
A (Very) Quick Guide to IDL
Version 1.1

Chris North1

November 28, 2005

1Department of Astrophysics, Oxford Univeristy. Email: cen@astro.ox.ac.uk

1 INTRODUCTION 1

1 Introduction

This guide will introduce some useful things to know about IDL. It assumes a
basic knowledge of programming and concepts such as conditional statements
and variable types. In §2 I will discuss the mainstay of IDL programming:
procedures and functions. In §6 I will discuss executive commands, which are
used at the IDL prompt. §3 will describe basic syntax, while §8 will suggest
and breifly outline some common or particularly useful functions1. Many
of the procedures and functions do much more than what I have described
here, and there are also other ways in which IDL can be used, such as object-
oriented programming (the closest to that I’ve described here is the structures
data type). These are described in detail in the Online Help.

I cannot possibly describe every function and procedure in its entirety; there’s
a very thick manual to do that (with over 4000 pages of procedure and func-
tion descriptions and a 160-page index!). This is merely intended to explain
what is possible and how to perform basic tasks. For more information and
more formal definitions, you should consult the IDL manual. This can be
easily accessed by typing ? at the IDL prompt 2. To jump straight to help
on a particular procedure/function, type ? procedure name. The help guide
is very formal, which sometimes gets in the way of saying what it means. It
uses a few conventions, such as sqaure brackets around optional arguments,
which I have tried to use consistently here.

If at any time the explanations here and in the help guide are not useful
(which I hope should be rarely), or even just to clarify what has been said,
then the best advice is to simply try it out for yourself at the IDL prompt.
The beauty of an interpreter is that you can type things line by line, which
is useful for playing around and working out what functions do.

If there are any errors in the document, or any other procedures that you
think should be described or discussed, then please do not hesitate to contact
me. Revisions of this document will probably be “published” as the I learn
more about IDL myself

1The meaning of “useful” is determined by me. . .
2If it comes up with an error about the Acrobat Reader not being installed, try again.

It should work the second time. Don’t ask.

2 PROCEDURES AND FUNCTIONS 2

2 Procedures and Functions

Any IDL code you write will be stored in procedures and the functions. While
it is possible to type commands into the IDL command line (see §6) one at
a time, problems often arise.

Procedures and functions are stored in text files, generally with the file exten-
sion .pro. The first non-commented line of a procedure/function should be
the procedure/function definition; i.e. a procedure should begin with PRO
followed by the procedure name, while in a function it should be FUNCTION
followed by the function name. The last non-commented line of either must
be END. More than one procedure or function (including a mixture if nec-
essary) can be stored in one file, but each must start with a definition and
end with an END statement. When then file is compiled, it will compiled
up to (and including) a procedure/function with the same name as the file
(see §6). If required, the procedure/function name can be followed by a list
of procedures and keywords, separated by commas (see §2.1). E.g.:

PRO procedure name, parameter1, parameter2, . . . ,parametern,
keyword1=keyword1, . . . , keywordn=keywordn

FUNCTION function name, parameter1, parameter2, . . . ,parametern,
keyword1=keyword1, . . . , keywordn=keywordn

Procedures are called with:
procedure name, parameters, keywords

Functions are called with:
Result=function name(parameters, keywords)

To tell a function which variable to return as its result, the line Return,
variable name should be used. Result will then become variabel name. The
return statement is described in §8.

2.1 Parameters and Keywords

There are two types of arguments: parameters and keywords. Any parame-
ters have to be given first, and must be in the correct order. Any keywords
come after parameters. When the procedure is called, the objects in the call
statement are assigned to the corrsponding parameters defined in the pro-
gram definition, regardless of name, data type, size etc. If there are fewer
parameter objects in the call statement than in the definition, then no error

2 PROCEDURES AND FUNCTIONS 3

occurs bye default, but the remaining parameters are not defined, which may
cause problems later.

To check whether a parameter (or any variable, for that matter) has been
defined, the defined() function can be used. E.g.:

IF defined(parameter) THEN . . .

The number of defined parameters can also be checked, with the n params()
function. E.g.:

IF n params() NE number THEN . . .

Keywords are called by name, and can either be set equal to a value (or
other object) in the call statement, or simply set to true. E.g.:

PROCEDURE NAME, keyword=value
sets the object keyword equal to value. To check whether a keyword has
been defined in this way, the defined() function can be used as it was for
parameters.

PROCEDURE NAME, parameters, /keyword
sets the keyword keyword to true. To check whether a keyword has been set,
then the keyword set() function can be used. E.g.:

IF keyword set(keyword) THEN . . .

When debugging a program which has halted due to an error, typing help at
the IDL prompt will bring up a list of defined variables as well as compiled
functions and procedures.

2.2 Filenames

When a procedure or function is called, IDL looks in the follwing places.

1. Currently Compiled Procedures

2. Implicit IDL routines

3. .pro files with the same name in the current working directory

4. .pro files with the same in any directory in the path

5. If the function cannot be found, then IDL assumes it is an array refer-
ence.

3 GENERAL SYNTAX GUIDE 4

It should be noted that when IDL looks for .pro files on a Linux system, it
only looks for entirely lowercase filenames.

This list also has implications for array references. If an array is referenced
with parentheses i.e. Array(i,j), then problems will occur if a function is
created with the same name, as IDL will find this before it even considers
looking for an array. The ways around the problem are:

• Do not give functions common array names e.g. value or result.

• Only refer to array elements with square brackets3.

3 General Syntax Guide

The general systax of IDL is similar to most other programming languages,
and the basic structure is the same (it has data types, modules, etc.). As
with, for example, FORTRAN, code such as If statements, FOR loops and
WHILE loops, can be used. However, the exact syntax may differ. One
difference is that IDL is effectively an interpreter, rather than a compiler.
This means that, for example, an IF. . .THEN statement will assume that it
operates on a single line of code unless it know otherwise.

Variable names follow the following rules (most of which are normal):

• Variable names must not start with a number.

• IDL is case insensitive, so capitalise however you like.

• Variable starting with a ! are system variables, and so are available to
ALL procedures and functions (see §7).

• Procedures and Functions can only use variables which are passed when
they are called (although the local and global names can differ). All
other variables must be defined within the procedure/function.

Declarations are not normally necessary in IDL. Where they are necessary
(e.g. when reading in a value which is not a float—see §3.9), the variable

3The IDL compiler can be setup to not accept array references using parentheses

3 GENERAL SYNTAX GUIDE 5

can be defined simply by setting it equal to a value of the appropriate data
type (see §3.7. E.g. A=0 would mean A is an integer, B=0L would mean B
is a long integer, C=0. would mean C is a floating-point number, D=0.d0
would mean D is a double-precision floating-point number, and E=” would
mean that E is a string.

3.1 Blocks

To run a statement, such as IF. . .THEN or WHILE, on a block of code,
rather than a single line, the Begin and END commands should be used. For
example:

IF condition THEN Begin
. . . block of code

ENDIF ELSEIF other condition THEN Begin
. . .more code

ENDELSE

Note that if an Else is required, the initial If has to be ended before the Else
can begin. If only one line of code is required, then the following systax can
be used (all on one line):

IF condition THEN something ELSE something else

The same thing can be used with For, While etc. (see §3.3).

3.2 $ and &

Multiple lines of code can be written on one line of text using the & operator.
For example: A = B + C & Print, A would add B and C together into A
and then print A to the screen (although in this case, Print, B + C would
have the same direct result. This is useful, for example, when two short
commands are required for an If. . .Then. . . statement.

The $ operator is the counterpart of &. It tells IDL that the next line of text
is actually part of the same line of code. This is useful when writing long
individual lines, such as PRO or FUNCTION statements with a long list
of parameters and keywords, or for a long If. . .Then. . . Else. . . statement
(though Begin...End blocks probably make more sense here).

3 GENERAL SYNTAX GUIDE 6

3.3 Conditional Statements and Loops

The If. . .Then. . . Else. . . statement was introduced above. The other main
type of conditional statement is the Case, which has a syntax of:

CASE expression OF
value1: statement
value2: statement

ENDCASE

Each statement can be a single line or a block of text. If required, a case of
Else: statement can be added in at the end.

The available loops are For. . .Do, While. . .Do and Repeat. . .Until. They
have the syntaxes:

FOR integer=low,high DO expression
OR

FOR integer=low,high DO Begin
block of code

ENDFOR

WHILE condition DO expression
OR

WHILE condition DO Begin
block of code

ENDWHILE

REPEAT statement UNTIL condition
OR

REPEAT Begin
block of code

ENDREP UNTIL condition

3.4 Conditional Operators

The condition statements described above rely on the conditional operators.
The main logical operators are: EQ (equal to), NE (not equal to), LT (less
than), GT (greater than), LE (less than or equal to), GE (greater than or
equal to), AND, OR and NOT.

3 GENERAL SYNTAX GUIDE 7

If the condition is testing whether a variable or result of a function is true
or false, then it is not necessary to use an operator. A good example is the
Keyword set() function described above.

3.5 Array Operations

In IDL, arrays are indexed by column number then row number (and then
by any other dimensions which are not possible to describe simply), e.g Ar-
ray[x,y], which is intuitive when using 2D images. Arrays can be created
manually, e.g.:

Result = [[1,2,3],[4,5,6],[7,8,9]] would create a 3 by 3 array looking like:

1 2 3
4 5 6
7 8 9

More levels of brackets would create more dimensions, though it ends up
being tedious. Creating arrays is more efficient using the functions described
in §8.

To refer to an element [i,j] of a two-dimensional array Array, use the syntax
Array[i,j]. To refer to a range of elements, [i,k]–[j,k], separate the high and
low indices with colons, i.e. Array[i:j,k]. An asterisk will refer to an entire
row or column e.g. Array[*,k] refers to the whole of the kth row of Array,
while Array[*,*] refers to every element of Array.

Operations on whole arrays are also straightforward. To add a fixed value, c,
to every element, then use either Array = Array+ c or Array[*,*]=Array[*,*]
+ c.

Matrix Multiplication is possible via the # and ## operators. The former
multiplies columns by rows, the latter rows by columns.

The sum of all (or some of) the elements in an array can be acheived using
the Total function. TOTAL(Array) would return the sum of all the elements
in Array, while, for example, TOTAL(Array[*,k]) would return the sum of
the kth row of Array.

3 GENERAL SYNTAX GUIDE 8

3.6 Mathematical Operators

The basic mathematical operators in IDL are:
= Assignment
+ Addition
- Subtraction
* Multiplication
/ Division
ˆ Exponentiation

++ Increment by 1
– Decrement by 1

MOD Modulo operator
< Minimise operator
> Maximise operator

They are all self explanatory, except possibly for the last two. These are
used to limit the range a numeric variable can have. For example, A=A<6
would leave A alone, unless it is less than 6, in which case it would be set to
6. The same works for arrays: Array=Array<100 would set any element of
Array which is over 100 to 100 and leave the rest alone.

Common mathematical functions are EXP, SQRT, ALOG, ALOG10, SIN,
ASIN, SINH and so on. All are fairly self-explanatory (asin=arcsin), though
it should be noted that all angles are dealt with in RADIANS, which makes
the !DTOR and RADEG system variables very useful (see §7).

3.7 Data Types

As with most languages, every IDL variable has a data type. Each data type
has a numeric code which can be viewed with, for example, the Size funtion
(see §8). The basic data types, and their numeric codes, are:

3 GENERAL SYNTAX GUIDE 9

Code Type Name Description

0 Undefined
Undefined variable (i.e. has been referred to but
never defined)

1 Byte 8-bit integer in the range 0–255
2 Integer 16-bit integer in the range −32, 769–+32, 767
3 Long 32-bit integer in the range ∼ −2billion–+2billion

4 Float
32-bit floating point number in the range ±1038

with 6 or 7 decimal places

5 Double
64-bit floating point number in the range ±10308

with around 14 decimal places

6
Complex
Float

Real-Imaginary pair of floating-point numbers

7 String
List of between 0 and ∼2billion characters treated
as text

8 Structure See below

9
Complex
Double

Real-imaginary pair of double-precision floating-
point numbers

10 Pointer Not discussed here

11
Object
Reference

Not discussed here

12
Unsigned
Integer

16-bit integer in range 0–+65,535

13
Unsigned
Long

32-bit integer in range 0–∼4billion

14
64-bit
Long

64-bit integer in range ∼ ±9 × 1018

15
Unsigned
64-bit Long

Unsigned 64-bit integer in range 0–∼ 18 × 1018

Type conversion is possible with the functions Byte, Fix, Long,Float, Dou-
ble, Complex, String, UInt, Ulong, Long64, Ulong64, which are fairly self-
explanatory given the data type names above. The oddity is Fix. This func-
tion converts to integer type, cutting off the decimal points. The keyword
Type can be set to a type code to store the integer in a different precision
variable, if required.

3 GENERAL SYNTAX GUIDE 10

3.8 Structures

Structures are complex data types. A structure has a number of fields, each
of which has a unique name. The fields can have different data types. There
are two ways to create a structure, a simple definition and the Create Struct
finction. E.g.:

Result = {[Name,] Tag1:V alue1,ldots ,Tagn:V aluen, INHERITS struc-
ture}
OR

Result = Create Struct(Tag1, V aluen, . . . , Tagn,valuen [, Struc-
tures, Name=)

The values can be any data type, including existing structures (which means
they become sub-structures). To inherit the tags and values of an existing
structure, then the INHERITS structure command can be used in the first
example, or the inherited structure can simply be inserted as a paramter in
Create Struct. If a Name (which does not have to be the same as Result)
is given, then the defined structure (in the eamples above, Result) becomes
a named structure, with the tags and value data types being unchangeable.
With no name given, the structure is “anonymous” and the tags and value
types of Result can be changed.

To refer to Value1 of Result, then use Result.Tag1 (although you’ve hopefully
chosen more imaginitive names!). To refer to a named structure definition,
then the structure name should be put in curly braces. For example, to give
Result2 the same tags and value types as named structure Structure1, then
use Result2 = {Structure1}.

3.9 Input/Output

When opening a file in IDL, the purpose of opening it has to be known.
The procedure OPENR, unit, filename will open filename (a string variable,
including the path) and assign it the code unit (an integer) and make it
read-only. The command OPENW, unit, filename works in the same way,
but with write-access enabled. Unless the /Append keyword is set, then any
existing file withn the same path and filename will be erased. The command
OPENU, unit, filename will open a file for reading and writing. In this case,
the current position is at the start of the file, so if anything is printed, it will
overwrite what is currently there.

4 CONFIGURING IDL 11

If a variable name is used for the unit, and the keyword Get Lun is set, then
the variable will be assigned the value of the next unused unit number. When
the file is closed, it is often useful to use Free Lun, unit to free up whichever
number is currently stored in unit, where unit is the variable used above.

The command READ, var[, Prompt=string] will read whatever is typed at
the prompt into var, with an optional prompt string. If it has not previsouly
been defined, the variable var is assumed to be a floating-point number. It
cannot be an element (or range of elements) of an array. If var is an (entire)
array, then values will be read into each array element until the end of the
array is reached.

To read from a file assigned to unit, the command READF, unit, V ar1[,. . . ,
V arn] should be used. This read the first item in the file into V ar1, the
second into V ar2 and so on. At the end of the command, the current line of
the file is moved down by one. An error will occur if the end of the file is
reached, so it is useful to know that the function EOF(unit) will return 1 if
the end of file assigned to unit unit is reached.

To print to the screen, then the command Print, V alue1[,. . . ,V aluen] should
be used. Each V aluei can be any variable type, or the result of a function.

To print to a file, us command PrintF, unit, V alue1[,. . . , V aluen] should be
used. This will print the values to the assigned to unit, with a default width
of 80 characters. This means that a long list of values will extend to the next
line, which sometimes causing problems when reading the information back.

When a file is finished with, the command, CLOSE, unit can be used with
as many different units as is required. CLOSE, /all will close all open files.

4 Configuring IDL

Various things may need to be done to get IDL to work for you. For a
start, you will want the appropriate directories in your path. The System
Variable !PATH (see §7) contains the list of directories. A useful function is
Expand Path. This accepts a single parameter argument: a string containing
a path definition. It returnsa string containing the expanded path. Different
directories should be separated by ’:’, while putting a ’+’ infront of each
directory path tells IDL to expand it to include all sub-directories containing
.pro or .sav files. E.g.:

5 USING ONLINE HELP 12

!PATH = !PATH + Expand Path(+/home/cen:+/usr/local/packages/healpix)
would add the directories /home/cen/ and /usr/local/packages/healpix, along
with all their subdirectories, with the !PATH system variable.

Another useful command is Setenv, which will set environment variables for
use later on. E.g:

Setenv, ’Temp=/home/cen/temp’
will create an environment variable $Temp which points to the directory
named. Note that there can be no spaces either side of the ’=’ in the string
argument.

Both the Expand Path and Setenv commands can be put into a file which
is run on startup. Either put them in .idl start or, at the UNIX prompt
type idl path/file.pro, which will start IDL and immediately run the given
file. The latter is useful if several different startup sequences are needed. It
should also be noted that file.pro should NOT have the intial PRO or final
END lines if is to be run from the UNIX prompt.

5 Using Online Help

There are several types of online help which can be used. As descibed in §1,
the ? command can be used to get help with intrinsic procedures. The proce-
dure Doc Library can be used to get help with user-written files. Doc Library
searches the source for a line starting with ’;+’ (without the quotes). It then
displays every commented line (i.e. starting with ’;’) until it reaches a line
starting with ’;-’. E.g. for a file containing the lines:

;+
;Some Help
;With Using
;This Program
;-

Doc Library would output:
Some Help
With Using
This Program

A graphical version of Doc Library is XDL. Help on using both of these can
be found in the online help (or by using Doc Library or XDL!)

6 EXECUTIVE COMMANDS 13

6 Executive Commands

Executive commands can only be used at the IDL command prompt.

6.1 .COMPILE and .RUN

IDL will automatically compile a procedure/function the first time it is
called, providing it is in the current directory or path. However, it is of-
ten necessary (especially when writing or debugging code) to recompile a
procedure/function. If the file is in the current directory or path, then the
command .COMPILE procedure/function name will (re)compile the func-
tion. To compile more than one procedure/function/file, then separate the
names with spaces.

There may also be occasions when the filename is either not in the path, or
has a different name to the procedure/function called (meaning that IDL will
not be able to find it). In this case, .compile PATH/filename will compile
the entire file.

The .RUN command is very similar in function to the .compile command
and works in exactly the same way. However, it has a few extra features
available. Adding the modifier -T will cause the contents of the file (with
line numbers added) to be printed to the terminal before compilation. The
modifier -L listfile will print the same thing to a given filename.

6.2 .continue, .skip, .step and .stepover

When debugging a program, it is sometimes useful to put the line STOP
in the code at a key point. This will stop execution and return to the IDL
prompt. All variables will remain defined, so it is quite a useful way of
checking what’s going on. The same thing will happen if an error occurs
or a keyborad interrupt (Ctrl-C) is encountered. At the IDL prompt, the
command .CONTINUE will continue running the stopped code from where
it left off.

The .SKIP [n] command will tell IDL to skip n lines and continue running.
If a number is not given, then only one line is skipped.

7 SYSTEM VARIABLES 14

The .STEP [n] command tells IDL to run the next n commands (or just the
next command if the number is omitted). If a statement calls a routine, then
the counting continues throughout the called routine. The .STEPOVER [n]
command does the same, but treats calling statements as single lines, and
continues couting at the end of called routine.

6.3 .return and .out

To run a program until a Return statement is encountered, use the .RETURN
executive command. The .OUT command will simply run the current pro-
gram until it reaches the end.

7 System Variables

System variables have names beginning with a ’ !’, e.g. !VERSION. They
have a predefined type and structure which cannot be changed. New system
variables can be defined with the DefSysV procedure. The default system
variables govern a variety of things:

7.1 Constant System Variables

constant system variables are read-only. They include such things as !PI,
!DPI (double precision π), !DTOR (conversion factor from degrees to radians)
and !RADEG (conversion factor from radians to degrees).

7.2 Error Handling

Variables such as !ERROR STATE and !EXCEPT tell IDL what to do if an
error occurs. !MOUSE contains information about where, when and how (as
in which button) the mouse was last clicked.

8 SOME USEFUL FUNCTIONS AND PROCEDURES 15

7.3 IDL Environment Variables

System variables such as !VERSION, !DIR and !PATH govern the particular
system environment in which IDL is installed. In these cases, !VERSION
contains information on the Operating System and the IDL release, !DIR
contains the directory in which IDL is installed, while !PATH contains the
current path (see §).

7.4 Graphics System Variables

Various properties of the display are controlled with system variables. !DE-
VICE contains information about the current device (X-window, PostScript,
etc.), !D contains information about the display, while !P, !X, !Y and !Z
contain information pertaining to plotting to the device.

8 Some Useful Functions and Procedures

The following are a few procedures which are useful to know about. While
all this information is in the IDL help guide

8.1 FltArr, DblArr, etc.

FltArr(D1[,. . . ,D8]) will return an array with up to eight dimensions, of sizes
Di, containing real, single precision floating-type data type, initially set to
zero. The optional keyword /NOZERO will prevent the zeros being inserted
and make the function run faster.

Similar functions for different data types are: DBLARR, COMPLEXARR,
DCOMPLEXARR, INTARR, LONARR, STRARR etc.

8.2 Findgen, Indgen, etc.

Findgen(D1[,. . . ,D8]) will return a floating-point array of the specified di-
mensions. Each element contains the value of its one-dimensional subscript.

8 SOME USEFUL FUNCTIONS AND PROCEDURES 16

For example: Result=Findgen(3,3) will return Result containing:
0 1 2
3 4 5
6 7 8

8.3 Where

The Where function returns the one-dimensional indices of the elements of
a given array which satisfy a condition. E.g:

Result = WHERE(Array GT 100 [, count])
will result in an array, Result, containing the indices of all elements of Array
which are greater than 100. The optional parameter count will contain the
number of such elements. If Array has more than one dimension, then the
one-dimensional index is the index found by counting along each row from
top to bottom (and then moving along in the 3rd, 4th, etc. dimensions if
required).

8.4 Size

Size(Var) will return a list of numbers in the following format:
Ndim [D1 . . . D8] Typen Nelements

Where:

Ndim is the number of dimensions (0 for a scalar, 1 for vector, >= 2
for an array)

D1 . . .Dn are the sizes of the dimensions (absent for a scalar)

Typen is a number representing the datatype (see §3.7)

Nelements is the total number of elements

Various keywords can be used to only return certain information. E.g. /Dim
only returns the number of dimensions, /TName only returns the name of
the data type (in English, not some numeric code).

8 SOME USEFUL FUNCTIONS AND PROCEDURES 17

8.5 Replicate

Replicate(X, D1[,. . . ,D8]) will return a vector or array of dimensions Di with
all elements equal to X.

8.6 String

String(X) will return a string containing the literal text of X i.e. the way
it is printed on the screen, complete with and redundant leading spaces (see
StrCompress below).

8.7 StrCompress

StrCompress(String) will return the string String with all redundant spaces
removed, i.e. the string ’two spaces’ would become ’two spaces’.

Result=StrCompress(String, /REMOVE ALL) will perform the same
function, but ALL spaces will be removed, i.e. the string ’one space’ would
become ’onespace’.

8.8 Return

In procedures, the Return statement tells the procedure to return to the
program level above, i.e. leave the current procedure at whatever point it’s
at and continue from where it was called in another program. This is useful
if a circumstances mean that there is no point in going any further in the
procedure.

In functions, the command Return, variable is used when the function has
finished. This tells the function to return control to the program which called
it, and return variable. The last line of any function (apart from the END
statement) will normally be of this form, though there may be other lines
within conditional blocks further up.

8.9 Message

To print a message to the screen in the case of an error or for information,
the Message, [Text], [/Continue], [/Informational] procedure can be used.

9 PLOTTING 18

The command will look at the current error state and print the appropriate
message, unless the sting Text has been specified. IDL will then perform
whatever action is required by the error, which will often result in stopping.
If the keyword /Continue is set, then IDL will keep on running, regardless
of the error message. If /Informational is set, the message will be merely
informational, and nothing will be done about errors. The advantage of this
over a simple Print statement is that Message also displays the procedure
name by default.

9 Plotting

Plotting graphs in IDL is reasonable striaghtforward. The procedure Plot,
[X,] Y will plot the vector Y against either the vector X (if given) or simply
the element index. Various keywords can be given, such as Title, to add
things to the graph. The keyword /NODATA will simply plot the axes.

To plot another line on the graph, then the command OPLOT works in the
same way, but does not wipe the original graph.

To plot multiple graphs on one “page”, the system variable !P.MULTI must
be changed. !P.MULTI=[0,a,b] will put a grid of a by b graphs on one “page”,
and set the “current” graph to the top left. When a PLOT command is
used, the “current” plot steps along the rows from left to right, then top to
bottom. See the IDL Help guide for much, much more information about
plotting, inlcuding using colour (sorry, color) tables.

To change what is being plotted to, use the Set Plot procedure. For example,
SET PLOT, ’X’ and SET PLOT, ’PS’ will set the plotting device to the X-
terminal or PostScript respectively. When writing to PostScript files, the
Device command can be used to set the filename, among other things. E.g:

Device, filename=filename[, /color]
will set the filename to write to, with color postscript being enabled by using
the optional /color keyword.

Other graphics commands, such as Write JPEG, Write PNG, etc. are de-
scribed in detail in the IDL documentation. The procedure XYOuts will
allow you to place text in an image. Again, consult the help guide for further
information.

