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Minimum redundancy linear arrays for a large number of antennas
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A linear array that achieves maximum resolution for a given number of antennas is advantageous
in earth-rotation aperture synthesis. This type of array is called a minimum redundancy linear
array; it is obtained by reducing redundant spacings present in the array. Various methods are
examined to find optimum arrays for a large number of antennas. From the systematic analysis
of regular patterns in these arrays, a possibility of generalizing optimum arrays is suggested. Optimum
configurations could also be used for distributing stations in an aperture synthesis array.

1. INTRODUCTION

The aperture synthesis technique has been widely
used in radio astronomy to obtain high-resolution
maps of radio sources [Ryle, 1975]. In this tech-
nique, it is required to sample as many independent
spatial frequencies (or Fourier components) of the
brightness distribution as possible. A linear array
that achieves maximum resolution for a given
number of antennas is advantageous in earth-rota-
tion aperture synthesis by a single linear array. This
type of array is called a minimum redundancy linear
array (hereinafter called MRLA), which is obtained
by reducing the number of redundant spacings
present in the array.

When the number N of antennas is less than
five, zero-redundancy linear arrays exist, which
sample each spatial frequency only once at uniform
intervals of unit spacing up to the maximum spacing.
Antennas of the four-element zero-redundancy
array [Arsac, 1955] are arranged as {1100101}
(ones, occupied sites; zeros, unoccupied sites), and
it provides six nonredundant spacings.

It is not easy to search out optimum MRLA
configurations for a large number of antennas.
Bracewell [1966] proposed a systematic arrange-
ment of antennas. It is summarized as follows:

1. For an odd number of antennas (N = 2m + 1),

dooos l.m+2) . (m+1). - (m+ 1)
A Y \ v J

m + 1antennas m antennas
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where points and numbers represent the positions
of antennas and the spacings between them, respec-
tively. The maximum spacing L of this array is

L=(m+1)’=(N+17/4 M

The redundancy R is defined as the ratio of the
number of possible pairs of antennas to L:

R=,C,/L=2N(N—1)/(N + 1)? )

2. For an even number of antennas (N = 2m),

doeeemlom+ 1) me--- - m.

R N ——r’

L=m(@m+1)= NN +2)/4 3)
R=2(N-1)/(N+2) @

The values of R for (2) and (4) approach R = 2
for a large value of N. An array of five antennas
arranged in this way has been actually constructed
at Stanford University [Bracewell et al., 1973].

In the theory of numbers, a set of integers {n,,
n,, - -+, n,} is called a difference basis with respect
to L if every positive integer n such that 0 < n
= L can be represented in the form of n = n,
- n,. If {n,, n,, ---, n,} are considered as the
positions of antennas, the problem of finding out
optimum MRIA’s may be interpreted as a problem
of making difference bases that minimize k or
maximize L. Leech [1956] examined this identical
problem and gave some optimum solutions for N
= 11. There may be more than one optimum solution
for a given N and L. This problem was discussed
by Moffet [1968] with special interest in the ap-
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Fig. 1. MRLA’s obtained by a combination of two MRLA’s
(see Table 1).

plication to aperture synthesis. The optimum solu-
tions obtained by Leech have fairly small values
of redundancy compared to those of Bracewell’s
arrangements. Therefore it can be said that optimum
MRLA’s for N = 11 have already been worked
out.

In this paper, we examine some methods to find
out MRLA'’s for a large number of antennas and
discuss advantages and disadvantages in these
methods. In section 2, we describe a method to
compose large MRLA’s by a recursive use of
optimum small MRLA’s. In section 3, three methods
are examined to find out MRLA'’s for an arbitrary
number of antennas with the aid of a digital comput-

er. In section 4, we analyze a regularity in array
configurations obtained by these methods and
propose a method of arranging antennas in a mini-
mum-redundant manner by taking advantage of this
regularity.

2. A METHOD TO COMPOSE LARGE MRLA’S BY A
RECURSIVE USE OF OPTIMUM SMALL MRLA’S

It is possible to compose larger MRLA’s by a
minimum-redundant arrangement of small MRLA'’s
by considering these small arrays as constituent
elements for the new array. MRLA’s for a large
number of antennas are constructed by a recursive
1se of this process. This operation corresponds to
suppressing the grating lobes of the array by nar-
rowing the primary beam pattern and is explained
by the principle of pattern multiplication in antenna
theory. In this section, the properties of this method
are described.

2.1 A Combination of Two MRLA’s

Suppose that MRLA'’s of n antennas (MRLA 1)
are arranged in the array configuration of an MRLA
of m antennas (MRLA 2). In this case, the total
number of antennas is

l=nm ®)

If the maximum spacings of MRLA 1 and MRLA 2
are N and M multiples of their respective unit
spacings, the maximum spacing of the MRLA newly

2,0 T

—
v
T

REDUNDANCY

o— MeTHOD-1

e |EECH

+ + BRACEWELL T

0 10 20 30

NUMBER OF ANTENNAS

Fig. 2. Minimum redundancies of optimum MRLA’s obtained
by method 1 (see Table 4 and text).



synthesized is,
L=[2(N/))+N+1]M+2(N/2)=2NM+ N+ M

©)

since the unit spacing of MRLA 2 is 2N + 1 times
that of MRLA 1. Equations (5) and (6) show that
n and m (or N and M) are interchangeable in /
(or L), so that the same result is obtained when
MRLA 1 and MRLA 2 are interchanged.

The results for L < 500 are shown in Table 1
and Figure 1. A difference basis {n,, n,, ---, n,}
suchthat 0 = n, < n, < --- < n, = nis called
a restricted difference basis. The MRLA configura-
tions for up to seven antennas are quoted from
the restricted difference bases in Leech’s paper.
The redundancy R in Table 1 is defined as

R=,C,/L=1I1-1)/2L 0)

It is clear from Figure 1 that the combination of
n = 4 and m = 4 gives the lowest redundancy
(= 1.43) obtained with the method for L < 500.

2.2. A Recursive Use of MRLA’s

If the array configuration of MRLA 2 is recur-
sively used k times, the total number of antennas
and the maximum spacing are, respectively,

be=ml,_, kz2) ®
L,=2L,_M+L, +M
=M+ 1)L, + M (k=2 )

where I, = n and L, = N. Equations (8) and (9)
can be expressed in terms of /, and L,, and the
following expressions are obtained:

=m L =m"'n (k=2 10
TABLE 1. A combination of two MRLA’s.

n N m M 1 L R

2 1 2 1 4 4 1.50
2 1 3 3 6 10 1.50
3 3 3 3 9 24 1.50
3 3 4 6 12 45 1.47
4 6 4 6 16 84 1.43
4 6 5 9 20 123 1.54
5 9 5 9 25 180 1.67
5 9 6 13 30 256 1.70
6 13 6 13 36 364 1.73
6 13 7 17 42 472 1.82
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TABLE 2. A recursive use of MRLA’s forn = m = 3.

k I, L, R,

1 3 3 1.00
2 9 24 1.50
3 27 171 2.05

Lo=[CM+D)'QL, +1)—-1]/2
=M+ D'@QN+1D)-1]/2 (*kz2) (1)

Whenn=mand N = M, (10) and (11) are simplified
as

L=m" (k=2 (12)
L,=[CM+1)*-11/2 (k=2 13)
The redundancy R, for this case is from (7):
R, =1, - 1)/2L,
=m'(m" - 1)/[2M + D)* - 1] *kz=2) (14
Fork > 1,
R.=[m*/2M + )] * 15)

and the redundancy tends to increase monotonically
with increasing k.

For simplicity, only the cases for n = m are
examined in the following discussion. As the zero-
redundancy arrays are limited to the cases (1) m
=3, M=23;and 2) m = 4, M = 6, with the
exception of the trivial case of m = 2, M = 1,
we examined these two cases:

m = 3, in the limit of large k:
R, = (1.29)"

Case 1:

(16)

while the results for k = 1, 2, and 3 are shown
in Table 2.

Case 2: m = 4, in the limit of large k:

R, = (1.23)* a7

while the results for k = 1, 2, and 3 are shown
in Table 3.

The results for k = 2 in cases 1 and 2 correspond
to the cases of a combination of two MRLA’s.
It is clear from the comparison of Tables 1 and
2 that case 2 is superior to case ! in redundancy.
In addition to cases 1 and 2, we examined two
extracases forn =4, m=3and n =3, m =
4, the results of which lie between those for cases
1 and 2. It is concluded that optimum solutions
are obtained for case 2.
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TABLE 3. A recursive use of MRLA’s forn = m = 4.
k I L, R,
1 4 6 1.00
2 16 84 1.43
3 64 1098 1.84

3. METHODS TO FIND MRLA’S FOR AN ARBITRARY
NUMBER OF ANTENNAS WITH THE AID OF A
DIGITAL COMPUTER

The method described in section 2 is applicable
only to specific number of antennas. In this section,
we examine three methods to find MRLA’s for
an arbitrary number of antennas with the aid of
a digital computer. These three methods have the
following process in common: For a given maximum
spacing, these methods try to find arrays that can
provide all the spacings from unit spacing up to
the maximum. Those arrays that have minimum
numbers of antennas are registered as candidates
for MRLA'’s. This process is repeated with increas-
ing maximum spacing stepwise in unit spacing. Thus
optimum MRLA’s that give maximum spacing for
a given number of antennas are selected from these
candidates.

3.1. A Search Method by Use
of Random Numbers

A large number of random array configurations
are generated in a digital computer and are examined
to see whether they are to be rejected or not as
favourable candidates for MRLA’s. We used two
methods of generating random array configurations.
In one method, one starts with a configuration with
all sites unoccupied and then places antennas at
random in the unoccupied sites until the condition
of full spacing is obtained. In the other method,
one starts with a configuration with all sites occupied
and then removes antennas at random from the
occupied sites until the condition of full spacing
is broken.

In our experience, the latter gives smaller values
of redundancy than the former. Random numbers
used in this approach are sampled from the uniform
probability distribution over the whole length of
the array and from a modified Gaussian distribution
that shows higher probability at the both ends of
the array than at the center. The algorithm is ex-
tremely simple, but it consumes computing time
to little purpose. The redundancy of MRLA’s thus
obtained is not so small as expected.

3.2. A Method to Search Out Some Restricted
Possibilities (Method 1)

As the number of ways of placing antennas, say,
20, in all the possible positions in the array of
redundancy of 1.5 will amount to 10%, it is prohibi-
tive to search out all the possibilities. However,
if the combinations are restricted by introducing
some definite principles in placing antennas, it is
not unrealistic to search out all the possibilities
involved in them. Method 1 is an example of such
an approach. The restriction introduced in method
1is as follows.

If the maximum spacing is L, the number K of
possible sites is L + 1. However, the first three
antennas are automatically arranged so that the
spacings L and L — 1 exist. In other words, one
can start with the configuration of {.1.(L — 1).}.
If the total number of antennas is N, X — 3
unoccupied sites are prepared for N — 3 antennas.

TABLE 4. Optimum MRLA’s obtained by method 1.
N L R

Array Configuration

4 6 1.000 .1.3.2.

5 9 LI111 .1.3.3.2.
.1.1.4.3.

6 13 1.154 .1.5.3.2.2.
.1.3.1.6.2.
.1.1.44.3.

7 17 1235 .1.7.3.2.2.2.
.1.3.6.2.3.2.
.1.1.4.44.3.
.1.1.1.5.5.4.

8§ 23 1217 .1.3.6.6.2.3.2.

29 1.241 .1.3.6.6.6.2.3.2.

10 35 1.286 .1.3.6.6.6.6.2.3.2.
.1.3.1.11.2.7.2.6.2.

11 41 1342 .1.5.8.8.8.2.2.3.2.2,
.1.3.6.6.6.6.6.2.3.2.

12 49 1.347 .1.5.8.8.8.8.2.2.3.2.2.

13 57 1.368 .1.5.8.8.8.8.8.2.2.3.2.2.

14 65 1.400 .1.5.8.8.8.8.8.8.2.2.3.2.2.

15 73 1438 .1.5.8.8.8.8.8.8.8.2.2.3.2.2.
.1.7.10.10.10.10.10.2.2.2.3.2.2.2.

16 83 1.446 .1.7.10.10.10.10.10.10.2.2.2.3.2.2.2.

17 93 1.462 .1.7.10.10.10.10.10.10.10.2.2.2.3.2.2.2.

18 103 1.485 .1.7.10.10.10.10.10.10.10.10.2.2.2.3.2.2.2.

19 113 1.513 .1.7.10.10.10.10.10.10.10.10.10.2.2.2.3.2.2.2.
.1.9.12.12.12.12.12.12.12.2.2.2.2.3.2.2.2.2.

20 125 1.520 .1.9.12.12.12.12.12.12.12.12.2.2.2.2.3.2.2.2.2.




The total number n,. of these possibilities is
ny=(K-3)/{[(K-3)— N3N -3)})
=L -)/[(L-N+ DN -3)]

For N =20 and L = 128, n, = 4.6 x 10®.

As, in general, a larger spacing may be obtained
in fewer ways than a smaller spacing, it will be
advantageous to examine larger spacings first. In
method 1, an antenna is placed so that the largest
missing spacing may be obtained by a combination
of this antenna with an antenna at one end (1 or
K). Thus there are alternative choices in realizing
a missing spacing from the left or right ends. The
total number of possibilities in this methods is then

19

For N = 20, n. = 1.3 x 10°. It is clear that the
number of tries is drastically reduced in method
1. It is expected from (19) that the computing time
will be doubled with an increase of 1in N.

The results for N = 20 are shown in Table 4
and Figure 2, together with those obtained by Leech
and by Bracewell. For N = 9, method 1 gives
identical values of minimum redundancy with those
obtained by Leech, and for N = 10, 11, it gives
slightly greater values. It is an outstanding charac-
teristic that optimum solutions are obtained when
L is odd except for L = 6.

When unit spacing is close to the diameter of
antennas and the angle of elevation is small in the

18)
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Fig. 3. Minimum redundancies of optimum MRLA’s without

unit spacing obtained by the modified version of method 1 (see
Table 5).
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Fig. 4. Minimum redundancies of optimum MRLA’s obtained
by method 2.

direction of array baseline, there arises a practical
problem of one antenna being shadowed by its
neighbor. A modified version of method 1 is used
to search out optimum MRLA’s that have no unit
spacings. One starts with the configuration of {.2.(L
— 2).}. consequently, spacing L — 1 is not allowed
to exist in the array. In addition, sites 1, 3, and
K are occupied, and sites 2, 4, K — 1 are forced
to be unoccupied so that X — 6 unoccupied sites
are prepared for N — 3 antennas. The total number
m . of these possibilities is

mr=(K—6)!/{[(K~6)—(N-3)'(N-3)1}
=L -5/[(L—-N-2)(N-73)] (20)
The ratio of m..to n . is
my/nz=[(L—SL— N+ 1)]
+[(L-2(L-N-=D1=[(L-N+1)L-N)
“(L=N-D]/I(L—-2(L - 3L - 4)] 21
The ratio m,/n, is always less than unity, and
m,/n, = 0.64 for N = 20, L = 128. This means
the reduction in computing time is expected for
the modified version of method 1.
The results are shown in Table 5 and Figure 3.
In this case, since it is impossible to satisfy the

condition of full spacing, the redundancy R is
redefined as follows:

R = ,, C, /number of independent spacings

=NWN-1/[2(L-2)] 22)
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TABLE 5. Optimum MRLA’s without unit spacing obtained
by the modified version of method 1.

N L R Array Configuration

4 7 1200 .2.2.3.

5 10 1.250 .2.2.33.

6 15 1.154 .2.2.53.3.

7 20 1167 .2.2.5.5.3.3.

8 25 1217 .2.2.5.5.5.3.3.

9 30 1.28 .2.2.5.5.5.5.3.3.

10 35 1364 .2.2.5.5.5.5.5.3.3.

222257573,

11 42 1375 .2.2.2.2.5.9.5.5.7.3.

12 49 1404 2.2.85.2.5.11.53.3.3.

13 55 1472 .2.2.11.5.2.8.8.5.3.3.3.3.
2.2,11.2.,5.3.11.7.3.3.3.3.
.2.2.2.10.2.2.2.5.8.11.3.3.3.
2.2.2.2.2.7.7.5.11.3.9.3.
2.2.2.2.2.5.9.5.9.5.9.3.

14 63 1492 .2.2.11.5.2.8.8.8.5.3.3.3.3.
.2.2.5.2.2.5.5.12.3.5.14.3.3.
2.2.2.2.2.2.7.9.5.13.3.11.3,
.2.2,2.2.2.2,5.11.5.11.5.11.3.

15 73 1479 2.2.2.2.12.5.11.5.5.5.9.3.7.3.

16 80 1.538 .2.2.2.2.2,14.5.8.5.7.5.11.3.9.3.

17 89 1563 .2.2.2.2.2.2.2.7.11.5.13.5.15.3.13.3.
2.2.2.2.2.2.2.5.13.7.13.3.13.5.13.3.
2.2.2.2.2.2.2.5.13.5.13.5.13.5.13.3.

18 99 1.577 .2.2.2.10.5.2.2.26.3.7.3.5.12.7.3.5.
2.2.2.2.22.2.2.7.13.5.15.5.17.3.15.3.
2.2.2.2,2.2.2.2.5.15.7.15.3.15.5.15.3.
2.2.2.2.2.2.2.2.5.15.5.15.5.15.5.15.3.

19 109 1.598 .2.2.20.5.2.20.5.5.14.8.5.3.3.3.3.3.3.3.
2.2.2.2.12.2.2.2.5.10.15.10.5.10.15.3.7.3.
2.2.2.2.2.2.2.18.5.17.5.9.2.5.15.3.13.3.
2.2.2.2.2.2.2.2.2.7.15.5.17.5.19.3.17.3.
2.2.2.2.2.2.2.2.2.5.17.7.17.3.17.5.17.3.
2.2.2.2.2.2.2.2.2.5.17.5.17.5.17.5.17.3.

20 122 1.583 .2.2.2.2.2.2.16.5.15.7.7.11.5.9.18.3.11.3.

It is clear from Figure 3 that MRLA’s without unit
spacing have larger values of redundancy than usual
MRLA'’s, except for the case N = 7. Although
for N = 6 and N = 8, both types of arrays give
the same minimum redundancy; MRLA’s without
unit spacing are superior in resolution.

3.3. A Method to Search Out Some Restricted
Possibilities (Method 2)

In this method, the largest missing spacing is
examined not only from both ends of the array
but also from all the existing antennas previously

placed. It is the same as in method 1: to start with
the configuration of {.1.(L — 1.} and to examine
larger spacings preferentially. A site is selected as
optimum which, if occupied, gives as many missing
spacings as possible. When more than one site is
selected as optimum at some stage, they are regis-
tered without exception to examine all the combina-
tions of tree structure derived from them. This
process is repeated until the condition of full spacing
is obtained. Those configurations that give minimum
redundancy are registered as candidates for opti-
mum MRLA’s.

The values of minimum redundancy obtained for
N = 29 by method 2 are shown in Figure 4. For
N = 11, both methods give the same results, and
for N = 12, method 2 is inferior in redundancy
to method 1. However, it takes 10* times less
computing time in method 2 than in method 1. Fig-
ure 5 shows the results when optimum MRLA’s with-
out unit spacing are searched by a modified version
of method 2.

4. A REGULARITY IN OPTIMUM MRLA’S

There are apparent regular patterns in the confi-
gurations of optimum MRLA’s for a large value
of N. It is clear that the largest spacing between
succesive pairs of antennas repeats many times at
the central part of the array.

For example, optimum MRLA’s obtained by
method 1 forlarge N could be generalized as follows:
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»
g
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2
=
o—o MeTHOD-2
1.0 ®-® METHOD-2 WITHOUT UNIT SPACING ]
1 '
0 10 20 30

NUMBER OF ANTENNAS

Fig. 5. Minimum redundancies of optimum MRLA’s without
unit spacing obtained by the modified version of method 2.
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TABLE 6. Optimum MRLA’s with a regularity.

N L Array Configuration Reference™*
n+3 3n+3 130 -0 3.2, A
n+4 4n + 5 d.14. ---- 43, B
1.2n + 1).3.2, -+ 2.
n+S5 5n+17 1115, -+ 54, C
n+6 6n + 11 .1.3.6. ---- .6.2.3.2. D
n+1 Tn + 15 1,237, ---- ‘.7.4.4.1. E
n+8 8n + 17 .1.5.8. ---- .8.2.2.3.2.2. F
n+9 9n + 20 .1.259. ---- 9424.1.1. G
.1.1.2.49, ---- 9.55.1.1.
n+ 10 10n + 23 1.7.10. ---- .10.2.2.2.3.2.2.2. H
n+ 11 11n + 28 .1.3.2.1.3.11. ---- .11.8.4.1.3.2. 1
n+ 12 12n + 29 1912, ---- .12.2.2.2.2.3.2.2.2.2. J
n+ 14 14n + 35 A.11.14, ---- (14.2.2.2.2.2.3.2.2.2.2.2. K
n+ 16 16n + 41 113,16, -4+ .16.2.2.2.2.2.2.3.2.2.2.2.2.2. L
*See Figure 6.
dp. (p+3) (p+3)2.----232. -2 R=NWN-1D/QIp+3IN-@*+3p+DI} (25
Nt \, v S N v J .
3 antennas n — 1 antennas p + | antennas Array configurations forp =1, 3, - - -, 13 are shown

n=1,2--)

where p is an odd number. The necessary number
of antennas, the maximum spacing, and the redun-
dancy are, respectively,

N=3+(n-D+(p+D)=n+p+3 (23)
L=(p+3n+3p+2 29
2.0
&
gl.s
g
1.0}
0 10 20 30

NUMBER OF ANTENNAS

Fig. 6. Minimum redundancies of optimum MRLA’s with
regularity.

in Table 6 as a class of arrays for N = n + (even
number). The corresponding values of redundancy
are illustrated in Figure 6 by dotted lines. It is
clear from Figure 6 that the values of minimum
redundancy of optimum solutions in method 1 lie
just on the lower envelope of those given by (25).

MRLA’s with regularity exist also for N = n
+ (odd number), the configurations of which are
shown in Table 6 and Figure 6. Arrays for N =
n+ 9, n + 11 are obtained by a heuristic method
with trial and error. It is easily proved by mathe-
matical induction that these arrays have all spacings
from unit spacing up to the maximum. As is shown
in Figure 6, arrays for N = n + (odd number)
are superior in redundancy to those for N = n
+ (even number). Probably such arrays will exist
for N = n + 13, though we have never tried to
find them.

5. SUMMARY AND CONCLUSION

Various methods were examined to find optimum
MRLA'’s for a large number of antennas. In the
first method, larger MRLLA’s are obtained by using
small MRLA'’s recursively as constituent elements
for the new array. If we restrict ourselves to use
only zero-redundancy arrays as small MRLA'’s, the
four-antenna, zero-redundancy array is advanta-
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geous. As a result, when / = 16 and L = 84 (n
=m =4 and N = M = 6), a minimum redundancy
R = 1.43 was obtained, which is also the minimum
value found by any of the methods described.

Secondly, three methods were developed to find
MRLA'’s for an arbitrary number of antennas with
the aid of a digital computer. These are heuristic
methods by use of random numbers, a method in
which the largest missing spacing is examined from
the ends of array (method 1) and a method in which
the largest missing spacing is examined not only
from the ends but also from all the existing antennas
(method 2). The method using random numbers is
simple but not so efficient. Method 1 gave solutions
very close to the results obtained by Leech. Except
for the computing time, method 2 was inferior to
method 1 in spite of its complicated algorithm.
With modified versions of these methods, optimum
MRLA'’s without unit spacing were searched out
in order to avoid the practical difficulty of one
antenna being shadowed by its neighbor.

Finally, from the systematic analysis of regular
patterns in optimum MRLA’s, general forms of
these MRLA’s were summarized (Table 6). It is
clear that the results obtained by method 1 corre-
spond to the cases of the lowest possible redundancy
for N = n + (even number) and that arrays for
N = n + (0odd number) are superior in redundancy
to those for N = n + (even number).

Leech gives bounds for the redundancy of re-
stricted difference bases in the limit of large N
of 1.217 = R =< 1.674. As the optimum MRLA’s
described in this paper have redundancies well
above Leech’s lower bound, while they are less
than 1.674, it may still be possible to find optimum
MRLA'’s of substantially lower redundancy.
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