)
motifs in which a node with k links participates [T(k) ~ k¥] and the distribution of the number of triangle motifs

in which a node participates [P(T) ~ T~9].
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Fig.1. Subgraph phase diagrams. The phase diagrams organize the subgraphs based on the number of nodes (n, horizontal axis) and the number of links (m, vertical
axis), each discrete point explicitly depicting the corresponding subgraph. The stepped yellow line corresponds to the predicted phase boundary separating the
abundant type | subgraphs (below the line) from the constant density type Il subgraphs (above the line). The background color is proportional to the relative subgraph
count Com = Npm/2sNps of each n-node subgraph, the color code being shown in the upper right corner. Note that some (n, m) points in the phase diagram may
correspond to several topologically distinguishable subgraphs. For simplicity, we depict only one representative topology in such cases. Because the yellow phase
boundary depends on the y and a exponents of the corresponding network, each phase diagram is slightly different. Yet, there is a visible similarity between the
networks of the same kind: The phase diagrams of the two transcription or the two metabolic networks are almost indistinguishable.

functions describing the undirected version of these networks
(7, 19).

Type | and Il Subgraphs. To examine the relationship between these
two parameters and the observed subgraph density, we calculated
analytically the number N,,,, of subgraphs with n nodes and m
interactions expected for a network of N nodes, in which the nodes,
apart from fixed (y,«) parameters, are randomly connected to each
other. As each pair of neighbors of a node with degree k is
connected with a probability C(k) ~ k~¢, the average number of
(nm) subgraphs that pass by a node with degree k scales as
Nym(k) ~ kr=1=0n=n+De Summing over the degree distribution, we
obtain the number of (n,m) subgraphs, Ny, ~ N 3k P(k)Nym(k).
The convergence of this sum predicts the existence of two subgraph
classes. Type I subgraphs are those that satlsfy (m-n+la—(n—

y) < 0, their number being given by N2, ~ Nk [+ De=(r=n],
where k., denotes the degree of the most connected node in the
network. Type II subgraphs are those that satlsfy (m-—n+Da-
(n — ) > 0, and their number is given by Nb,, ~ N. As even for finite
networks kmax => 1, the typical number of type I subgraphs is
significantly larger than the number of type II subgraphs ( /NI
>> 1). Moreover, for infinite systems (N — ) the relative number
of type II subgraphs 1s vanishingly small compared with type I
subgraphs, as N..,,/Nh,, — . Table 1 supports these predictions,
indicating that the density of the subgraphs with a minimal number
of connections (extreme type I) (4,3), (5,4), (6,5), (7,6) is in the
range 10 to 105 (V%,,, >> 1). In contrast, the density of the subgraphs
with a maximal number of connections (extreme type II) (4,6),
(5,10), (6,15), (7,21) is either zero or close to zero, and always
negligible compared with their type I counterparts.

The main results of our analysis are summarized in the (n,m)
phase diagrams of Fig. 1, in which each square corresponds to a
different subgraph. The (m — n + 1)a — (n — vy) = 0 condition,
predicted to separate the type I and II subgraphs, appears as
stepped yellow phase boundaries in the phase diagrams. For
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example, for the E. coli transcriptional regulatory network with a =
1 and y = 2.1 (Table 2) the phase boundary corresponds to a
stepped-line with approximate overall slope 1 + 1/a = 2.0 and
intercept —1 — y/a = —3.1 (Fig. 1a). The type II subgraphs are
those above this boundary and should be either absent or present
only in very low numbers in the transcriptional regulatory network.
In contrast, the type I subgraphs below the boundary are predicted
to be abundant.

To visually highlight the validity of these predictions, we color-
coded Fig. 1 according to the normalized count of each subgraph
in each cellular network. We find a good agreement between the
analytical predictions and the measured subgraph count: The
normalized count of the type I subgraphs below the phase boundary
isin the 1072 to 1 range, in contrast with the type Il subgraphs above
the predicted boundary, whose normalized count is either zero or
in the 107 to 1073 range. Comparing Fig. 1 a—e indicates that
whereas the stepped phase boundaries for the different cellular
networks differ because of the differences in the (7y,a) exponents
(Table 2), the observed densities in the real networks follow
relatively closely the predicted phase boundaries. Occasional local
deviations from the predictions can be attributed to the error bars
of the (y,a) exponents (Table 2), which allow for some local
uncertainties for the phase boundary. Fig. 1 a—e also indicates that,
in agreement with the empirical findings (1-4), each cellular
network is characterized by a distinct set of overrepresented type I
subgraphs, raising the possibility of classifying networks based on
their local structure (4). Yet, the phase diagrams demonstrate that
knowledge of two global topological parameters automatically
uncovers the local structure of cellular networks, suggesting that a
subgraph- or motif-based classification could be equivalent with a
classification based on the different (vy,&) exponents characterizing
these networks.

Subgraphs and Motifs. The concept of motifs was recently intro-
duced to denote those subgraphs whose number exceeds by a preset

Vazquez et al.
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Fig. 2.

Subgraph distributions in cellular networks. a and b show all nodes in the S. cerevisiae transcription regulatory network that participate in triangle (3,3)

and (5,5) subgraphs (depicted in Insets of cand d). The size (area) of each node is drawn proportional to its degree, k, in the full network, indicating that subgraphs
tend to aggregate around the hubs. Indeed, although there are hubs that have only a few subgraphs around them, in most cases subgraph aggregation is seen
only around highly connected nodes. Note that the (3,3) subgraphs of S. cerevisiae is above the percolation boundary (Fig. 1e), and therefore they are broken
into small islands. In contrast, the (5,5) subgraph is well below the boundary, forming a fully connected giant component, with no isolated subgraphs, as
predicted. cand d show the P(T) distribution of the number of (3,3) and (5,5) subgraphs, respectively, passing by a node, where Tdenotes the number of subgraphs
of a selected kind passing by a given node. The plot indicates that for both subgraphs, P(T) approximates a power law P(T) ~ T~%. Note the quite extended scaling
regimes for some networks; e.g., for the (5,5) subgraph the scaling extends over four to five orders of magnitude. The & exponents measured and predicted for

each network are summarized in Table 2 and the supporting information.

threshold their expected count in a randomized network (1-4). Our
results indicate that overrepresented type I subgraphs are innate
topological features of complex networks, and we do not need to
invoke a comparison to a randomized graph or introduce a thresh-
old parameter to identify them. Indeed, the signature of type I
subgraphs is that their density increases with the number of nodes
in the network (NV?,,,/N — % as N — ), compared with the type II
subgraphs, whose density is independent of the network size
(N&,/N — const). The existence of the type II subgraphs is
intertwined with the network’s global hierarchical topology: The
decreasing C(k) reduces the likelihood that the neighbors of a highly
connected node are linked to each other, therefore limiting the
chance that these nodes participate in highly connected subgraphs.
If C(k) were independent of k (i.e., « = 0), only type I subgraphs
would exist, since in the « — 0 limit the 1 + 1/« slope of the yellow
phase boundary diverges, eliminating all type II subgraphs. Because
the absolute count of the subgraphs is the most fundamental
quantity for evaluating a local interaction pattern’s topological role
in a network, we will continue focusing on the direct subgraph
count, limiting the discussion on motifs and the role of the ran-
domized reference frame to the supporting information, which is
published on the PNAS web site. Note that the scaling of the
subgraph density with the network size N was already predicted in
ref. 26. Yet, the calculation did not take into account the scaling of
the clustering coefficient; thus, the results are limited to the « = 0
limit of our predictions. Thanks to the C(k) scaling, however, for
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realistic -y values we predict a new phase, which contains the type
II subgraphs.

Subgraphs Aggregate Around Hubs. The very large densities we
observe for some type I subgraphs (Tables 1 and 2) require us to
explain how to distribute as many as 10'! subgraphs in a network
with only 10° nodes. We address this question by calculating the
number of distinct subgraphs in which a given node (gene, metab-
olite, or protein) participates. We first focus on the triangle sub-
graph (3,3), the elementary building block of many higher-order
subgraphs. A node with k links participates on average in 7(k) =
C(k)k(k — 1)/2 triangles. For large k this scales as T(k) ~ k<.
Therefore, the probability that exactly 7T triangles pass through a
nodeis P(T) ~ T — &, where =1+ (y — 1)/(2 — @), a power-law
dependence that indicates that whereas the majority of nodes
participate in at most one or two triangles, a few nodes take part in
a very large number of triangle subgraphs. The monotonic nature
of T(k) indicates that the triangles are not distributed uniformly
within the network but tend to aggregate around the hubs. Because
a node with k links can carry up to ~k? triangles, the aggregation
around the high k hubs, visible, e.g., in Fig. 2 a and b, allows the
network with a modest number of nodes to absorb a very large
number of subgraphs. These calculations can be extended to
arbitrary (n,m) subgraphs, in each case predicting a power law for
both T(k) and P(T), with exponents that depend on the (n,m)
parameters (see supporting information). To test the validity of
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these analytical predictions, we determined numerically P(7) and
T (k) for several subgraphs in each of the studied cellular networks.
As shown in Fig. 2 ¢ and d, the results support not only the predicted
power law nature of P(T) but also the numerically determined
exponent 8, which are in good agreement with the analytically
predicted values (Tables 1 and 2).

The fact that the P(T') distribution of the individual subgraphs can
be uniquely determined by the (y,«) exponents has a quite unex-
pected consequence: It indicates that the relationship between the
network’s global architecture and its subgraph densities is recipro-
cal, so that the network’s large-scale topology can be uncovered
from the inspection of the local subgraph structure. Indeed, by
measuring the P(7) distribution for any two subgraphs (e.g., those
shown in Fig. 2), and using the derived relationship between 8, «,
and vy, we can determine the « and 7y exponents of the overall
network. Because the scaling region of P(T) is more extended than
that of P(k) or C(k), displaying, e.g., over five orders of magnitude
of scaling in Fig. 2d, such subgraph-based determination of y and
« can be at times more precise than the direct fitting of P(k) and
C(k). Taken together, these findings indicate the equivalence of the
information obtained from measurements focusing on the local
(subgraph based) and global (scale-free and hierarchical) structure
of complex networks: A proper characterization of the network’s
local topology allows us to determine its large-scale parameters, or
the direct measurement of the network’s global statistical features
allows us to predict its detailed subgraph structure.

Subgraph Percolation Leads to Subgraph Clusters. The analytical
tools we have developed allow us to uncover how the various
subgraphs relate to each other, an issue that is likely to have
significant influence on, e.g., a particular subgraph’s potential
functional properties in biological systems. The topological rela-
tionship between various subgraphs is illustrated in Fig. 3, where we
show all nodes participating in several six-node subgraphs (n = 6)
for each of the three studied S. cerevisiae cellular networks. The
figure indicates that the underrepresented type II subgraphs, shown
on the right, are either absent or form small fragmented islands with
only a few nodes. As we move toward the type I subgraphs shown
on the left, we not only observe a rapid increase in the subgraph
density, but also a spectacular aggregation process, forcing all of the
high-density type I subgraphs into a single giant cluster consisting
of thousands to millions of highly interconnected subgraphs.

Our analytical methods permit us to uncover the mechanisms of
the observed subgraph aggregation, predicting the existence of a
percolation condition given by the equation (m — n + 1)a — (n —
2) <0, such that the subgraphs satisfying this condition should form
a giant cluster. The subgraphs that do not satisfy this condition,
however, are allowed to break into isolated islands and/or vanish
in size. Direct quantitative evidence for the percolation-like tran-
sition is provided by the measurement of the relative size of the
largest cluster (shown as squares in Fig. 3), indicating that as we
move away from the abundant type I subgraphs, from left to right,
the size of the largest cluster shrinks, falling particularly rapidly in
the vicinity of the predicted percolation transition. The analytical
prediction, shown as a continuous line, indicates a good agreement
between the predicted and the measured cluster sizes for the two
larger networks (metabolic and protein). Therefore, these findings
indicate that if a node participates in two or more subgraphs, such
participation is imposed on the node by the network’s topological
constraints deriving from the need to distribute a large number of
triangles among a finite number of nodes with widely different
connectivity.

Directed Subgraphs. Because transcriptional regulatory interactions
and some metabolic reactions are directed, we need to extend our
calculations to directed subgraphs as well. For this, we consider
directed subgraphs made of n nodes and m directed links that can
be decomposed into a central node and n — 1 in-neighbors (j is an

17944 | www.pnas.org/cgi/doi/10.1073/pnas.0406024101
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Fig. 3. Subgraph aggregation and percolation. The horizontal axis shows the
sequence of n = 6 subgraphs, the number of links (m) increasing from left to right.
The vertical axis corresponds to the relative size of the largest cluster for the
subgraphs shown on the horizontal axis, being determined by the Si,m)/S,5
ratio, where Se,m) represents the number of nodes participating in (n = 6,m)
subgraphs and S 5) represents the total number of nodes participating in the first
and most abundant subgraph of the n = 6 subgraph family. The square symbols
represent the measured value of the S m)/Se,s) ratio for the S. cerevisiae net-
works listed in the upper right corner, indicating that the relative size of the
subgraph cluster shrinks from close to one to zero as we move from the highly
abundant type | subgraphs to the low-density type Il subgraphs. The topological
consequences of the predicted transition can be seen on the insert network maps,
each corresponding, in order, to the four filled symbols. The sequence of maps
demonstrates that although the type | subgraphs all aggregate into a giant
subgraph cluster, as we move toward the type Il subgraphs, the cluster shrinks
rapidly in the vicinity of the predicted percolation transition and disappears by
either shrinking to close to zero size (see, e.g., the metabolic network) or by
breaking into many small islands, which also disappear by further shrinking (see,
e.g., the transitional regulatory and protein interaction networks). The continu-
ous line, corresponding to our analytical prediction for the relative cluster size, is
in quite good agreement with the measured curve for the relatively large protein
interaction and metabolic networks. The particular shape of the curve depends,
however, on the functional form we use for C(k). For example, the continuous
curves were obtained by using the analytic approximation C(k) = Co/[1 + (k/ko)c].
In contrast, the agreement for the transcriptional regulatory network can be
significantly improved by replacing this fit with the directly measured C(k)
(dashed line), reproducing even the sharp drop for the relative density of the least
connected cluster (first symbol in Top).

in-neighbor of 7 if there is a directed link from j to i). Among the
m directed links, n — 1 connect the central node to its n — 1
in-neighbors, while the remaining m — n + 1 directed links connect
any two in-neighbors. Whenever there is a link between two
in-neighbors they will form, together with the central node, a FFL
(1, 2). Therefore, the problem of finding the number of (n, m)
directed subgraphs is equivalent to the undirected case discussed
above, after replacing the degree by the in-degree, defined as the
number of in-neighbors, the degree distribution by the in-degree
distribution P(ki,), and the clustering coefficient by the FFL
clustering coefficient, Crpr, defined as the number of FFLs passing

Vazquez et al.
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by a node divided by the maximum number of FFLs that can pass
by it. Assuming that P(kin) ~ ki,” and Crrr ~ ki, our calculations
again predict the existence of the type I and II subgraphs for (m —
n+ Do — (= vyin) <0and (m —n + Dagn — (7 — vin) > 0,
respectively. These results indicate that the distinction between type
I and II subgraphs obtained for undirected networks is present in
directed networks as well. A complete study of all directed sub-
graphs can be also completed, but because the discussion of all
possible cases is not particularly instructive, it is delegated to further
work.

Discussion

The demonstrated equivalence between the local and global topo-
logical organization not only illustrates the importance of taking
into account the mathematical realities and constraints when
interpreting biological data, but also has a number of important
consequences for our understanding of cellular networks. First, it is
tempting to conclude that as the large-scale exponents « and y
determine the subgraph density, then the global organization has
priority over the local one. Such conclusion is a too simplistic, and
therefore incorrect. Indeed, a series of studies have indicated that
the evolution of the large-scale structure of cellular networks is the
consequence of two genome-level mechanisms: gene duplication
and the divergence of duplicated molecular interactions due to
subsequent mutations (27-32). The combination of these processes
allows one to predict the « and vy exponents, in agreement with the
experimental data (27-32). In contrast, the network’s local wiring
diagram may be shaped by selection toward subgraphs with desir-
able functional properties. Therefore, whereas the global structure
reflects the sum of events contributing to the network’s growth and
buildup, it is often implied that the local properties reflect solely
evolutionary selection toward desirable functional traits (1-4). Our
results indicate, however, that a sharp distinction between the local
and global structure is not justified: Determining the large-scale
exponents («a and v) is equivalent with specifying the number of
subgraphs, or providing the distribution of any two subgraphs
uniquely identifies the system’s large-scale organization and the
scaling exponents. Thus, such local processes as gene duplication
and subsequent interaction divergence (32) likely determine both
the network’s large-scale topology (a and vy) (27-32) and the
statistical relevance and density of subgraphs. This common origin
of the local and global characteristics is the most likely biological
reason for their mathematical equivalence, because neither the
density and topology of subgraphs nor the large-scale properties can
be dissociated from the evolution of the overall network. Selection
for function is likely to play an important role in shaping the
directionality and/or strength of the links [e.g., of the molecular
interactions for information processing in transcriptional regulatory
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networks (1-3)]. As our study shows, the inevitable aggregation of
type I subgraphs into clusters is equally important, because it
implies that the potential functional properties of statistically abun-
dant subgraphs need also to be evaluated beyond the level of a
single subgraph, at the level of subgraphs clusters.

It is important to note that the simplifications we made in the
calculations leading to Figs. 1-3 can be relaxed (see supporting
information). First, as we have shown above, type I and II subgraphs
can be generalized to directed networks, representing a biologically
more relevant approximation for the regulatory and metabolic
networks. Second, although Fig. 1 is limited to the subset of n-node
subgraphs that contain a central node, the results can be generalized
to other elementary subgraphs as well, such as those containing
cycles of four or more nodes. Subgraphs with a central node are,
however, abundant in complex networks with a high clustering
coefficient, as in the case of biological networks, and therefore
deserve special attention. Finally, the incompleteness of the current
maps of cellular networks suggests potentially higher triangle
densities than are currently detectable. Yet, as long as the missing
and false-positive interactions are distributed randomly throughout
the network, they do not affect our findings. This conclusion is
supported by the fact that our predictions work equally well for the
nearly complete metabolic network and the incomplete transcrip-
tional regulatory network (Figs. 1-3).

In conclusion, the demonstrated mathematical equivalence of a
network’s large-scale and local, subgraph-based structure under-
scores the need to understand the properties and evolution of
cellular networks as fully integrated systems, where the achievable
local changes are inherently intertwined with the network’s global
organization. Also, the interdependence between the local and
global architecture is by no means limited to cellular networks but
is expected to apply to all networked systems, from the World Wide
Web to transportation and social networks (8-12, 33). Indeed,
preliminary results indicate that the analysis described here can be
successfully carried out for the Internet topology and other net-
works (12, 34, 35) and may have an impact on our understanding
of cycles in complex networks as well (36, 37) (A.V.,, J. G. Oliveira,
and A.-L.B., unpublished work). Therefore, although there appears
to be significant freedom in the evolution (and subsequent func-
tion) of various complex networks, the kind and abundance of local
interaction patterns are uniquely characterized by their two global
parameters, raising intriguing questions about the role of local,
individual events in shaping a network’s overall behavior.
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