

Infrared astronomy: an introduction

VERSITY OF

TER

Mark McCaughrean Astrophysics Group, School of Physics

CONSTELLATION School on Star Formation at Infrared Wavelengths Osservatorio di Arcetri, Firenze, Italy, May 27 2008

The original infrared observers

Albino rattlesnake

Mark Kostich

Western diamondback rattlesnake

Aaron Krochmal, George Bakken / Indiana State

Rattlesnake pit

Trigeminal nerve branch Posterior air chamber Anterior air chamber Pit membrane Wikipedia

5-30µm thermal radiation impinges on 15µm thick pit membrane containing ~2000 heat-sensitive nerve endings Temperature resolution > 0.001C Latency 50-150 msec Imaging via pinhole camera effect, enhanced with neural processing

Western diamondback rattlesnake

Aaron Krochmal, George Bakken / Indiana State

Rattlesnake nemesis

California ground squirrel

Gregg Elovich

Brave little buggers

Ground squirrels versus a gopher snake

US National Park Service

But clever too ...

Ground squirrel versus gopher snake (no infrared sensory organs) Ground squirrel versus rattlesnake (member of pit viper family)

Thermal-infrared imaging

Aaron Rundus, Donald Owings / UC Davis / New Scientist

More thermal infrared imaging

Human discovery of the infrared

★ Herschel made discovery serendipitously in 1800 ★ Experiment to measure efficiency of filters ★ Dispersed sunlight with prism ★ Used thermometers: basic form of bolometer ★ Found peak temperature beyond red end of visible spectrum ★ Said due to "calorific rays" **★** Soon after, Ritter similarly discovered the ultraviolet

★ Peak of solar flux is at ~0.5 μm
★ Why did Herschel measure peak at ~1 μm?

Figures due to Tom Chester

Brief history of early infrared astronomy ★ 1800: Herschel discovers infrared emission from Sun ★ 1856: Piazzi Smyth detects Moon from Tenerife ★ 1870: Earl of Rosse measures Moon's temperature ★ 1878: Langley invents infrared bolometer ★ 1915: Coblentz, Nicholson, Pettit, et al. measure Jupiter, Saturn, stars, nebulae, using thermopile ★ 1960: Johnson establishes first IR photometric system ★ 1968: Neugebauer, Leighton make first IR sky survey ★ 1974: Kuiper Airborne Observatory enters operation ★ 1983: IRAS makes first space IR survey ★ 1987: First common-user IR imaging systems

Some physics: black-body radiation

★ Definition of "black"

★ "Black" surface absorbs all light at all wavelengths incident upon it

★ Definition of "blackbody radiation"

- ★ To remain thermal equilibrium with surroundings, black surface must then emit just as much energy as it absorbs
- ★ Spectrum of re-emitted radiation does not depend on spectrum of absorbed radiation
- ★ Spectrum depends only on temperature of black surface
- **★** Derivation of spectrum non-trivial
 - Attempts by Rayleigh, Jeans, & Wien: ~ right at long λ, grows infinite at short λ; origin of so-called "UV catastrophe"
 - ★ Correct form determined by Max Planck in 1900
 - **\star** Required quantised energy E = hv: beginning of QM

Planck's Law for blackbody radiation

$$I(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

Energy emitted per unit time per unit surface area per unit solid angle per unit frequency J s⁻¹ m⁻² sr⁻¹ Hz⁻¹

$$I(\lambda,T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

Energy emitted per unit time per unit surface area per unit solid angle per unit wavelength J s⁻¹ m⁻² sr⁻¹ m⁻¹

Note those are only equal in the following form:

 $I(\nu, T) d\nu = I(\lambda, T) d\lambda$

Convert between two forms using:

$$\mathbf{c} = \nu \lambda \implies \nu = \frac{\mathbf{c}}{\lambda} \implies \mathbf{d}\nu = -\frac{\mathbf{c}}{\lambda^2} \,\mathbf{d}\lambda$$

Planck's Law: linear blackbody curves

Planck's Law: logarithmic blackbody curves

Key features of Planck's Law (I)

Wien's Displacement Law Important note! Frequency equivalent: Peak wavelength x Temperature = constant Peak v (Hz) x Temp (K) $= 5.879 \times 10^{10} \text{ Hz K}$ Peak λ (µm) x Temp (K) = 2897.7768 µm K But Peak $v \neq (c/Peak \lambda)$ Blackbody curves do not overlap Object at temperature T₂ emits more photons (per unit everything) at all wavelengths than object at T_1 , if $T_2 > T_1$ Total power emitted given by Stefan-Boltzmann Law Per unit area, but integrated over all wavelengths, all angles

 $2\pi^{5}k^{4}$

15c²h³

$$P = \sigma T^4$$
 where $\sigma =$

For object with emissivity ε and total area A:

$$\mathsf{P} = \sigma \epsilon \mathsf{A} \mathsf{T}^2$$

Can often make up for low T with very large A: important!

$$= 5.6704 \times 10^{-8} \, J \, s^{-1} \, m^{-2} \, K^{-4}$$

Key features of Planck's Law (II) Long λ behaviour governed by "Rayleigh-Jeans tail" $I(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$ • For large λ , hc/ λ kT \ll 1 • $\exp(hc/\lambda kT) \approx 1 + (hc/\lambda kT)$, thus: $I(\lambda,T) \approx \frac{2hc^2}{\lambda^5} \frac{1}{1 + (hc/\lambda kT) - 1} \approx \frac{2hc^2}{\lambda^5} \frac{\lambda kT}{hc} \approx \frac{2ckT}{\lambda^4}$

Therefore, for long-λ, intensity drops as λ-4
Often "on the Rayleigh-Jeans tail" in IR astronomy

Low-temperature astronomical sources * Bottom end of stellar initial mass function ★ M, L dwarfs T_{eff} typically 3000-1500K, peak ~1-2µm ★ Coolest known T dwarfs ~800K, peak ~4μm ★ More complicated in reality: molecular atmospheres **★** Inner regions of circumstellar disks ★ Infrared excess emission, CO bandheads 2-2.5µm **★** Terrestrial planet-forming regions in disks ★ Liquid water requires ~300K, ~10µm \star Outer regions of disks ★ Gas depletion due to gas giant formation ~100K, 30µm ★ Molecular clouds, prestellar cores dust and gas ★ 100-10K, 30-300µm: connection to sub-millimetre

Ø

The Orion Nebula star-forming region

Infrared: McCaughrean / VLT / ISAAC

Infrared penetrates dust extinction

Cardelli, Clayton, & Mathis 1989

Dust extinction quantified

★ Reduced effects of dust in near- and mid-infrared:

Filter	λ _c	A_{λ}/A_{V}
V	0.55	1.000
J	1.21	0.282
Н	1.65	0.175
K	2.20	0.112
L	3.45	0.058
Μ	4.80	0.023
N	10.0	0.052

Worked example:

Take extinction of 25 magnitudes at V: dimming by 10¹⁰ In K-band, would be 2.8 magnitudes: dimming by 13 In M-band, would be 0.6 magnitudes: dimming by 4

Reducing the effects of extinction

Barnard 68 Optical + Infrared

M16, The Eagle Nebula

Star formation in the "Pillars of Creation"?

Optical: HST Hester & Scowen

Line diagnostics and astrochemistry ★ Molecular absorption bands in stars \star TiO, VO, H₂O, CH₄, etc. **★** Emission lines from ionised nebulae **★** Hydrogen Paschen, Brackett, Pfund series ★ Fe, O, He, Mg, Cr, Si, N, Ca, Ar, Ne, P, C, ... **★** Emission/absorption lines in protostars ★ Minerals: SiO, SiC, amorphous/crystalline \star Ices: CO, H₂O, CO₂, CH₄ ★ PAH features: complex C compounds ★ Molecular lines ★ Shocked/fluorescent H₂

Ices in and around protostars

Evolution of circumstellar material

ISO SWS spectra van Dishoeck

Accretion, outflow, and feedback

HH212: VLT/ISAAC 6 hours integration time in the 2.12 μ m H₂ v=1-0 S(1) line (McCaughrean et al. 2002)

Proper motions over seven years

HH212: VLT/ISAAC Oct 2000 - VLT/HAWK-I Jan 2008 (McCaughrean et al., in prep.)

The evolution of the Universe

High-redshift astronomy

\star Redshift: $\lambda_{obs} = (1+z) \lambda_{em}$ **★** Classical galaxy diagnostics in mid-optical: ★ Hα, Hβ, Ca H & K, 4000Å break, etc. \star Move to near-infrared at z=2-3 \star Move to thermal-infrared at z=5-10 \star Move to mid-infrared at z=20-30 ★ Lyα at 1216Å: \bigstar Moves to near-infrared at z>7 **★** Cosmic microwave background: ★ Blackbody radiation from ionised plasma at ~3000K \star Wien's Law says peak should be at at ~1µm ★ But epoch of recombination was at z~1000 ★ Should now be at ~3K, so peak at ~1000µm, i.e. 1 millimetre

Redshifted diagnostics

Redshifted emission from distant objects

Boosting sensitivity via gravitational lensing

Abell 1689: HST+ACS (g, r, i, z)

NASA / ESA / Benitez et al.

Recap

★ Infrared astronomy driven by four factors:

- ★ Access to low-temperature blackbodies
- ★ Mitigation of dust extinction
- ★ Emission and absorption line diagnostics for astrochemistry
- ★ Galaxies and AGN at high redshift
- ★ First three make the infrared vital for star and planet formation studies
- **★** But infrared astronomy is not that easy
 - ★ Absorption by terrestrial atmosphere
 - ★ Emission by terrestrial atmosphere
 - ★ Thermal background from telescope
 - ★ Unconventional detector technologies
 - ★ Photons "weaker" at longer wavelengths
Opening up the electromagnetic spectrum

20th century saw entire EM spectrum from γ-rays to radio made available

Atmospheric transmission

Infrared transmission windows

Léna, Lebrun, & Mignard

J, H, K, L windows

M, N, Q windows

Transmission

Johnson optical-infrared filter system

Filter	λ (μm)	Δλ (μm)	Filter	λ (μm)	Δλ (μm)
U	0.36	0.15	Н	1.65	0.23
В	0.44	0.22	K	2.2	0.34
V	0.55	0.16	Ľ	3.8	0.60
R	0.64	0.23	M'	4.7	0.22
	0.79	0.19	Ν	10	6.5
J	1.26	0.16	Q	20	12

There are many variations on this basic set, optimised for different sites, detectors, science

Filter	λ (μm)	Δλ (μm)	F_{λ} (W m ⁻² μ m ⁻¹)	F_{v} (W m ⁻² Hz ⁻¹)	Jansky
U	0.36	0.15	4.19 x 10 ⁻⁸	1.81 x 10 ⁻²³	1 810
В	0.44	0.22	6.60 x 10 ⁻⁸	4.26 x 10 ⁻²³	4 260
V	0.55	0.16	3.51 x 10 ⁻⁸	3.54 x 10 ⁻²³	3 540
R	0.64	0.23	1.80 x 10 ⁻⁸	2.94 x 10 ⁻²³	2 940
	0.79	0.19	9.76 x 10 ⁻⁹	2.64 x 10 ⁻²³	2 640
J	1.26	0.16	3.21 x 10 ⁻⁹	1.67 x 10 ⁻²³	1 670
Н	1.65	0.23	1.08 x 10 ⁻⁹	9.81 x 10 ⁻²⁴	981
K	2.20	0.34	3.84 x 10 ⁻¹⁰	6.20 x 10 ⁻²⁴	620

Sources of background flux * Several components to background emission ★ All strong function of wavelength ★ Telescope: ★ Thermal blackbody emission at ~270-280K **★** Atmospheric: ★ Thermal blackbody emission at ~220-230K ★ Scattered moonlight \star Line emission (Lya, O₂, OI), OH airglow ★ Celestial: **★** Zodiacal dust (scattered sunlight and thermal emission) ★ Unresolved faint stars ★ Infrared cirrus **★** Cosmic microwave background

Zodiacal light

Tony & Daphne Hallas

Gegenschein

Scattering and emission from zodiacal dust

Léna, Lebrun, & Mignard

Airglow movies

Antarctic OH airglow movie (2002)

Near-infrared OH airglow

Ennico / COHSI

Infrared cirrus

Cosmic microwave background

Aitoff projection showing temperature fluctuations in CMB

NASA / WMAP

Sky background spectrum

Glass / Leinert / COBE

Importance of telescope thermal emission

Léna, Lebrun, & Mignard

Everest as seen from the ISS

Mauna Kea in the Pacific Ocean

Cerro Paranal in the Chilean Atacama desert

Antarctica: the coldest continent on Earth

Concordia Station, Dome C, Antarctica

IPEV / PNRA / Dargaud

Airborne infrared astronomy: SOFIA

Infrared astronomy in space

★ Get above the atmosphere

★ Eliminate thermal/non-thermal sky emission: lower background **★** Eliminate seeing: achieve diffraction-limited resolution **★** Eliminate absorption: equal access to all wavelengths \star How to reduce telescope thermal background? ★ Any object at ~1AU from Sun will have ~ same temperature as Earth, minus ~20K-worth of greenhouse effect **★** HST actually actively heated to keep mirror at room temperature ★ Solutions ★ Move further away from Sun: temperature at 5AU ~ 120K

- ★ Cool entire telescope/instrument package with cryogens
- ★ Use sunshield to passively cool telescope

A brief history of IR space astronomy ★ Early days ★ AFCRL/AFGL survey rocket flights **★** The first orbiting space infrared survey ★ IRAS **★** The first orbiting space infrared observatory ★ ISO **★** Subsequent infrared missions ★ IRTS, HST/NICMOS, MSX, Akari, Spitzer **★** The future of space infrared astronomy ★ HST/WFC3, Herschel, WISE, JWST, (Darwin/TPF, SAFIR, FIRI, ...) ★ (Excludes many other IR missions: ★ COBE, WMAP, ODIN, SWAS, SL-2, WIRE, solar system ...)

IRAS: Infrared Astronomy Satellite (1983)

NASA / NL 7

IRAS (almost) all-sky survey

★ Yellow-red horizontal strip is the galactic plane★ Blue S-shaped feature is the ecliptic

NASA / NL / UK

IRTS: Infrared Telescope in Space (1995)

IRTS survey coverage and results

IRTS/NIRS-MIRS Spectra of Point-like Objects

M16, the Eagle Nebula with ISO

MSX: Mid-Course Space Experiment (1996)

US BMDO

Galactic centre with MSX

HST NICMOS (1997)

Orion Nebula & Trapezium Cluster
Spitzer Space Telescope (2003)

Herschel Space Observatory (2009)

The role of infrared array detectors

Basic techniques for detecting IR photons * Aim: convert incoming photons into electrical signals \star Photoconductors (0.3-30µm): * Photons generate electron-hole pairs in semiconductors ★ Electrons move to conduction band **★** Electrons swept by electric field and measured \star Bolometers (30-1000µm): ★ Photons heat bulk material (semi- or superconductor) **Temperature change induces change in electrical properties** \star Heterodyne systems (100-1000µm): * Mix incoming electromagnetic waves with local oscillator **★** Detect amplitude of beat signal at much lower frequency **★** Low noise electronics then used to amplify signal \star Coherent detection: preserves phase \rightarrow interferometry

Energy band diagrams

Insulator E_g > 3.5eV Semiconductor $0eV < E_g < 3.5eV$

Conductor $E_g = 0eV$

 $1 \text{eV} = 1.602 \text{ x } 10^{-19} \text{ J} \approx 1.24 \mu \text{m}$

Detector materials in the Periodic Table

Ia	IIa	III b	IV b	Vb	VIb	VII b	VIII			Ib	IIb	III a	IV a	V a	VI a	VII a	0
1													\downarrow				2
Η																	He
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
87	88	89															
Fr	Ra	Ac															

★ Typical semiconductors used in photoconductors include:

- \star Group IV: Ge, Si
- ★ Group III-V: GaAs, InAs, InSb
- ★ Group II-VI: CdS, CdTe
- ★ Group IV-VI: PbS, PbSe, PbTe

Intrinsic semiconductor properties

Material	Bandgap (eV)	Cutoff (µm)
CdS	2.4	0.5
CdSe	1.8	0.7
GaAs	1.35	0.92
Si	1.12	1.11
Ge	0.67	1.85
Hg _x Cd _{1-x} Te (x=0.554)	0.5	2.5
PbS	0.42	2.95
InSb	0.23	5.4
Hg _x Cd _{1-x} Te (x=0.8)	0.1	12.4

Extrinsic semiconductor properties

Material	Bandgap (eV)	Cutoff (µm)
Si:ln	0.16	7.9
Si:Ga	0.072	17.2
Si:As	0.054	23
Si:Sb	0.043	29
Si:As (BIB)	0.041	30
Si:Sb (BIB)	0.031	40
Ge:Ga	0.011	115
Ge:Ga (stressed)	0.0062	>200

Infrared arrays

★ Until early 1980s, only single element IR detectors **★** Silicon microelectronics techniques widespread ★ Spinoff was CCD detectors **★** But IR semiconductors techniques not so well developed **★** Answer: hybrid infrared arrays ★ Use IR semiconductor for detection layer **★** Use Si multiplexer for charge storage and measurement **★** Interface two mechanically via metal interconnects ***** IR material must backside illuminated ★ Detector material must be thin * Historically done via mechanical polishing * Now done via molecular beam epitaxy onto substrate

Schematic hybrid infrared array

Detector array layer deposited on transparent substrate e.g. sapphire

WIRCam 4096x4096 HAWAII2RG mosaic as also used by HAWK-I on the VLT

GL Scientifit

Men and their magnificent machines

HAWK-I on VLT UT4 Nasmyth platform

Orion single-element mapping survey

UKIRT / 2.2 microns / 5 & 3.5 arcsec beams / tens of sources

Lonsdale, Becklin, Lee, & Stewart 1982

Single-element detector raster image

AAT+IRPS / JHK bands / 2 arcsec pixels, 2 arcsec seeing / ~200 sources

Allen, Bailey, & Hyland 1984, S&T

First IRCAM imaging mosaic of Orion

UKIRT+IRCAM / K band / 0.6 arcsec pixels, 2 arcsec seeing / ~400 sources

McCaughrean 1988, PhD thesis

Modern wide-field survey of Orion

UKIRT+WFCAM / JKH₂ bands / 0.4 arcsec pixels, 1 arcsec seeing

Davis, Varricat, Hirst, Casali et al. 2004

Contemporary deep survey of Orion

VLT +ISAAC / J_sHK_s bands / 0.15 arcsec pixels, 0.4 arcsec seeing / ~1200 sources

Back to physics: Poisson distribution (I)

- One of many contributions by Poisson to mathematics
 Later work by Ladislaus Bortkiewicz, based on statistics of number of soldiers kicked to death by horses annually
- If mean expected number of discrete events (arrivals) in given time interval is N, then probability of there being exactly m occurrences is:

$$f(m;N) = \frac{N^m e^{-N}}{m!}$$

m must be non-negative integer (0, 1, 2, ...)
N must be positive real number
Derivation non-trivial: many available

Siméon-Denis Poisson (Wikipedia)

Poisson distribution (II)

Adapted from Wikipedia

Poisson distribution (III)

Key features:

m can only have integer values 0.1 Lines joining values for illustration only m cannot be negative (obviously) 5 10 15 0 Thus distribution is lop-sided for small N More symmetric for large N For our purposes, N is almost always large (>10) For large N, distribution is \sim normal with variance = N

$$f(\mathbf{x}) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-\mathbf{x}^2}{2\sigma^2}} \quad \Rightarrow \quad f(\mathbf{m}) \approx \frac{1}{\sqrt{2\pi N}} e^{\frac{-\mathbf{m}^2}{2N}}$$

Normal distribution

Poisson distribution for large N

20

0.3

0.2 F

• Variance = σ^2 , thus standard deviation σ (or "noise") of a Poisson distribution with mean counts N = \sqrt{N}

Poisson distribution (IV)

Important!

Poisson statistics apply to the individual uncorrelated events actually registered in given time window

Basic infrared array detector operation

- Incoming photon flux impinges on a pixel
- Some fraction converted into electrons
- Proceed to collect electrons for given integration time
- Cumulative charge creates voltage on pixel
- On read-out, voltage converted to counts by A/D converter
- Counts may be coadded over large number of integrations
- At which point do Poisson statistics get applied?

Answer:

Number of electrons collected per integration time

Application to signal-to-noise calculations

1. Measure total flux through aperture centred on star: includes star, background, dark current, read-noise

2. Measure average flux per pixel through larger annulus: measures mean background, dark current; usually annulus has larger area than aperture, so error negligible

3. Multiply average background / dark current flux per pixel by area of inner aperture

4. Subtract background / dark current flux from value measured through star aperture; leaves star flux alone, but with Poisson noise of star, background, and dark current, plus read-noise

Calculating astronomical S/N (I)

Stellar flux: F photons s⁻¹ m⁻² Stellar aperture area: M pixels • πR^2 where R is radius of aperture in pixels Background flux: G photons s⁻¹ m⁻² pixel⁻¹ Assume well-measured over large annulus; assume error-less Dark current: I_D e⁻ s⁻¹ pixel⁻¹ Negligible for imaging; can be important in spectroscopy Read-noise: R_N e⁻ pixel⁻¹ Typically measured in calibration experiment System throughput n Detector QE x (optical & atmospheric transmission) Integration time: t seconds Diameter of telescope: D m; Area A m²

Calculating astronomical S/N (II) Measured stellar signal (in e⁻) in stellar aperture: $S = \eta AFt$ Measured background signal (in e⁻) in aperture: $B = \eta AGMt$ Measured dark current signal (in e⁻) in aperture: 0 $D = I_D Mt$ Total signal (in e⁻) giving rise to Poisson noise: $S + B + D = [\eta A(F + GM) + I_DM]t$

Calculating astronomical S/N (III)

Poisson noise due to star, background, dark current:
Simply √ of total signal

$$= \sqrt{[\eta A(F + GM) + I_DM]t}$$

Read-noise over stellar aperture (e- RMS):

Uncorrelated pixel-to-pixel: adds in quadrature over no. pixels

 $= \sqrt{M}R_N$

Total noise added in quadrature:

Standard way of adding uncorrelated noise terms

 $= \sqrt{[\eta A(F + GM) + I_DM]t + MR_N^2}$

Calculating astronomical S/N (IV)

Therefore, signal-to-noise:

 $\frac{S}{N} = \frac{\eta AFt}{\sqrt{[\eta A(F + GM) + I_DM]t + MR_N^2}}$

When F is large (bright star; "source noise limited" case):
Background, dark current, and read-noise terms negligible

$$\frac{S}{N} = \frac{\eta AFt}{\sqrt{\eta AFt}} = \sqrt{\eta AFt}$$

Thus doubling S/N requires:
 4 x integration time
 4 x collecting area

Read-noise limited case

Full signal-to-noise:

N

 $\sqrt{[\eta A(F + GM) + I_DM]t + MR_N^2}$

When F and G small (very low background):

Stellar & background shot noise, dark current terms negligible

 $\frac{\mathsf{S}}{\mathsf{N}} = \frac{\eta \mathsf{AFt}}{\sqrt{\mathsf{MR}}}$

e.g. narrow-band imaging of faint sources or spectroscopy
Here, doubling S/N requires:

2 x integration time

- 2 x collecting area
- 2 x smaller R_N

Background-limited case

Full signal-to-noise: ηAFt N $\sqrt{[\eta A(F + GM) + I_DM]t + MR_N^2}$ When F is small but G large (bright background): Stellar shot noise, dark current, read-noise terms negligible $h = \frac{\eta \text{AFt}}{\sqrt{n \text{AGMt}}} = \sqrt{\eta \text{At}} - \frac{1}{\sqrt{n \text{AGMt}}}$ N Typical for broad-band imaging of faint sources Here, doubling S/N requires: 4 x integration time 4 x collecting area 4 x lower background

The case for big, cold telescopes

For faint sources in the background-limit, we have:

$$\frac{S}{N} = \sqrt{\eta A t} \frac{F}{\sqrt{GM}} \implies t = \left(\frac{S}{N}\right)^2 \frac{1}{\eta A} \frac{GM}{F^2}$$

• Thus time required to reach some given sensitivity $\propto \frac{1}{A} \implies \propto \frac{1}{D^2}$

• and \propto GM

Thus maximising sensitivity of telescope requires:
Maximising telescope diameter D
Reducing background G as much as possible

i.e. get above atmosphere and make telescope cold

Reducing number of pixels M covered by source

Equivalent to reducing area covered by each pixel on sky

Reducing the area subtended by source Have assumed constant image size (FWHM θ) ~ true for seeing-limited observations What happens if θ is made smaller by factor of 2?

- Can make pixels smaller by factor 2
- Reduces area of pixel by factor 4
- Collect same amount of starlight from point source
- But only 1/4 of background
- In background-limited case

$$\frac{S}{N} = \frac{S}{\sqrt{B}} \implies \frac{S}{N} \propto \frac{1}{\theta}$$

• and $t \propto \theta^2$

Thus improving spatial resolution reduces integration time required for point sources

Impact of improved spatial resolution

- If diffraction-limited resolution can be achieved:
 Using adaptive optics on ground or going into space
 - Dependence of image size θ on telescope diameter D and wavelength λ :

 $\theta \text{ (radians)} = 1.22 \frac{\lambda \text{ (metres)}}{D \text{ (metres)}} \implies \theta \text{ (arcsec)} = 0.25 \frac{\lambda \text{ (microns)}}{D \text{ (metres)}}$ • Thus $\theta \propto \frac{1}{D} \implies \theta^2 \propto \frac{1}{D^2} \implies t \propto \frac{1}{D^2}$

Therefore, combined time required to reach given S/N:
 For diffraction-limited, background-limited point source

$$\propto \frac{1}{D^2} \times \frac{1}{D^2} \quad \Rightarrow \quad t \propto \frac{1}{D}$$

Background limited

Diffraction

limited

Thus big telescopes good,
 big cold telescopes better!

European Extremely Large Telescope

James Webb Space Telescope (2013)

NORTHROP GRUMMAN

Space Technology

- 4

An overview of the JWST

★ 6.5m deployable primary
★ Diffraction-limited at 2µm
★ Wavelength range 0.6-28µm
★ Sun-Earth L2 orbit
★ 4 instruments

★ 0.6-5µm wide field camera (NIRCam) \star 1-5µm multiobject spectrometer (NIRSpec) ★ 5-28µm camera/spectrometer (MIRI) **★** 1-5µm fine guidance sensor / tunable filter imager (FGS/TFI) ★ Passive cooling of telescope to <50K ★ NIRCam/NIRSpec/TFI passively cooled to 30K; MIRI actively to 7K ★ 5 year lifetime requirement, 10 year goal ★ June 2013 launch on Ariane 5 ECA ★ Total budget (NASA, ESA, CSA, incl. 5 years operations): \$5 billion
JWST: 7x area & 2.5x resolution of HST

The extraordinary sensitivity of the JWST

JWST star and planet formation goals **★** Trace deeply embedded phases of star formation \bigstar Clouds \rightarrow cores \rightarrow protostars * Investigate extreme ends of the Initial Mass Function ★ Formation and impact of massive stars ★ Substellar IMF to planetary masses \star Examine the epoch of planet building ★ Development of protoplanets in young disks ★ Follow astrochemical evolution * Processing of gas, dust, & ice in cores, protostars, & disks * Extend isolated paradigm to clustered, competitive star formation in a wide range of environments **★** Good match to goals of CONSTELLATION

Ariane 5 ECA launch from Kourou to L2

Trajectory to L2

JAMES WEBB SPACE TELESCOPE

2008 Spacecraft Deployment Animation

NORTHROP GRUMMAN

Summary

★ Key questions to be answered in star & planet formation
★ What is the origin of the stellar mass distribution? Is it universal?
★ What is the impact of feedback locally and globally?
★ How do disks turn into planetary systems?
★ Infrared astronomy has a key role to play
★ Greatly improved IR (& mm) sensitivity & spatial resolution needed
★ Fortunately, the next decade will bring those resources

