
Choosing and using
programming languages

Introduction

• What are we trying to achieve?

• Choosing a language

• Good practice

• Future plans

What do we use
programming for?

• Simulations (e.g. SPH, radiative transfer)

• Data processing: scripting, custom analysis

• ???

What languages do we use?

• Fortran 77, Fortran 90/95

• C/C++

• Perl

• Java

• Python

• ???

The program should
be ...

• Correct: correct enough for the application

• Reliable (?)

• Efficient (computer time or your time?)

• Portable (?)

• Maintainable (?)

• Easy to read, avoid premature optimisation

• Easy to modify (?)

Choosing a suitable
language

• Choice of language can make the task
easier

• Quick for human vs. quick for computer

• Pedantic vs. lax

• Compiled vs. interpreted (shell-like or Perl-
like)

• Available libraries (e.g. MPI)

Case 1: Torus

• Fast for computer (compiled, no VM)

• Needs to run on parallel, distributed
memory (needs MPI libraries)

• Numerics need to be good

• Choose Fortran or C/C++

Case 2: post processing
data in text files

• Fast for me

• Good string handling capabilities

• Easy to modify

• Perl, UNIX commands (e.g. awk, grep), IDL

Case 3:

• ???

Why use good practice?

• Makes programs much easier to write and
maintain - particularly with >1 developer

• Program is also for people to read - record
your method.

• Importance may vary (e.g. large projects
with many developers, long term projects)

• Code re-use

Some ideas

• Layout of code: indentation, use of spaces

• When to add comments?

• Names: meaningful, useCapitalLetters or
underscores_are_cool (language dependent
conventions)

• Logic and flow: avoid GOTOs, positive
logic, easy for a person to read

Compiled languages

• Compile time errors are easier to fix than
run time errors

• Be rigourous: Impicit none, Use
strict etc.

• Use the compiler: (extra) warnings, debug
flags, enforce standards

Future plans

• Specific languages: Fortran 90, Perl

• More UNIX

• Debugging

• Optimisation

• Version control

• Correctness checking: benchmarking, verification etc.

• ???

