
Fortran: what is it and
what’s the difference

between F90 and F77?

Overview

• Who decides what Fortran is?

• F90 vs. F77

Who decides what
Fortran is?

• Standards are defined by a committee
(http://www.j3-fortran.org/)

• Compilers are written

• Commercial: e.g. Intel (ifort), many others

• Non-commercial: g95, gfortran

• May also have coding guidelines/standards

Standards

• Fortran IV (1966)

• Fortran 77 (old but popular version)

• Fortran 90 (major revision to F77)

• Fortran 95 (minor revision to F90)

• Fortran 2003 (current standard)

• Fortran 2008 (will be next standard)

Why write standard
compliant code?

• Should work with any compiler. Not tied to
a specific compiler

• Easier to port to new computer

• Good practice: deleted features are
removed for good reasons

• New standards have useful new features

Compilers

• Some behaviour is compiler dependent
(not specified in standard) e.g.

• Flags

• Values of un-initialised variables

• Warnings

Coding guidelines

• Local working practices

• Particularly useful for large projects with
many developers.

• Easier to work with a uniform style

• Standards still permit undesirable coding
practices

Example coding
guidelines

• http://xmm.esa.int/sas/7.1.0/doc/devel/
coding.html

• http://www.cgd.ucar.edu/cms/ccm4/
codingstandard.shtml

• http://vlm089.citg.tudelft.nl/swan/
online_doc/swanpgr/node2.html

Fortran 90 vs. Fortran
77

• Fortran 90 was a major revision to Fortran
77

• Fortran 77 is a complete sub-set of Fortran
90

• F90 introduced major new features

• Also introduced many useful minor features
which can be gradually introduced

You may already use ...

• Longer names (only 6 character variable
names in F77)

• IMPLICIT NONE

• Comparison operators: .LT. and .GT.
or < and >

Fixed format source
code

• F77 used fixed format source code

• Makes sense if your code is on fixed width
punched cards

• A pointless inconvenience on a modern
computer

Free format source
code

• Start in any column, go up to column 132
(may be more readable <90 columns)

• Comments star t with a !

• Put a & at end of line to continue

Loops

• End a DO loop with END DO

• Go on to next iteration with CYCLE

• Break out of loop with EXIT

• Label your loops for safety

• DO WHILE, DO with out an index.

program loop_test

 implicit none

 integer, parameter :: missing_data = -99
 integer :: data, status

 open (status="old", unit=60, file="data.dat")

 data_loop: do
 read(60,*, iostat=status) data
 if (status /= 0) exit data_loop
 if (data == missing_data) cycle data_loop
 call process_data (data)
 end do data_loop

 close(60)

end program loop_test

 PROGRAM BADPROG

 DO 10 I=1. 10
 WRITE(*,*) I
 10 CONTINUE

 END

New intrinsics

• Many new intrinsic functions and
subroutines in F90

• Use of intrinsics saves writing extra code
and should be quick

• Handling strings is much easier in F90

• Several useful array intrinsics

Some examples

•DOT_PRODUCT, MATMUL

•SUM, ALL, ANY, MAXVAL, MINVAL

•DATE_AND_TIME

•RANDOM_NUMBER

•TRIM, ADJUSTL, ADJUSTR

• and many more

Arrays

• F90 has dynamic memory allocation

• Avoids problems with hard-wired array
sizes

• Needs care to avoid memory leaks

• Also assumed size and automatic arrays

• Can work with array sections
a(:)=b(1,:)

program array_example

 implicit none

 real, allocatable :: spectral_cube(:,:,:)
 real, allocatable :: image(:,:)
real :: exp_time

 integer :: nx, ny, nfreq

 call get_size (nx, ny, nfreq, "image.fits")

 allocate(spectral_cube (nx, ny, nfreq))
 allocate(image (nx, ny))

 call read_cube(spectral_cube, exp_time, nx, ny, nfreq)

 image(:,:) = SUM(spectral_cube, dim=3)
image(:,:) = image(:,:) / exp_time

 call write_image(image, nx, ny)

 deallocate (image)
 deallocate (spectral_cube)

end program array_example

There’s more ...

• User defined data types and modules

• Subroutines: recursion, optional arguments, intent

• Pointers

• WHERE

• FORALL

• SELECT CASE construct

• etc

Useful links

• http://www.star.le.ac.uk/~cgp/f90course/f90.html

• http://www.nsc.liu.se/~boein/f77to90/f77to90.html

• http://www.pcc.qub.ac.uk/tec/courses/f77tof90/stu-
notes/f90studentMIF_1.html

