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A linear array that achieves maximum resolution for a given number of antennas is advantageous 
in earth-rotation aperture synthesis. This type of array is called a minimum redundancy linear 
array; it is obtained by reducing redundant spacings present in the array. Various methods are 
examined to f'md optimum arrays for a large number of antennas. From the systematic analysis 
of regular patterns in these arrays, a possibility of generalizing optimum arrays is suggested. Optimum 
configurations could also be used for distributing stations in an aperture synthesis array. 

1. INTRODUCTION 

The aperture synthesis technique has been widely 
used in radio astronomy to obtain high-resolution 
maps of radio sources [Ryle, 1975]. In this tech- 
nique, it is required to sample as many independent 
spatial frequencies (or Fourier components) of the 
brightness distribution as possible. A linear array 
that achieves maximum resolution for a given 
number of antennas is advantageous in earth-rota- 
tion aperture synthesis by a single linear array. This 
type of array is called a minimum redundancy linear 
array (hereinafter called MRLA), which is obtained 
by reducing the number of redundant spacings 
present in the array. 

When the number N of antennas is less than 

five, zero-redundancy linear arrays exist, which 
sample each spatial frequency only once at uniform 
intervals of unit spacing up to the maximum spacing. 
Antennas of the four-element zero-redundancy 
array [Arsac, 1955] are arranged as {1100101} 
(ones, occupied sites; zeros, unoccupied sites), and 
it provides six nonredundant spacings. 

It is not easy to search out optimum MRLA 
configurations for a large number of antennas. 
Bracewell [1966] proposed a systematic arrange- 
ment of antennas. It is summarized as follows: 

1. For an odd number of antennas (N = 2rn + 1), 

ß 1...".1. (m + 2) .(m + 1)......(m + 1). 

rn + I antennas rn antennas 
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where points and numbers represent the positions 
of antennas and the spacings between them, respec- 
tively. The maximum spacing L of this array is 

L = (m + 1) 2 = (N + 1)2/4 (1) 

The redundancy R is defined as the ratio of the 
number of possible pairs of antennas to L' 

R = •vC2/L = 2N(N- 1)/(N + 1) 2 (2) 

2. For an even number of antennas (N = 2rn), 

.1. '"' .1.(m+ 1) .m.--...•. 
rn antennas rn antennas 

L = m(m + 1) = N (N + 2) / 4 (3) 

R = 2(N - 1) / (N + 2) (4) 

The values of R for (2) and (4) approach R = 2 
for a large value of N. An array of five antennas 
arranged in this way has been actually constructed 
at Stanford University [Bracewell et al., 1973]. 

In the theory of numbers, a set of integers {n l, 
n2, ''', n• } is called a difference basis with respect 
to L if every positive integer n such that 0 < n 
• L can be represented in the form of n = n• 
- nT. If {n•, n2, '' ', n•} are considered as the 
positions of antennas, the problem of finding out 
optimum MRLA's may be interpreted as a problem 
of making difference bases that minimize k or 
maximize L. Leech [1956] examined this identical 
problem and gave some optimum solutions for N 
-< 11. There may be more than one optimum solution 
for a given N and L. This problem was discussed 
by Moffet [1968] with special interest in the ap- 
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Fig. 1. MRLA's obtained by a combination of two MRLA's 
(see Table 1). 

plication to aperture synthesis. The optimum solu- 
tions obtained by Leech have fairly small values 
of redundancy compared to those of Bracewell's 
arrangements. Therefore it can be said that optimum 
MRLA's for N -< 11 have already been worked 
out. 

In this paper, we examine some methods to find 
out MRLA's for a large number of antennas and 
discuss advantages and disadvantages in these 
methods. In section 2, we describe a method to 
compose large MRLA's by a recursive use of 
optimum small MRLA's. In section 3, three methods 
are examined to f'md out MRLA's for an arbitrary 
number of antennas with the aid of a digital comput- 

er. In section 4, we analyze a regularity in array 
configurations obtained by these methods and 
propose a method of arranging antennas in a mini- 
mum-redundant manner by taking advantage of this 
regularity. 

2. A METHOD TO COMPOSE LARGE MRLA'S BY A 

RECURSIVE USE OF OPTIMUM SMALL MRLA'S 

It is possible to compose larger MRLA's by a 
minimum-redundant arrangement of small MRLA's 
by considering these small arrays as constituent 
elements for the new array. MRLA's for a large 
number of antennas are constructed by a recursive 
•s½ of this process. This operation corresponds to 
suppressing the grating lobes of the array by nar- 
rowing the primary beam pattern and is explained 
by the principle of pattern multiplication in antenna 
theory. In this section, the properties of this method 
are described. 

2.1 A Combination of Two MRLA's 

Suppose that MRLA's of n antennas (MRLA 1) 
are arranged in the array configuration of an MRLA 
of m antennas (MRLA 2). In this case, the total 
number of antennas is 

l =nm (5) 

If the maximum spacings of MRLA 1 and MRLA 2 
are N and M multiples of their respective unit 
spacings, the maximum spacing of the MRLA newly 
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Fig. 2. M'mimum redundancies of optimum MRLA's obtained 
by method 1 (see Table 4 and text). 



synthesized is, 

L= [2(N/2)+N+ llM+2(N/2)=2NM+N+M 

(6) 

since the unit spacing of MRLA 2 is 2N + 1 times 
that of MRLA 1. Equations (5) and (6) show that 
n and m (or N and M) are interchangeable in l 
(or L), so that the same result is obtained when 
MRLA 1 and MRLA 2 are interchanged. 

The results for L < 500 are shown in Table 1 

and Figure 1. A difference basis {n•, n2, '' ', 
such that 0 = n• < n 2 < ... < n k = n is called 
a restricted difference basis. The MRLA configura- 
tions for up to seven antennas are quoted from 
the restricted difference bases in Leech's paper. 
The redundancy R in Table 1 is defined as 

a = 1C2/L = t(t- 1)/2L (7) 

It is clear from Figure 1 that the combination of 
n = 4 and m = 4 gives the lowest redundancy 
(= 1.43) obtained with the method for L < 500. 

2.2. A Recursire Use of MRLA's 

If the array configuration of MRLA 2 is recur- 
sively used k times, the total number of antennas 
and the maximum spacing are, respectively, 

l k = talk_, (k -> 2) (8) 

L•, = 2L•,_•M + Ln_ l q- M 

= (2M + 1)L •_, + M (k => 2) (9) 

where l• = n and L• = N. Equations (8) and (9) 
can be expressed in terms of l• and L•, and the 
following expressions are obtained: 

1•, = m •'-• 1• = m•'-•n (k _-> 2) (10) 

TABLE 1. A combination of two MRLA's. 

n N m M I L R 

2 1 2 1 4 4 1.50 

2 1 3 3 6 10 1.50 

3 3 3 3 9 24 1.50 

3 3 4 6 12 45 1.47 

4 6 4 6 16 84 1.43 

4 6 5 9 20 123 1.54 

5 9 5 9 25 180 1.67 

5 9 6 13 30 256 1.70 

6 13 6 13 36 364 1.73 

6 13 7 17 42 472 1.82 
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TABLE 2. A recursive use of MRLA's for n = m = 3. 

k I k Lk Rn 

1 3 3 1.00 

2 9 24 1.50 

3 27 171 2.05 

L•= [(2M+ 1)•-'(2L, + 1)-1]/2 

= [(2M + 1)•-'(2N + 1)- 1]/2 (k= > 2) (11) 

When n = m and N = M, (10) and (11) are simplified 
as 

lk = m • (k -> 2) (12) 

L• = [(2M + 1) •- 1]/2 (k= > 2) (13) 

The redundancy R• for this case is from (7)' 

R•, = l•,(l•,- 1)/2L• 

k __ __ = m (m • 1)/[(2M + 1) • 1] (k >- 2) (14) 

Fork >> 1, 

Rt, -• [m2/(2M + 1)] k (15) 

and the redundancy tends to increase monotonically 
with increasing k. 

For simplicity, only the cases for n = m are 
examined in the following discussion. As the zero- 
redundancy arrays are limited to the cases (1) m 
= 3, M = 3; and (2) m = 4, M = 6, with the 
exception of the trivial case of m = 2, M = 1, 
we examined these two cases: 

Case 1' m = 3, in the limit of large k: 

R • = (1.29) • (16) 

while the results for k = 1, 2, and 3 are shown 
in Table 2. 

Case 2: m = 4, in the limit of large k: 

R• -• (1.23) • (17) 

while the results for k = 1, 2, and 3 are shown 
in Table 3. 

The results for k = 2 in cases 1 and 2 correspond 
to the cases of a combination of two MRLA's. 

It is clear from the comparison of Tables 1 and 
2 that case 2 is superior to case 1 in redundancy. 
In addition to cases 1 and 2, we examined two 
extra cases for n = 4, m = 3 and n = 3, m = 
4, the results of which lie between those for cases 
1 and 2. It is concluded that optimum solutions 
are obtained for case 2. 
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TABLE 3. A recursive use of MRLA's for n = m = 4. 

k l k Lk Rn 

1 4 6 1.00 

2 16 84 1.43 

3 64 1098 1.84 

3. METHODS TO FIND MRLA'S FOR AN ARBITRARY 

NUMBER OF ANTENNAS WITH THE AID OF A 

DIGITAL COMPUTER 

The method described in section 2 is applicable 
only to specific number of antennas. In this section, 
we examine three methods to find MRLA's for 

an arbitrary number of antennas with the aid of 
a digital computer. These three methods have the 
following process in common: For a given maximum 
spacing, these methods try to find arrays that can 
provide all the spacings from unit spacing up to 
the maximum. Those arrays that have minimum 
numbers of antennas are registered as candidates 
for MRLA' s. This process is repeated with increas- 
ing maximum spacing stepwise in unit spacing. Thus 
optimum MRLA's that give maximum spacing for 
a given number of antennas are selected from these 
candidates. 

3.1. A Search Method by Use 
of Random Numbers 

A large number of random array configurations 
are generated in a digital computer and are examined 
to see whether they are to be rejected or not as 
favourable candidates for MRLA's. We used two 

methods of generating random array configurations. 
In one method, one starts with a configuration with 
all sites unoccupied and then places antennas at 
random in the unoccupied sites until the condition 
of full spacing is obtained. In the other method, 
one starts with a configuration with all sites occupied 
and then removes antennas at random from the 

occupied sites until the condition of full spacing 
is broken. 

In our experience, the latter gives smaller values 
of redundancy than the former. Random numbers 
used in this approach are sampled from the uniform 
probability distribution over the whole length of 
the array and from a modified Gaussian distribution 
that shows higher probability at the both ends of 
the array than at the center. The algorithm is ex- 
tremely simple, but it consumes computing time 
to little purpose. The redundancy of MRLA's thus 
obtained is not so small as expected. 

3.2. A Method to Search Out Some Restricted 

Possibilities (Method I) 

As the number of ways of placing antennas, say, 
20, in all the possible positions in the array of 
redundancy of 1.5 will amount to 10 20 , it is prohibi- 
tive to search out all the possibilities. However, 
if the combinations are restricted by introducing 
some definite principles in placing antennas, it is 
not unrealistic to search out all the possibilities 
involved in them. Method 1 is an example of such 
an approach. The restriction introduced in method 
1 is as follows. 

If the maximum spacing is L, the number K of 
possible sites is L + 1. However, the first three 
antennas are automatically arranged so that the 
spacings L and L - 1 exist. In other words, one 
can start with the configuration of {.1.(L - 1).}. 
If the total number of antennas is N, K - 3 
unoccupied sites are prepared for N - 3 antennas. 

TABLE 4. Optimum MRLA's obtained by method 1. 

N L R Array Configuration 

4 6 1.000 .1.3.2. 

5 9 1.111 .1.3.3.2. 

.1.1.4.3. 

6 13 1.154 .1.5.3.2.2. 

.1.3.1.6.2. 

.1.1.4.4.3. 

7 17 1.235 .1.7.3.2.2.2. 

.1.3.6.2.3.2. 

.1.1.4.4.4.3. 

.1.1.1.5.5.4. 

8 23 1.217 .1.3.6.6.2.3.2. 

9 29 1.241 .1.3.6.6.6.2.3.2. 

10 35 1.286 .1.3.6.6.6.6.2.3.2. 

.1.3.1.11.2.7.2.6.2. 

11 41 1.342 .1.5.8.8.8.2.2.3.2.2. 

.1.3.6.6.6.6.6.2.3.2. 

12 49 1.347 .1.5.8.8.8.8.2.2.3.2.2. 

13 57 1.368 .1.5.8.8.8.8.8.2.2.3.2.2. 

14 65 1.4• .1.5.8.8.8.8.8.8.2.2.3.2.2. 

15 73 1.438 .1.5.8.8.8.8.8.8.8.2.2.3.2.2. 

.1.7.10.10.10.10.10.2.2.2.3.2.2.2. 

16 83 

17 93 

18 103 

19 113 

20 125 

1.•6 .1.7.10.10.10.10.10.10.2.2.2.3.2.2.2. 

1.462 .1.7.10.10.10.10.10.10.10.2.2.2.3.2.2.2. 

1.485 .1.7.10.10.10.10.10.10.10.10.2.2.2.3.2.2.2. 

1.513 .1.7.10.10.10.10.10.10.10.10.10.2.2.2.3.2.2.2. 

.1.9.12.12.12.12.12.12.12.2.2.2.2.3.2.2.2.2. 

1.520 .1.9.12.12.12.12.12.12.12.12.2.2.2.2.3.2.2.2.2. 
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The total number n r of these possibilities is 

nr = (K- 3)!/{ [(K- 3) - (N- 3)] !(N- 3)!) 

2,0 

= (L - 2)!/[(L - N + 1)!(N - 3)!] (18) 

ForN=20andL= 128, n r-•4.6X 102ø. 
As, in general, a larger spacing may be obtained • •.5 

in fewer ways than a smaller spacing, it will be • 
advantageous to examine larger spacings first. In • 
method 1, an antenna is placed so that the largest 
missing spacing may be obtained by a combination 
of this antenna with an antenna at one end (1 or 
K). Thus there are alternative choices in realizing •.0 
a missing spacing from the left or fight ends. The 
total number of possibilities in this methods is then 

n c = 2 •v-3 (19) 

For N - 20, n c -• 1.3 x 105 . It is clear that the 
number of tries is drastically reduced in method 
1. It is expected from (19) that the computing time 
will be doubled with an increase of 1 in N. 

The results for N -< 20 are shown in Table 4 

and Figure 2, together with those obtained by Leech 
and by Bracewell. For N -< 9, method 1 gives 
identical values of m'mimum redundancy with those 
obtained by Leech, and for N = 10, 11, it gives 
slightly greater values. It is an outstanding charac- 
teristic that optimum solutions are obtained when 
L is odd except for L = 6. 

When unit spacing is close to the diameter of 
antennas and the angle of elevation is small in the 

u 
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Fig. 3. Minimum redundancies of optimum MRLA's without 
unit spacing obtained by the modified version of method I (see 
Table 5). 
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Fig. 4. Minimum redundancies of optimum MRLA's obtained 
by method 2. 

direction of array baseline, there arises a practical 
problem of one antenna being shadowed by its 
neighbor. A modified version of method 1 is used 
to search out optimum MRLA's that have no unit 
spacings. One starts with the configuration of {.2.(L 
- 2).}. consequently, spacing L - 1 is not allowed 
to exist in the array. In addition, sites 1, 3, and 
K are occupied, and sites 2, 4, K- 1 are forced 
to be unoccupied so that K- 6 unoccupied sites 
are prepared for N - 3 antennas. The total number 
m r of these possibilities is 

mr = (K - 6)!/{ [(K - 6) - (N - 3)] !(N - 3)!} 

= (L - 5)!/[(L - N - 2)!(N - 3)!1 (20) 

The ratio of mr to n r is 

mr/nr= [(L - 5)!(L - N + 1)!] 

+ [(L - 2)!(L- N- 2)!] = [(L- N + 1)(L- N) 

ß (L- N- 1)]/[(L - 2)(L- 3)(L- 4)1 (21) 

The ratio rnr/nr is always less than unity, and 
rn r/n r -• 0.64 for N = 20, L = 128. This means 
the reduction in computing time is expected for 
the modified version of method 1. 

The results are shown in Table 5 and Figure 3. 
In this case, since it is impossible to satisfy the 
condition of full spacing, the redundancy R is 
redefined as follows: 

R = •v C2/number of independent spacings 

= N(N- 1/[2(L- 2)] (22) 
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TABLE 5. Optimum MRLA's without unit spacing obtained 
by the modified version of method 1. 

N L R Array Configuration 

4 7 1.200 

5 10 1.250 

6 15 1.154 

7 20 1.167 

8 25 1.217 

9 30 1.286 

10 35 1.364 

11 42 1.375 

12 49 1.404 

13 55 1.472 

14 63 1.492 

15 73 1.479 

16 80 1.538 

17 89 1.563 

18 99 1.577 

19 109 1.598 

20 122 1.583 

.2.2.3. 

.2.2.3.3. 

.2.2.5.3.3. 

.2.2.5.5.3.3. 

.2.2.5.5.5.3.3. 

.2.2.5.5.5.5.3.3. 

.2.2.5.5.5.5.5.3.3. 

.2.2.2.2.5.7.5.7.3. 

.2.2.2.2.5.9.5.5.7.3. 

.2.2.8.5.2.5.11.5.3.3.3. 

.2.2.11.5.2.8.8.5.3.3.3.3. 

.2.2.11.2.5.3.11.7.3.3.3.3. 

.2.2.2.10.2.2.2.5.8.11.3.3.3. 

.2.2.2.2.2.7.7.5.11.3.9.3. 

.2.2.2.2.2.5.9.5.9.5.9.3. 

.2.2.11.5.2.8.8.8.5.3.3.3.3. 

.2.2.5.2.2.5.5.12.3.5.14.3.3. 

.2.2.2.2.2.2.7.9.5.13.3.11.3. 

.2.2.2.2.2.2.5.11.5.11.5.11.3. 

.2.2.2.2.12.5.11.5.5.5.9.3.7.3. 

.2.2.2.2.2.14.5.8.5.7.5.11.3.9.3. 

.2.2.2.2.2.2.2.7.11.5.13.5.15.3.13.3. 

.2.2.2.2.2.2.2.5.13.7.13.3.13.5.13.3. 

.2.2.2.2.2.2.2.5.13.5.13.5.13.5.13.3. 

.2.2.2.10.5.2.2.26.3.7.3.5.12.7.3.5. 

.2.2.2.2.2.2.2.2.7.13.5.15.5.17.3.15.3. 

.2.2.2.2.2.2.2.2.5.15.7.15.3.15.5.15.3. 

.2.2.2.2.2.2.2.2.5.15.5.15.5.15.5.15.3. 

.2.2.20.5.2.20.5.5.14.8.5.3.3.3.3.3.3.3. 

.2.2.2.2.12.2.2.2.5.10.15.10.5.10.15.3.7.3. 

.2.2.2.2.2.2.2.18.5.17.5.9.2.5.15.3.13.3. 

.2.2.2.2.2.2.2.2.2.7.15.5.17.5.19.3.17.3. 

.2.2.2.2.2.2.2.2.2.5.17.7.17.3.17.5.17.3. 

.2.2.2.2.2.2.2.2.2.5.17.5.17.5.17.5.17.3. 

.2.2.2.2.2.2.16.5.15.7.7.11.5.9.18.3.11.3. 

It is clear from Figure 3 that MRLA's without unit 
spacing have larger values of redundancy than usual 
MRLA's, except for the case N = 7. Although 
for N = 6 and N = 8, both types of arrays give 
the same minimum redundancy; MRLA's without 
unit spacing are superior in resolution. 

3.3. A Method to Search Out Some Restricted 

Possibilities (Method 2) 

In this method, the largest missing spacing is 
examined not only from both ends of the array 
but also from all the existing antennas previously 

placed. It is the same as in method 1' to start with 
the configuration of {.1.(L - 1.} and to examine 
larger spacings preferentially. A site is selected as 
optimum which, if occupied, gives as many missing 
spacings as possible. When more than one site is 
selected as optimum at some stage, they are regis- 
tered without exception to examine all the combina- 
tions of tree structure derived from them. This 

process is repeated until the condition of full spacing 
is obtained. Those configurations that give minimum 
redundancy are registered as candidates for opti- 
mum MRLA's. 

The values of minimum redundancy obtained for 
N _-< 29 by method 2 are shown in Figure 4. For 
N _-< 11, both methods give the same results, and 
for N _-> 12, method 2 is inferior in redundancy 
to method 1. However, it takes 10 4 times less 
computing time in method 2 than in method 1. Fig- 
ure 5 shows the results when optimum MRLA's with- 
out unit spacing are searched by a modified version 
of method 2. 

4. A REGULARITY IN OPTIMUM MRLA'S 

There are apparent regular patterns in the confi- 
gurations of optimum MRLA's for a large value 
of N. It is clear that the largest spacing between 
succesive pairs of antennas repeats many times at 
the central part of the array. 

For example, optimum MRLA's obtained by 
method 1 for large N could be generalized as follows: 

2.0 

1,0 

... 

©"-• METHOD-2 WITHOUT UNiT SPACING 

0 10 20 30 

NU•ER OF ANTENNAS 

Fig. 5. Minimum redundancies of optimum MRLA's without 
unit spacing obtained by the modified version of method 2. 
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TABLE 6. Optimum MRLA's with a regularityß 

N L Array Configuration Reference* 

n + 3 3n + 3 .1.3ß ...- .3ß2. A 

n + 4 4n + 5 ß1.1ß4..... ß4ß3. B 

.l.(2n + 1).3.2......2. 
n + 5 5n + 7 .1.1.1.5...-..5.4. C 

n + 6 6n + 11 .1.3.6......6.2.3.2. D 

n + 7 7n + 15 .1.2.3.7..-.- .7.4.4.1. E 

n + 8 8n + 17 .1.5.8. -.-..8.2.2.3.2.2. F 

n + 9 9n + 20 .1.2.5.9. -....9.4.2.4.1.1. G 
.1.1.2.4.9. ß ß ß ß .9.5.5.1.1. 

.1.7.10. ..-. .10.2.2.2.3.2.2.2. 

.1.3.2.1.3.11. -..- .11.8.4.1.3.2. 

ß 1.9.12. ß ß ß ß .12.2.2.2.2.3.2.2.2.2. 

ß 1.11.14. ß ß ß ß .14.2.2.2.2.2.3.2.2.2.2.2. 

ß 1.13.16. -- ß ß .16.2.2.2.2.2.2.3.2.2.2.2.2.2. 

n + 10 10n + 23 H 

n + 11 11n + 28 I 

n + 12 12n + 29 J 

n + 14 14n + 35 K 

n + 16 16n + 41 L 

* See Figure 6. 

ß l.p. (p+3) .---- . (p+3).2.-.-..2.3.2......2. 
•• v d' y, d 
3 antennas n - I antennas œ + I antennas 

(n= 1,2, ...) 

where p is an odd number. The necessary number 
of antennas, the maximum spacing, and the redun- 
dancy are, respectively, 

N=3+(n- 1)+(p+ 1)=n+p+3 (23) 

L = (p + 3)n + 3p + 2 (24) 

2.0 

1,0 

NUMBER OF ANTENNAS 

Fig. 6. M'mimum redundancies of optimum MRLA's with 
regularity. 

R = 31(31- 1)/{2 [(p + 3)N- (p2 + 3p + 7)1} (25) 

Array configurations forp = 1, 3, ß ß., 13 are shown 
in Table 6 as a class of arrays for N = n + (even 
number). The corresponding values of redundancy 
are illustrated in Figure 6 by dotted lines. It is 
clear from Figure 6 that the values of minimum 
redundancy of optimum solutions in method 1 lie 
just on the lower envelope of those given by (25). 

MRLA's with regularity exist also for N = n 
+ (odd number), the configurations of which are 
shown in Table 6 and Figure 6. Arrays for N = 
n q- 9, n q- 11 are obtained by a heuristic method 
with trial and error. It is easily proved by mathe- 
matical induction that these arrays have all spacings 
from unit spacing up to the maximum. As is shown 
in Figure 6, arrays for N = n + (odd number) 
are superior in redundancy to those for N = n 
+ (even number). Probably such arrays will exist 
for N _-> n q- 13, though we have never tried to 
f'md them. 

5. SUMMARY AND CONCLUSION 

Various methods were examined to find optimum 
MRLA's for a large number of antennas. In the 
first method, larger MRLA's are obtained by using 
small MRLA's recursively as constituent elements 
for the new array. If we restrict ourselves to use 
only zero-redundancy arrays as small MRLA's, the 
four-antenna, zero-redundancy array is advanta- 
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geous. As a result, when I = 16 and L = 84 (n 
= rn = 4 and N = M = 6), a minimum redundancy 
R = 1.43 was obtained, which is also the minimum 
value found by any of the methods described. 

Secondly, three methods were developed to find 
MRLA's for an arbitrary number of antennas with 
the aid of a digital computer. These are heuristic 
methods by use of random numbers, a method in 
which the largest missing spacing is examined from 
the ends of array (method 1) and a method in which 
the largest missing spacing is examined not only 
from the ends but also from all the existing antennas 
(method 2). The method using random numbers is 
simple but not so efficient. Method 1 gave solutions 
very close to the results obtained by Leech. Except 
for the computing time, method 2 was inferior to 
method 1 in spite of its complicated algorithm. 
With modified versions of these methods, optimum 
MRLA's without unit spacing were searched out 
in order to avoid the practical difficulty of one 
antenna being shadowed by its neighbor. 

Finally, from the systematic analysis of regular 
patterns in optimum MRLA's, general forms of 
these MRLA's were summarized (Table 6). It is 
clear that the results obtained by method 1 corre- 
spond to the cases of the lowest possible redundancy 
for N = n + (even number) and that arrays for 
N = n + (odd number) are superior in redundancy 
to those for N = n + (even number). 

Leech gives bounds for the redundancy of re- 
stricted difference bases in the limit of large N 
of 1.217 •< R •< 1.674. As the optimum MRLA's 
described in this paper have redundancies well 
above Leech's lower bound, while they are less 
than 1.674, it may still be possible to find optimum 
MRLA's of substantially lower redundancy. 
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