CCLRC / RUTHERFORD APPLETON LABORATORY SUN/145.6
Particle Physics & Astronomy Research Council

Starlink Project

Starlink User Note 145.6

M D Lawden, G R Mellor, B Smalley
12 July 1996

UNIX
An Introduction

Abstract

This is a brief introduction to the Unix operating system as it is
used in the Starlink Project. It is aimed at users who are new to
Unix and to Starlink. Its purpose is to get you started quickly, so
it is simple rather than comprehensive.

It should be read in conjunction with any local guides provided at
your local Starlink Site — these give details of the local facilities
available and how to use them. This is important because Starlink
Sites differ in their computer hardware and in their versions of
Unix.

A “Quick Reference Card” is available which summarises the con-
tents of this note.

SUN/145.6

Contents

1 Introduction

2 Getting started

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Loggingin
Changing your password
Loggingout
Controlling your terminal
Looking around
Setting up your environment
Getting help. o oL
Finding information
Review oo oo

3 Files and directories

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

Naming things
Moving around
Looking after directories
Looking after files
Looking at files
Finding out about files
Finding things in files
Controlling access to files
Backingup files oL

3.10 Tape drive names

4 Shells — The command languages

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Standard files, ..
Pipes.
Filename expansion
History
Variables
Aliases e
Startup scripts
Shell scripts
What happens when you type a command

ii

[y

OO NIk WwNoNn N

SUN/145.6

5 Controlling processes
6 Editing text

7 Producing documents and graphs
7.1 Documents
7.2 Graphs.

8 Mailing and Networking
8.1 Mail services
8.2 Mail addresses
8.3 Copying files across networks
8.4 Logging into another machine

9 Programming

10 Going further

iii

38

42

43
43
45

46
46
46
47
49

50

54

SUN/145.6 1

1 Introduction

This note will get you started on a Starlink Unix computer.

It is not comprehensive. It tries to be simple. It is Starlink-
specific. It is a survival kit to help you through the initial learning
phase, during which you are suffering from information overload.
To ease this overload we omit lots of options and alternatives.
There is a lot more to Unix than described here, but you don’t
need to know it in order to do useful work.

In addition to reading this guide, have a chat with your Site Man-
ager about running Unix at your Site; he will know the local setup
and will show you things. Find a colleague who already knows
Unix and give him the pleasure of showing off his knowledge by
asking some callow questions about it. Get hold of a book on
Unix; there are lots of good ones around and they take time to
explain things that are skimped or omitted here.

SUN/145.6 2

2 Getting started

This section introduces you to the basic skills you need in order
to do anything at all with a Unix computer. It mentions things
that are covered more systematically, or in greater depth, later
on. Try the examples yourself.

The first thing you need is an account on a Unix machine — see
your Site Manager. Then, you need to know how to login to the
machine from your keyboard. Having logged in, you can try out
some commands to see what files you’ve got and what’s inside
them, see who else is logged in, and try out the help system. You
can also check to see that you are set up to run Starlink software.
This section guides you through all this.

2.1 Logging in

Your Site Manager should show you how to login to a Unix ma-
chine. You've just got to know the local details (like computer
names, available equipment and networks), which we can’t go into
here.

You login by entering your username and password. Unix is case
sensitive, so that upper and lowercase characters are regarded as
different. Having logged in, you will probably see a prompt ‘%’ (or
something similar) generated by the C shell. You can now enter
commands which will be interpreted by this shell.

2.2 Changing your password

The first time you login, the first thing you must do is change
your password. The command used to do this depends on how
your Starlink site is configured. Your Site Manager will tell you
the appropriate method to use at your site.

SUN/145.6 3

Passwords are not echoed to the screen when you type them. They
should be seven or eight letters long and be non-dictionary words
and definitely not names.

A good way to produce a secure password is to mix upper or
lowercase letters, numbers, and punctuation. Do not just make

1

obvious substitutions (e.g. “$” for “s”, “1” for “i”) or combine a
word with a digit as these are easily crackable.

Please take password security seriously — our machines are on the
Internet and are exposed to hackers worldwide with sophisticated
password cracking programs.

Do not tell anyone else your password.
2.3 Logging out
To logout, type:

% logout

If the system responds with “There are suspended jobs”, then
type it again — those suspended jobs will be abandoned.

2.4 Controlling your terminal

Here are some keys to control your input, output, and programs:

SUN/145.6 4

DEL Rubout the last character typed.

ctrl/S Stop output appearing on your screen (you
won’t lose anything).

ctrl/Q Start output appearing on your screen again
(use after ctrl/S).

ctrl/U Cancel and clear the command line.

ctrl/C Terminate the running command (it cannot
be restarted). You can then type in another
command.

ctrl/D ‘End of File’. Used to terminate data or text
input from the keyboard. If you use it when
being prompted for a command, it will log you
out!

There are plenty of other control keys, but the ones above enable
you to deal with most emergencies.

2.5 Looking around

If you logged out, log back in again. Now use some commands to
look around. The usual form of a Unix command is:

command [-options] [arguments]

The brackets ‘[1’ indicate that a field is optional. For example, if
you want to know what the date and time are, enter the command:

% date

This command has been entered (in response to the prompt ‘%)
with no options or arguments. Other commands that don’t need
options or arguments include:

% cal

SUN/145.6 5

which lists a calendar for the current month,
% who

which lists the usernames of the people who are logged into the
machine you are using (a similar command is finger, which is
nicer because it tells you their names), and

% pwd

which tells you the name of your current working directory. (If
you have just logged in, this will be your ‘home’ directory.)

Although a command may not need an argument, you can usually
use one to control its behaviour more exactly. Thus, the cal
command will show a calendar of the current month, by default.
However, you can get a whole year’s calendar if you specify a year:

% cal 1996

or, if you just want to know when Christmas is, you can specify a
month and year:

% cal 12 1996

Arguments specify what a command works on. Options specify
more exactly what sort of work a command does. For example,

% 1s

lists the names of the files in your current directory in a compact
form. However, you may specify options, as in:

% 1s -la

SUN/145.6 6

The options are introduced by the ‘-’ character. Each character
that follows specifies a command option. In this case ‘1’ specifies
a more detailed type of listing, and ‘a’ specifies that a type of file
that is normally hidden should be listed.

The 1s command is also often used with arguments, for example:
% 1ls /star

lists the names of the files in directory /star in compact form.
The shell knows that /star is an argument and not an option
because it doesn’t have that ‘=’ sign in front of it.

Finally, you can combine options and arguments, as in:
% ls -1 /star/docs

which lists full details of the files stored in directory /star/docs.
You probably found that the first part of the listing shot off the
top of the screen. One way to control this is to add ‘| more’ onto
the end of the command, thus:

% 1s -1 /star/docs | more

What this does is route the output of the 1s -1 /star/docs com-
mand directly into the input of the more command. The more
command displays its input one screenful at a time. To get the
next screen, press the <space> key (not the return key). To quit
the listing, type ‘q’.

The ‘|’ character is called a ‘Pipe’ and is one of the most powerful
features of Unix. It routes the output of a command into the input
of the next command and lets you string commands together. For
example:

% 1ls -s /star/bin | sort -nr | head

SUN/145.6 7

will list the ten largest files in directory /star/bin. The command
1ls -s /star/bin generates a list of the names and sizes of the
files in directory /star/bin. The sort -nr command sorts this
list into numerical order, based on the size field. Finally, the head
command displays the first ten lines of the output of the sort
command.

2.6 Setting up your environment
When you login, the system reads commands from two files (called
startup scripts) in order to set up an appropriate environment.
The files are called .login and .cshrc and should be stored in
your home directory (the directory you start in). Initial versions
will probably have been set up by your Site Manager. However,
you should make sure they contain the commands which let you
use Starlink software. These are:

source /star/etc/login
in your .login file and

source /star/etc/cshrc
in your .cshrc file. You can see what these commands are by:

% cat /star/etc/login /star/etc/cshrc | more

The cat command lists the contents of a one or more files. More
information about startup scripts is given in sections 4.7 and 4.8.

2.7 Getting help

Unix has a ‘Manual’ stored on-line which includes command de-
scriptions. You can look at these with the man command. For
example, to find out about the 1s command, type:

SUN/145.6 8

% man ls

Instead of a command name, you can specify a keyword. For
example, to find commands which might have something to do
with printing, type:

% man -k print
If you want to know what a command does, type:
% whatis cat

for example. This will tell you what cat does.

2.8 Finding information

Starlink stores lots of information for reference, but how do you
find what you need? Section 6 of the Starlink User’s Guide (SUG)
tells you how this information is organised and how to search it.
Here, we get you started by describing some of the most useful
tools.

To find out what is going on within Starlink, type:
% news

Then type the title of one of the items in the list (enough to make
it unique will do). For example, if one of the titles is ‘JOBS’, then
reply to the prompt by typing:

: JOBS

[{P b

To get back to the shell prompt, type “q” one or more times
(SUN/195).

If you want to find information related to a specific topic you
can use a command called findme (SUN/188). For example, if
you wanted to find information on programs which did Fourier
analysis you could type:

SUN/145.6 9

% findme Fourier

This will start up a “Mosaic” window which will have links to
those sections of Starlink documentation which deal with Fourier
analysis. To follow these links, just use your mouse to click on
them.

If you know the code of a document you want to read (SUN/1 for
example) you can examine it on-line by using the showme com-
mand (SUN/188):

% showme sunl

You can use any document code that refers to an issued document.
If the document exists in hypertext form, this is a good way to
read it. However, if you just get a picture of the document pages
you may find it easier to use a paper copy.

Finally, the World Wide Web (“web”) is a very powerful way to
search for and read information. The most popular browser to use
for “surfing” the web is “Netscape.” To start this up, just type:

% netscape &

If any of the commands shown above don’t work, seek help from
your Site Manager.

SUN/145.6

2.9 Review

10

Here is a list of the commands used so far:

logout
date
cal
who

finger

pwd
Is
sort
head
cat
more

man
whatis
news

findme

showme
netscape

logs you out.

reports the system time and date.

displays a calendar.

reports who is currently logged into the sys-
tem (terse).

reports who is currently logged into the sys-
tem (gives names).

gives the name of your current directory.
lists the contents of a directory.

sorts and collates lines.

displays the first few lines of a file.

displays the contents of one or more files.
displays input to the screen, one page at a
time.

gives details of a command.

gives a one-line description of a command.
lists recent news items (Starlink).

searches Starlink documents for a topic
(Starlink).

displays a Starlink document (Starlink).
browses the World Wide Web.

SUN/145.6 11

3 Files and directories

/ star admin — — ssi
— usernames
— whoswho
— docs — docs_lis
— sug.tex
— sunl45.tex
— bin ———— (starlink programs)
— figaro (figaro directories)
— usr bin (system programs)
— local (local system files)

— home mdl
E grm
bs

Files are stored in directories. The Unix directory structure is
a tree structure, branching into multiple levels of subdirectories.
There are no disk names — extra disks get mounted as subdirec-
tories; you just see one directory structure for the whole system.
Some sites implement a disk quota system, others do not. Check
with your Site Manager.

An example of a Unix directory structure is shown above. The top
of the structure is called / (pronounced “root”). In the diagram,
this top level directory is shown containing three directories called
star, usr, home. These are just for illustration — in practice, all
the directories in the diagram would contain many more files than

SUN/145.6 12

listed.

The star directory contains the Starlink software, and its sub-
structure is shown in detail. Major packages are stored in their
own subdirectories, for example the figaro subdirectory holds
the FIGARO software. The admin subdirectory holds adminis-
trative files such as ssi (the software index) and usernames (a
list of Starlink users). The docs subdirectory holds files such as
sun145.tex which contain the text of Starlink documents.

3.1 Naming things

Files and directories are located by specifying a ‘pathname’ — the
name describes the path through the directory structure which
ends up at the place you want. Pathnames can be ‘absolute’ or
‘relative.’

e A relative pathname is relative to your current directory.

e An absolute pathname is the path from the root directory /
(absolute pathnames begin with /).

As an example, in the directory structure shown above there is
a file called ssi. Its absolute pathname is /star/admin/ssi.
However, if your current directory is /star, its relative pathname
would be admin/ssi. The / character is used as the name of the
top level directory, but it is also used to separate components of
the pathname.

Three useful shorthand names are:

current directory (the directory you are in at the
moment).
parent directory (the directory which contains your
current directory).

~ ‘home’ directory (the directory you are in immedi-
ately after login).

SUN/145.6 13

3.2 Moving around

The following command lets you move around the directory struc-
ture:

cd change working directory.

Ezxamples

cd test

move down one level to subdirectory test (relative path-
name).

cd test/lower

move down two levels to subdirectory test/lower (relative
pathname).

cd /star/docs

move to this directory (absolute pathname).

cd

move back to your home directory (equivalent to cd ~).
cd ~user

move to the home directory of ‘user’.
cd ..

move up one directory level.

SUN/145.6

14

3.3 Looking after directories

The following commands enable you to look after your directories:

pwd
Is
mkdir
rmdir
du

df

print working directory.

list the names of the files in a directory.
create a new directory.

delete a directory.

summarize disk usage.

report, on disk partition details.

Ezxamples

display the path name of your current directory.

list the names of all files in a directory (including hidden

list file names with a character appended to each name
indicating the file type:
/ indicates a directory.

* indicates an executable file.
@ indicates a soft link (points to another file).

list subdirectories recursively.

pwd
1ls —a
¢ files).
1ls -F
1s -R
1s -1

give full details of files.

SUN/145.6 15

1ls -1t

give full details of files, sorted by time of last modification
with the most recent listed first.

1s -1d

give details of the directory file only, rather than its con-
tents.

mkdir mydir

create a directory called mydir below the current location.

mkdir /home/grm/mydir

create a directory called mydir in the specified place.

rmdir mydir
delete directory mydir. Directories will only be deleted

if they are empty. If you cannot delete a directory that
appears empty, look for hidden files with 1s -a.

du -sk

if you issue this command from your login directory, it
will tell you the grand total size (in Kbyte) of all your
directories and subdirectories. If you omit the “s”, the size
of each individual directory will be shown in addition to
the grand total.

du -sk /star/docs

show the grand total size (in Kbyte) of the Starlink docu-
mentation directory and its subdirectories.

du -sk * | sort -nr | head

show the grand total size (in Kbyte) used by the ten largest
files and directories in your current directory.

SUN/145.6 16

df -k
show the disks available on your system, together with the
space used and the space available.

3.4 Looking after files

The following commands enable you to look after your files:

cp copy files.
mv move (i.e. rename) files.
rm delete files.

Ezamples

cp geoff.1l geoff.2

copy file geoff.1 to file geoff.2 in the same directory,
creating geoff.2 if necessary.

cp geoff.1 /home/md

copy file geoff.1 to directory /home/md, giving it the same
name as before.

cp geoff.1 /home/md/geoff.2

copy file geoff .1 to directory /home/md, giving it the name
geoff.2.

cp £* /home/grm

copy all files beginning with the letter ‘f’ from current di-
rectory to directory /home/grm.

SUN/145.6 17

cp

cp

cp

mv

mv

mv

rm

rm

rm

/star/help/jcmtdr/html/* .

copy every file in directory /star/help/jcmtdr/html into
your current directory.

-i geoff.1 /home/grm

cp usually overwrites existing files. The -i option will
prompt for confirmation if the copy would overwrite an
existing file and will proceed only if reply y is given.

-r /home/grm /home/md

copy recursively a directory and its contents to the specified
location.

geoff.1 geoff.2
rename the file geoff.1 to geoff.2.

geoff.1 /home/md

move file geoff .1 to a different directory. If a new filename
is specified, the file name will change.

-i f* /home/grm
prompt for confirmation if a move would overwrite an ex-

isting file.

geoff.1
delete file geoff.1.

delete all files in the current directory (without prompting!).

_i*

prompt first before deleting the files.

SUN/145.6 18

rm -r /home/grm
delete all files and directories below the specified directory,
and also delete the named directory itself.

rm -ir
the recursive option is probably safer when used with the
interactive option.

3.5 Looking at files

The following commands show what is in a file:

cat show the contents of one or more files.

more show the contents of a file, one screen at a time.
head show the first few lines of a file.

tail show the last few lines of a file.

diff show file differences.

sort sort or merge files.

Text files can be created by using the command cat (see below),
or by using a text editor.

Ezxamples

cat > note

create a file named note and type text directly into it.
Terminate the input with a return key, followed by ctrl/D.

cat notel

show the contents of file notel.

SUN/145.6 19

cat dicl dic2

more

head

tail

diff

sort

concatenate the contents of dicl and dic2 and show the
result.

/star/docs/sun.tex

show the contents of sun.tex. Initially, the first screenful
of the file will be shown. What happens next depends on
what keys you press:

return — next line

d — next half screenful

u — last half screenful

space — next screenful

b — last screenful

/pattern — search for ‘pattern’

n — next occurrence of ‘pattern’

q — terminate command

/star/docs/sun.tex
show the first 10 lines of sun.tex. Option -n shows the
first n lines.

/star/docs/sun.tex
show the last 10 lines of sun.tex. Option -n shows the last
n lines.

file.vl file.v2

show the lines which differ in these two versions of a text
file.

filel > file2
sort the lines in filel and store the sorted output in file2.
By default, sort sorts a file using the beginning of the line

as the key field. However, you can use any field in the file
as the key field.

SUN/145.6

3.6 Finding out about files

The following commands give information about files:

find find files.
file show file type.
wc show line, word, and character counts.

Ezamples

find /star/* -name unixnames -print

search the directory tree headed by /star for files with
the name unixnames. If any are found, write their full
pathnames to the standard output stream. (Warning: this
search may take a long time, so don’t be alarmed if nothing
seems to happen for a while.) This command is useful for
searching a directory tree for a file whose name you know,
but whose location you don’t. This is a powerful command
which can search many directory trees for filenames which
satisfy many complex criteria.

file /star/docs/*
show the type of each file in /star/docs.

wc /star/docs/sunl.tex

show the number of lines/words/characters in suni.tex.

3.7 Finding things in files

The following commands find things in files:

20

SUN/145.6 21

grep find a string in a file.
awk find a string in a file and perform an action.

These are both powerful and complex commands, and we can’t
describe them fully here. The examples below illustrate the sort
of things they can do, but you should look them up in a Unix
book if you want to understand and use them extensively. The
precise syntax varies on different machines.

The strings can be in the form of regular expressions. These can
be used in commands such as grep, fgrep, egrep, sed. Here
is a summary of the meaning of the special symbols that can be
used in regular expressions:

beginning of line

$ end of line

any single character
[...] single character in list or range
[~...] character not in list or range
* zero or more of preceding character or pattern
X zero or more of any character
\ escapes special meaning

Ezamples

grep "pattern" filename

search filename for the character string pattern and dis-
play the lines that contain it. The character string can be
any regular expression (see above).

grep Lawden /star/admin/whoswho

search whoswho for information on ‘Lawden’.

SUN/145.6 22

grep -1 IUE /star/docs/* | more

find which Starlink documents mention IUE. The -1 option
restricts the output to just the file names.

grep -i den /star/admin/usernames

list the records of all users in usernames which contain the
character string ‘den’. The -i option makes the search
case-insensitive, so that it would also list ‘Den’, ’dNe’; etc.

who | awk ’{print $1}’ | sort | uniq -c

show in alphabetical order who is logged in, and how many
sessions they’ve got.

ls -1 | awk ’$5 > 10000 {print}’

show which files in your current directory are bigger than
10000 bytes.

3.8 Controlling access to files

The following command controls file access:

chmod change file permissions.

File protection is implemented by file ownership and permissions.
The creator of a file is the owner, and the file is created with
default permissions. The owner can then alter these permissions
to allow the required degree of access to the files.

Permissions are split into three categories:

e user (u) the file owner.

SUN/145.6 23

e group (g) members of the user’s group.

e others (0) everyone else.

There are three types of permission, but their effect varies slightly
between directories and files:

Normal files:
READ (r) can look at the contents.
WRITE (w) can modify the contents or delete.

EXECUTE (x) can execute.

Directories:
READ (r) can list contents.
WRITE (w) can modify contents.

EXECUTE (x) can move through (use in a pathname).

File permissions can be seen by typing an 1s -1 command. This
displays information similar to that shown below:

drwxr-xr-x 2 grm users 512 Nov 18 04:10 mydir
-rwxr-xr-x 1 grm users 1640 Nov 21 18:15 workfile

The first field is the permission field. Its first character shows the
file type: the most common are normal files (=) and directory files
(d). The next three characters describe the ‘user’ permissions, fol-
lowed by three for ‘group’ and three for ‘others’ permissions, mak-
ing a ten-character field in all. The permissions can be described
in octal format instead of by letters. Those for each category are
concatenated, giving three digits to describe the file. For example:

-rw-r--r-- is equivalent to 644.

-rwxr-xr-x is equivalent to 755.

The owner can change the permissions of a file with the chmod
command. Either octal or character notation can be used.

SUN/145.6 24

Ezamples

chmod 700 geoff.1

set full access to user, none to group or others.

chmod 740 g

set full access to user, read access to group, none to others,
for all files beginning with g.

chmod og=rx g*

set others and group to read and execute access.

chmod og+r g*

add read access to others and group.

chmod og-w g*

remove write access from others and group. Generally, you
should not allow write access to group or others.

chmod a=rx g

set all (i.e. user, group, and others) to read and execute
access.

chmod -R 755 mydir

recursively set access to files below mydir directory.

chmod 755 script

a script (a file of shell commands) must have execute per-
mission to run; you can set it like this.

SUN/145.6 25

3.9 Backing up files
Files can be backed up with the command:

tar create and use tape archives.

You can backup your files to a tape or disk file with the tar
command. The resulting file is called a tarfile. The basic syntax
is:

% tar cvf <destination> <source>

(The omission of the - character before the options cvf is delib-
erate; for this command, all the options are stored in the first
argument.) This recursively backs up all the files in the <source>
directory structure into a <destination> tarfile or tape drive.
The ¢ option specifies that a new tarfile is to be created; the
v option specifies verbose mode (each file’s name is logged to
your terminal); the £ option indicates that the next field (i.e.
<destination>) specifies the name of the tarfile.

A tarfile can be relative or absolute, depending on how the source
file name is specified. The use of relative archives is recommended,
since they can be restored in any position within a directory struc-
ture.

The use of tape drives is site dependent, so ask your Site Manager
how to use them at your site.

Ezamples

% tar cvf /dev/rmtOh /home/grm

produce an absolute tarfile (because /home/grm is an ab-
solute file name). When this absolute tarfile is unpacked,
the files are restored to directory /home/grm, regardless of

SUN/145.6

the current working directory. The destination /dev/rmtOh
specifies that the tarfile will be written to tape drive rmtOh.
The tape device name can vary depending on your operat-
ing system and other factors such as the tape density re-
quired. Your Site Manager will advise on the correct ones
for your site. Please note that the default action of a Unix
tape drive is for the tape to be rewound after the required
operation. If you wish the drive to remain in position af-
ter an operation (e.g. in order to write a second tarfile)
then you must use the “norewind” version of the tape drive
name (in the above example, that would be /dev/nrmtOh).

% tar cvf /home/grm/tarfile.tar *

produce a relative tarfile (because the <source> — the files
in the current directory — is specified as a relative file
name). It is conventional to use the extension .tar in
a tarfile name. When a relative tarfile is unpacked, it will
recreate the stored file structure relative to the current di-
rectory.

% tar tvf /home/grm/tarfile.tar

list the contents of a tarfile (this is specified by the t op-
tion). The example shown will produce a detailed listing
because it specifies the v (verbose) option. If you omit the
v you will just get a list of file names, which is usually all
you need.

% tar xvf /home/grm/tarfile.tar

restore the contents of a tarfile, using the x option. Many
other options are available; see the man pages for details.

SUN/145.6 27

3.10 Tape drive names

In the previous section we sometimes specified a tape drive in the
second argument of the tar command. An example of this usage
is:

% tar cvf /dev/nrmtOh /home/grm

On Dec Unix systems, tape devices have names like /dev/nrmt0Oh
where “/dev” gives the location, “nr” means “no-rewind” after
the write operation is complete, “mt0” is the device name, and
“h” indicates high-density or compressed mode.

On Solaris 2 systems, tape devices have names like /dev/rmt/1n
where “/dev” is the location, “rmt” is the tape driver type, and
“1n” indicates the specific device and that it is a no-rewind type.
Another example is dev/rmt/0, indicating “rewind” device “0”.

SUN/145.6 28

4 Shells — The command languages

‘Shell’ is the Unix term for ‘command language interpreter.” Sev-
eral different shells are available:

e C shell (csh).

e T-C shell (tcsh).

e Bourne shell (sh).
e Korn shell (ksh).

Starlink’s software can be run from the C shell or T-C shell, but
not from the Bourne or Korn shells. Most sites use the T-C shell,
which is a variant of the C shell with file name completion and
command line editing.

The following sections describe features of the C and T-C shells.

4.1 Standard files

A program works with three special ‘files’ which are normally
connected to your terminal’s screen and keyboard. Normally, it
receives input from stdin (the keyboard), sends output to stdout
(the screen), and error messages to stderr (also the screen). How-
ever, this can be redirected by special operators:

> directs stdout to a file. e.g. date > date.file
writes the date/time to file date.file.

>& directs stdout and stderr to a file.
>> appends stdout to an existing file.
< directs the standard input stdin to read its in-

put from a file. e.g. cat > newfile < date.file
writes the contents of date.file to newfile.

SUN/145.6

4.2 Pipes

29

A Pipe is an important and useful feature of Unix:

| directs the stdout of one command into the stdin
of another, without creating a temporary intermediate
file. e.g. 1s -1 | more shows a directory listing, page
by page.

4.3 Filename expansion

You can specify multiple file names in a single expression by in-
cluding certain characters in the name you type:

represents one or more characters. e.g. A* repre-
sents any name beginning with A.

represents a single character. e.g. CA? represents
any three character name beginning with CA; thus
CAD and CAT would be recognised.

a string of characters enclosed in brackets is known
as a ‘character class’. It means match any single
character which appears within the brackets. You
can specify individual characters like [aft], or se-
quences of characters like [a-c]. e.g. CA[DT] rep-
resents the two names CAD and CAT.

represents your home directory. e.g. cd ~/subdir
will change directory to subdir below your home
directory.

SUN/145.6 30

4.4 History
The following command accesses previous commands:

history display previous commands.

The history file allows commands entered earlier in your session
to be recalled for reuse or modification. With the T-C shell you
can recall previous commands by pressing the up-arrow key.

To activate the history mechanism, type:
% set history = <n>

where <n> is the number of previous commands to store. This
command is best included in your .cshrec file (see section 4.7) as
this will cause the history mechanism to be activated automati-
cally for every shell you start. Once activated, commands like the
following can be used.

Ezxamples

history

displays a list of previously entered commands.

!

Y
working back from the most recent command in the list,
execute the last command beginning with p.

“t~d
replace t by d in the last command and re-execute. t and
d can be character strings of any length.

SUN/145.6

'1:p

recall the last command beginning with 1, but do not exe-
cute. This allows a command entered earlier to made the
most recent one. It can then be edited using the method

in the previous example.

re-execute the last command.

4.5 Variables

The following commands are concerned with variables:

define or display value of a shell variable.

define value of an environment variable.

echo show value of a variable.

set

unset remove definition of a shell variable.
setenv

printenv show values of environment variables.

Two types of variable are used by the C shell:

e Shell variables

e Environment variables

Their main features are shown below:

31

Shell variables

| Environment variables

Scope Current shell Global

Naming lower case upper case

Type strings, numbers, arrays | strings (only)
Reference $var $VAR

Set value set var = value setenv VAR value
Show value || echo $var echo $VAR

Show all set printenv

SUN/145.6 32

Variables control the way the shell operates, and certain ones are
set by default. Here is a list of shell variables that are frequently
defined:

cwd your current working directory.
home your home directory.
path list of directories searched for a command.

prompt the shell prompt.

shell the default shell.

status reports whether a command succeeded.
term terminal type.

user username used to login.

Many other shell variables can be used; the manual page for csh
describes them. Some don’t need values but can be toggled on or
off by set or unset.

Ezxamples

set filec
enables filename completion. Type in an unambiguous part
of a file specification, press <Escape>, and the shell will
complete the filename.

set noclobber
restricts output redirection so that existing files are not
destroyed by accident.
> redirections can only be made to new files.
>> redirections can only be made to existing files.

unset noclobber

removes the definition of the noclobber variable and can-
cels its effect.

SUN/145.6 33

Here is an example of a shell variable being defined and then used:

% set mydocs = ~/docs
% cd $mydocs

Some variable names, such as path and term, are unusual in that
they refer to both shell and environment variables which are iden-
tical. Thus, you can add directory /usr/local/bin to the path
by treating it as a shell variable:

% set path=($path /usr/local/bin)
or as an environment variable:
% setenv PATH $PATH:/usr/local/bin

One difference is that when path is used as a shell variable, its
value is an array whose components are separated by blank char-
acters, but when it is used as an environment variable, the com-
ponents are separated by : characters. You can see this by trying
echo $path, followed by echo $PATH.

Shells use hashing techniques to speed-up the search for com-
mands. Consequently, if you change your path or add a command
to one of the directories, you must execute the hash command to
force the shell to rebuild its hash table.

Remember, shell variables are only valid in the shell in which they
are set. They are not passed down to any subsequent shells that
are started. However, you can make them available automatically
by putting their definitions in your .cshrec file (see section 4.7).

4.6 Aliases

The following commands control the renaming of commands:

SUN/145.6 34

alias give another name to a command.
unalias cancel an alias definition.

The alias command saves you time by letting you give shorthand
names to long command strings that you use frequently.

Ezamples

alias h history

shortens the command history to the single letter h.

alias 11 ’pwd;ls -1’
allows a sequence of commands to be executed as a single
command.

alias

on its own, shows all the aliases currently defined within
the shell.

unalias 11

removes the alias 11.

4.7 Startup scripts

As already mentioned (section 2.6), two files containing commands
are executed automatically when you login:

.cshre C shell startup script.
Jogin login startup script.

SUN/145.6 35

They must reside in your home directory. The difference be-
tween them is that .cshrc is executed whenever a C shell (or T-C
shell) is started, but .login is only executed at login time. Thus,
.login is used to set up a global environment which affects your
entire terminal session. For example, it can define environment
variables such as TERM and PATH, set up terminal characteristics
using stty, and start up X-windows. On the other hand, .cshrc
is used to define shell variables and aliases (which are defined only
for a specific shell).

Special definitions are required in order to run Starlink software
successfully. These are stored in the files /star/etc/login and
/star/etc/cshrc. These contain definitions that should be added
to those in your .login and .cshrc files. This is done by reading
these extra files from within the original files; the Unix term for
this process is ‘sourced’. Thus, your .login file should contain
the command:

source /star/etc/login
and your .cshrec file should contain the command:
source /star/etc/cshrc

These commands should appear at the end of the files, so that
anything else you do in them does not override Starlink definitions.

4.8 Shell scripts

Instead of typing in repetitive sequences of commands, you can
store them in a file and execute them by typing the name of the
file. A text file that is interpreted as a set of commands by a shell
is called a shell script. These are used to:

e automate a sequence of commands that is used regularly.

SUN/145.6 36

e do complex sequences that you might forget to do in the
correct order.

The shells also have built-in functions to provide flow control,
argument handling etc., which allow rudimentary programming
tasks to be performed.

If you type a command that is the name of a text file, the shell
assumes this file contains a shell script and creates a new process
running a new shell. This new shell reads the standard startup file
for that shell (. cshrc for the C shell) and executes the commands
in your text file.

The shell that executes a shell script might not be the same type
as the one into which you are typing commands. The exact rules
for which shell is used are rather complex, but briefly, if the first
line of a shell script is:

a blank line or a normal command, the Bourne shell is used.

e a comment, the C shell is used, except that:

if the comment is #!/bin/sh, the Bourne shell is used;

if the comment is #!/bin/csh, the C shell is used.
(This mechanism can be generalised for other shells.)

A common problem for users of the C shell or T-C shell is to write
a quick shell script and wonder why it fails completely. Often,
this is because there are no comments at the top of the script
(yes, we all do it), so the script is run by the Bourne shell. Many
Bourne shell commands are different from the corresponding C
shell commands.

The Bourne shell is generally preferred for shell programming as
its scripts run faster. However, the syntax of the C shell is similar
to that of the C language and is much easier to comprehend. For
that reason, many users write their scripts for the C shell.

SUN/145.6 37

The programming features of the shells are rather limited. If you
require more advanced functionality, then look at Perl. This is
a programming language which allows easy manipulation of text,
files, and processes. It is installed at all Starlink sites and your
Site Manager can provide information about it.

4.9 What happens when you type a command

When you enter a command, the shell you are talking to examines
what you have typed and works out what to do. What it does
is quite complicated and there isn’t space to explain it in detail
here; we will just deal with some of the basic characteristics.

One of the first things the shell does is see if the command (the
first word you typed) matches an alias (see section 4.6). If it does,
the shell replaces the alias with the equivalent command.

There are now two possibilities:

If the command is a shell command (one that it understands such
as setenv), the shell processes the command itself.

Otherwise, it takes the command to be the name of a program
to run. It must now find the program. It does this by examining
the environment variable PATH. It looks in turn in each of the
directories specified in PATH for a file that matches the name
of the command. Once found, there are again two possibilities.
If the file is executable (e.g. the result of compiling and linking
a Fortran program), the shell creates a new process that is an
almost identical copy of the current one (this is known as forking
a process) and executes the program in that new process. If the
file contains ASCII text (known as a shell script), the shell again
forks a new process, but this time the program that is run is a
shell. If it is a C shell, it will read the .cshrc file in your home
directory. The new shell then reads the contents of the text file
and executes each command, using the above rules.

SUN/145.6 38

5 Controlling processes

The following commands are concerned with controlling processes:

ps list current processes.

jobs list current jobs.

at run a job later.

fg run job in foreground.

bg run job in background.

stop suspend background job.

kill terminate background job.

nice run a command at a different priority.

renice alter the priority of a running process.

In Unix, you can have several things going on at once. You may be
compiling a large package, editing a couple of documents, mon-
itoring your mail messages, keeping your eye on the clock, and
watching the load on your computer. You keep switching your
attention between these various tasks. In computing terms, this
means that there are several processes competing for system re-
sources.

Normally, when you enter a command, you have to wait until
the job or process that carries out this command has finished
before you can enter another command. In this case, the job runs
in the ‘foreground’. However, if you end the command with an
‘&’, the job runs in the ‘background’; which means that you can
type another command while the previous one is being processed.
You can also stop a job from running. This can be a temporary
suspension (i.e. you can start the job again), or you can ‘kill’ the
job so that it ceases to exist and cannot be restarted. The diagram
below illustrates these various states, and the transitions between
them.

SUN/145.6 39

W Suspended

Y/ fg bg stop
Y fg Y
foreground background | Running
A
Y Terminated
command “C kill command &

Processes are identified in three ways:

PID — Process identifier.
%N — Job number N.
% — Current job.

Thus, if you want to terminate a background job, you can do it
with any of the commands:

% kill PID
% kill %N
% kill 7

You can find out the process identifiers of your existing processes
with the ps command. For example:

% ps
PID TTY S TIME COMMAND
8585 ttyp8 S 0:03.02 -tcsh (tcsh)
8612 ttypO R 0:00.10 ps

SUN/145.6 40

This example shows a situation in which two processes exist. The
first (PID=8585) is running tcsh and is suspended. The second
(PID=8612) is running the ps command and is in the foreground.

You can find out your current job numbers with the jobs com-
mand:

% jobs
[1] + Running du >storage &
[2] - Running cc -o foo foo.c >kerrs &

[3] - Stopped find / -size 0 -print
The job numbers are enclosed in brackets. The ‘+’ indicates which
job is the ‘current job’.

A background job will halt when it needs input from your termi-
nal. To proceed, bring it to the foreground with the fg command
and type some input.

If you wish to execute a job at a later time (rather than immedi-
ately by using an &), you can use the at command. For example:

% at 23:00 Jul 07 < spectrum
will run the commands in file spectrum at 23:00 on 7th July.
% at -1

will list all your scheduled jobs.

You can control the priority at which commands execute with the
nice and renice commands. Priorities for user processes range
from 0 (default interactive priority) to +20 (slow). For example:

% nice +19 bigprog &

will run bigprog at priority +19 (a low priority).

SUN/145.6 41

You should always reduce the priority of CPU-intensive jobs in
order to minimise their adverse effect on the response time of other
interactive jobs. Note that the speed of execution of a process is
only reduced when in competition with other processes of higher
priority (i.e. when other users are logged into the same system).

Alternatively, if you have started a program and need to lower its
priority to avoid complaints from other users, you can do some-
thing like:

% renice +19 886

which lowers the priority of process PID=886 to +19 (slow).

SUN/145.6 42

6 Editing text

The following commands invoke editors:

vi standard Unix editor.
emacs the powerful emacs editor.
jed a text editor.

tpu nu/TPU editor.

Editors are personal things, so it is impossible to make a recom-
mendation that will satisfy everyone.

The standard Unix screen editor is vi. This is fast and power-
ful (deadly, in fact). You can find some documentation for it in
MUD/122 and MUD/123.

emacs (SUN/34, MUD/102) and jed (SUN/168) are alternative
editors.

A document describing nu/TPU has been distributed to every site
— see your Site Manager. To use it, just type the command tpu,
followed by the name of the file you want to edit (SUN/192).

Other editors may be available, check with your Site Manager.

Further information on editors is given in SUN/170. Editors can
have a big impact on your work, so we strongly recommend that
you read this carefully and think about the issues.

SUN/145.6 43

7 Producing documents and graphs

7.1 Documents

The following commands help you produce documents:

tex TEX typesetter.

latex KTEX document preparation.
xdvi display document in an X window.
dvips prepare PostScript output.

gs GhostScript PostScript previewer.
Ipr print files.

ispell spell checker.

a2ps Ascii to PostScript file conversion.

We recommend you use BTEX to produce documents (SUN/9).
We also recommend that you base your documents on standard
Starlink styles, such as /star/docs/sun.tex (SGP/28).

To use TEX or IATEX to process file filename.tex, type:
% tex filename

or
% latex filename

You need not give the .tex file extension, but it won’t matter if
you do.

To view or print the resulting filename.dvi file there are several
options. To view your document in an X-window, use the xdvi
utility (SUN/9):

% xdvi filename

SUN/145.6 44

(If you get the error message ‘Error: Can’t open display:’,
type xdisplay and try again — if this doesn’t work, consult your
Site Manager. This isn’t the place to discuss X-windows, but you
can look at the description of xdisplay in SUN/129 for enlight-
enment.)

To make printable versions, use the dvips translator:
% dvips filename

This will create an output file filename.ps. This can be pre-
viewed using ghostscript (SUN/197):

% gs filename.ps
Then, print the resulting PostScript file by a command like:
% lpr -Pps filename.ps

The precise details of how to print files is locally dependant and
cannot be described properly here. For example, you may need to
use the 1p command rather than the 1pr command. You should,
therefore, ask your Site Manager or consult your local guide.

You can check your spelling in a document by using the ispell
command (SUN/189) to examine its file:

% ispell filename.tex

Another useful utility for handling documents is a2ps (SUN/184)
which converts an ordinary ascii text file into PostScript form
which can then be printed on an appropriate printer. This usually
results in more pleasing output than you would get from using the
raw text file. A typical use of this command is:

% a2ps -p -ns -nn -nh filename | lpr -P1

(You may need to change the P1 to something else at your site.)

SUN/145.6 45

7.2 Graphs
The following command is needed if you use an X terminal:

xdisplay connect workstation with X device.

If you are using X to run programs on a remote workstation, use
command xdisplay to set up the connection between the work-
station and your X device before running any graphics program
(or any other X application). Reply xwindows if prompted for a
graphics device name.

SUN/145.6 46

8 Mailing and Networking

8.1 Mail services

The following commands invoke mail services:

mail standard mail utility.
pine friendly mail utility.

The default mail utility is adequate but unfriendly. We recom-
mend pine. It is designed to be easy for a novice to use. For
example, it tolerates mistakes and its command menus are always
present. It can be learnt by exploration rather than by reading
manuals, however SUN/169 can be consulted if needed. To start
it, just type pine.

8.2 Mail addresses

The following command helps you find mail addresses:

email mail address search utility.

On Unix you send mail to addresses like:
cac@star.rl.ac.uk

Here, the username precedes the address, and they are separated
by an @. This form of address is known as the ‘Internet’ or ‘IP’
form, and this should be used on Starlink’s Unix machines.

The file /star/admin/whoswho contains the network addresses of
Starlink sites. Network addresses for people are best found on
Starlink by using the email utility (SUN/182). For example, to
find out Geoff Mellor’s network address, type:

% email mellor

SUN/145.6 a7

8.3 Copying files across networks
The following commands copy files across networks:

cp copy files (local).
ftp file transfer program.

There are several ways to copy files from one machine to another.
The best method may depend on how your local system is set up.
Nevertheless, there are several standard methods that normally
work:

Local machines (cp)

All the disks on your local group of machines will probably
appear as part of your file system. If so, just use the cp
command in the normal way:

% cp <source-path> <destination-path>

Other machines (ftp)

You need a username on the remote machine. Type:
% ftp remote_host

where remote_host is either the name of a host (for exam-
ple starlink-ftp.rl.ac.uk), or its ‘dotted quad’ network
number (like 130.246.36.1). You will be prompted for your
remote username and password, and will be logged in for file
transfer work only. You can use directory changing and list-
ing commands, such as cd and 1s, to locate the files you
want. To copy a file from a remote machine to your local
one, type:

ftp> get remote_filename local_filename

SUN/145.6 48

To copy a file from your local machine to a remote one, type:
ftp> put local_filename remote_filename

You can get files from any remote host on which you have a
username, and you can put files to any remote host on the
same basis.

By default, ftp will transfer data in ascii mode — which is
correct for text files. To transfer binary files (executables,
tar files, NDF container files etc.), set £tp into binary mode.
Otherwise, although the transfers will probably happen, the
destination file will probably be useless. To get ftp into
binary mode, type:

ftp> binary

To get help in an ftp session, type:
ftp> help

To disconnect from an ftp session, type:

ftp> quit

Some hosts have a special facility called ‘anonymous ftp’. This has
some disk space for a ‘public’ area, and is commonly used to allow
informal distribution of common software utilities, pictures etc.
To use it, start a normal ftp session to the host, but instead of us-
ing your username, login as anonymous. You will be prompted for
your local username and node name in lieu of a password. Specify
your full network address (for example mdl@star.rl.ac.uk) as
the password so that the owners of the system can find out who is
accessing it. You will gain access to a limited set of files, provided
for the anonymous ftp facility, which you can copy to your local
machine as described above.

SUN/145.6 49

8.4 Logging into another machine
The following command allows remote login:
telnet remote login.

To login to another machine from your current session use telnet.
The command is:

% telnet remote_host

You will be prompted for a username and password, depending on
what the remote_host requires for user identification. The form
of the name you give as a remote_host will depend upon how your
Site Manager has set up your systems. In some cases you will be
able to type just the machine name. For more remote machines,
i.e. those in different network ‘domains’, you may have to give
the full network address. For example, to connect to the Starlink
Database machine, users of RAL machines need only type:

% telnet stadat

whereas users of machines outside RAL would probably need to
type:

% telnet stadat.rl.ac.uk

You can also use the ‘dotted quad’ network number of the ma-
chine:

% telnet 130.246.32.91

SUN/145.6 50

9 Programming

Skip this section if you only want to use application programs, not
write them.

The following commands provide programming facilities:

fr7 compile a Fortran 77 program.

cc compile a C program.

star_dev set up links required for developing Starlink
programs.

fsplit split a multi-routine Fortran file into indi-

vidual files.
ftncheck check Fortran 77 source code.
ar insert subroutine in a library.
ranlib update archive index.

In addition to the standard compilers, some sites have Fortran 90
and c++. Check with your Site Manager if you need to use these.

The compilers produce an object file (extension .o0). The object
code, and any other objects specified, are passed to the loader
which produces an executable image. All this is done by one
command.

To compile and link a Fortran program stored in file progl.f,
type:

% £77 progl.f

This will produce an executable file called a.out. If you would
rather name the executable file prog1, use the -o option:

% £77 -o progl progl.f

If you only want to compile the program without linking, use the
-c option:

SUN/145.6 51

% £77 -c progl.f

This will create an object file called progl.o.

You can compile a program that is stored in several files with a
single command:

% £77 -o progall progl.f subl.f sub2.f
or in stages:

% £77 -c progl.f
% £77 -c subl.f
% £77 -c sub2.f
% £77 -o progall progl.o subl.o sub2.o

or with a mixture of the two, such as:

h £77 -c subl.f
h £77 -c sub2.f
% £77 -o progall progl.f subl.o sub2.o0

If you wish to link your program with a subroutine library, use
the -L option to specify the name of the directory containing the
library, and use the -1 option to specify the name of the library
itself. In general, to link with library 1ibxxx.a, specify -1xxx in
the compilation command. Thus, to link with library libnag.a,
specify -1nag:

% £77 -o prog2 prog2.f -L/star/lib -lnag

To compile C programs, follow the above instructions, replacing
the £77 command by the command (cc) that invokes the C com-
piler on your computer.

If you want to link with Starlink subroutine libraries, there are
linking scripts provided to make the job easier (see SUN/202 for
information about specific Starlink libraries). For example, to link
a program that calls the AGI subroutine library, type:

SUN/145.6 52

% £77 -o agitest agiprogl.f -L/star/lib ‘agi_link‘

If you are using Starlink subroutine libraries in your Fortran pro-
grams, you may need to have INCLUDE statements in your code.
Use the file name given in the documentation, e.g.

INCLUDE ’SAE_PAR’

In order for the compiler to find this file, the name SAE_PAR must
appear in the current directory. To make this happen, type the
command:

% star_dev

before running the compiler. You only need do this once per
directory. This sets up a link from the current directory to the real
file. Each subroutine library has its own package_dev command
file: ems_dev, fio_dev, etc.

In C programs, extra source files may be included with statements
like:

#include "sae_par.h"

You must tell the C compiler where to find these files, using the
-T option:

% cc -I/star/include cprogl.c

Note that the way you tell the compiler where to look for ‘include’
files is different in Fortran and C. Unfortunately, the Fortran com-
piler has no equivalent of the C compiler’s -I option.

To build your own subroutine libraries and link to them, divide
up your Fortran source code so that there is one subroutine or
function in each file (use fsplit), and then compile each routine
and insert it into a library (called ‘archives’ on Unix) as follows:

SUN/145.6 53

% £77 -c mysub.f
% ar r libmine.a mysub.o

When all the modules have been inserted, update the archive in-
dex with:

% ranlib libmine.a

(This isn’t needed if you are using Solaris.) To link with the new
library, use the -L option to specify the directories containing the
archives, and the -1 option to specify the name of the archive.
For example:

% £77 myprog.f -L. -lmine

will cause the linker to look in the current directory for an archive
called 1ibmine.a.

A program often requires many files to be compiled and linked
to produce an executable file; there may be source files, header
files, and so on. The sequence of commands needed to control
this process may be complex. Fortunately, in Unix there is a
make facility which allows programmers to create a file, known
as a makefile, which defines dependency relationships between
files, and specifies the command sequences required to create a
program. This facility is not described here, but if you are going
to do serious programming you should find out about it. Starlink’s
software uses make files extensively in its software distribution and
management.

SUN/145.6 54

10 Going further

This document is only an introduction. For more information, re-
fer to the system documentation and the online man pages. Other
recommended reading is as follows:

MUD/102 : emacs — Unix editor.

MUD/121 : Unix for beginners.

MUD/122 : An introduction to display editing with vi.
MUD/123 : vi — Quick reference card.

MUD/124 : An introduction to running Fortran programs
on Unix

SGP/7 : Unix and Starlink.

SGP/28 : How to write good documents for Starlink.
SSN/66 : Starlink software organisation on Unix.
SUG : Starlink User’s Guide.

SUN/1 : Starlink Software Collection.

SUN/9 : LATEX — Document preparation system.
SUN/129 : XDISPLAY - Setting remote X windows.
SUN/144 : ADAM — Unix version.

SUN/168 : JED — The text Editor.

SUN/169 : PINE — Electronic mail interface.
SUN/170 : Editors and Mail on Unix.

