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ABSTRACT
We present results from the first hydrodynamical star formation calculation to demonstrate
that close binary stellar systems (separations �10 au) need not be formed directly by frag-
mentation. Instead, a high frequency of close binaries can be produced through a combination
of dynamical interactions in unstable multiple systems and the orbital decay of initially wider
binaries. Orbital decay may occur as a result of gas accretion and/or the interaction of a binary
with its circumbinary disc. These three mechanisms avoid the problems associated with the
fragmentation of optically thick gas to form close systems directly. They also result in a prefer-
ence for close binaries to have roughly equal-mass components because dynamical exchange
interactions and the accretion of gas with high specific angular momentum drive mass ratios
towards unity. Furthermore, because of the importance of dynamical interactions, we find that
stars with greater masses ought to have a higher frequency of close companions, and that many
close binaries ought to have wide companions. These properties are in good agreement with
the results of observational surveys.

Key words: accretion, accretion discs – hydrodynamics – binaries: close – binaries: spectro-
scopic – circumstellar matter – stars: formation.

1 I N T RO D U C T I O N

The process of star formation preferentially produces binary stel-
lar systems (e.g. Duquennoy & Mayor 1991). The favoured
mechanism for explaining this high frequency of binaries is the
collapse and fragmentation of molecular cloud cores (e.g. Boss &
Bodenheimer 1979; Boss 1986; Bonnell et al. 1991; Nelson & Pa-
paloizou 1993; Burkert & Bodenheimer 1993; Bate, Bonnell & Price
1995). However, while fragmentation can readily create wide bi-
nary systems (separations �10 au), there are severe difficulties with
fragmentation producing close binaries directly. This is a significant
deficiency since approximately 20 per cent of solar-type stars have
main-sequence companions that orbit closer than 10 au (Duquennoy
& Mayor 1991), and the frequency of massive spectroscopic bina-
ries appears to be even higher (Garmany, Conti & Massey 1980;
Abt, Gomez & Levy 1990; Morrell & Levato 1991; Mason et al.
1998).

As a molecular cloud core begins to collapse, the formation of
wide binaries through fragmentation is possible because the gas eas-
ily radiates away the gravitational potential energy that is released.

�E-mail: mbate@astro.ex.ac.uk

The gas remains approximately isothermal and, thus, the Jeans mass
decreases with density as ρ−1/2. However, at densities of �10−13

g cm−3 or n(H2) � 1010 cm−3 (Larson 1969; Masunaga & Inutsuka
2000) the rate of heating from dynamical collapse exceeds the rate
at which the gas can cool. The gas heats up, and the Jeans mass
begins to increase so that a Jeans-unstable region of gas becomes
Jeans-stable. This results in the formation of a pressure-supported
fragment with a mass of several Jupiter-masses and a radius of ≈5 au
(Larson 1969). Fragmentation on smaller scales is inhibited by ther-
mal pressure. Therefore, initial binary separations must be �10 au.
The formation of such pressure-supported fragments is frequently
referred to as the opacity limit for fragmentation (Low & Lynden-
Bell 1976; Rees 1976) and may set a lower limit to the mass of
brown dwarfs (Boss 1988; Bate, Bonnell & Bromm 2002a,b).

A possibility for fragmentation at higher densities (hence on
smaller length-scales) exists when the pressure-supported fragment
has accreted enough material for its central temperature to exceed
2000 K. At this temperature, molecular hydrogen begins to disso-
ciate, which provides a way for the release of gravitational energy
to be absorbed without significantly increasing the temperature of
the gas. Thus, a nearly isothermal second collapse occurs within the
fragment that ultimately results in the formation of a stellar core
with radius ≈1 R� (Larson 1969). Several studies have investigated
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the possibility that fragmentation during this second collapse forms
close binary systems directly (Boss 1989; Bonnell & Bate 1994;
Bate 1998, in preparation). Boss (1989) found that fragmentation
was possible during this second collapse, but that the fragments
spiralled together due to gravitational torques and did not survive.
Bonnell & Bate (1994) found that fragmentation to form close bina-
ries and multiple systems could occur in a disc that forms around the
stellar core. However, both these studies began with somewhat ar-
bitrary initial conditions for the pressure-supported fragment. Bate
(1998) performed the first three-dimensional calculations to follow
the collapse of a molecular cloud core through the formation of
the pressure-supported fragment, the second collapse, and the for-
mation of the stellar core and its surrounding disc. In these and
subsequent calculations (Bate, in preparation), Bate found that the
second collapse did not result in sub-fragmentation due to the high
thermal pressure and angular momentum transport via gravitational
torques.

In this paper, we present results from the first hydrodynamical
star formation calculation to produce dozens of stars and brown
dwarfs while simultaneously resolving beyond the opacity limit for
fragmentation. Despite the fact that no close binaries (separations
�10 au) are formed by direct fragmentation, we find that the calcu-
lation eventually produces several close binary systems through a
combination of dynamical interactions in multiple systems, and the
orbital decay of wide binaries via gas accretion and their interactions
with circumbinary discs.

The paper is structured as follows. In Section 2, we briefly de-
scribe the numerical method and the initial conditions for our cal-
culation. In Section 3, we present results from our calculation and
compare them with observations. Finally, in Section 4, we give our
conclusions.

2 C O M P U TAT I O NA L M E T H O D A N D
I N I T I A L C O N D I T I O N S

The calculation presented here was performed using a three-
dimensional, smoothed particle hydrodynamics (SPH) code. The
SPH code is based on a version originally developed by Benz (1990);
Benz et al. (1990). The smoothing lengths of particles are vari-
able in time and space, subject to the constraint that the number of
neighbours for each particle must remain approximately constant at
Nneigh = 50. We use the standard form of artificial viscosity (Mon-
aghan & Gingold 1983) with strength parameters αv = 1 and βv = 2.
Further details can be found in Bate et al. (1995). The code has been
parallelized by M. Bate using OPENMP.

2.1 Opacity limit for fragmentation and the equation of state

To model the opacity limit for fragmentation without performing
full radiative transfer, we use a barotropic equation of state for the
thermal pressure of the gas p = Kρη, where K is a measure of the
entropy of the gas. The value of the effective polytropic exponent
η, varies with density as

η =
{

1, ρ � 10−13 g cm−3,

7/5, ρ > 10−13 g cm−3.
(1)

We take the mean molecular weight of the gas to be µ = 2.46.
The value of K is defined such that when the gas is isothermal
K = c2

s , with the sound speed cs = 1.84 × 104 cm s−1 at 10 K, and
the pressure is continuous when the value of η changes.

This equation of state reproduces the temperature–density re-
lation of molecular gas during spherically symmetric collapse

(as calculated with frequency-dependent radiative transfer) to an
accuracy of better than 20 per cent in the non-isothermal regime up
to densities of 10−8 g cm−3 (Masunaga & Inutsuka 2000). Thus, our
equation of state should model collapsing regions well, but may not
model the equation of state in protostellar discs particularly accu-
rately due to their departure from spherical symmetry.

2.2 Sink particles

The opacity limit results in the formation of distinct pressure-
supported fragments in the calculation. As these fragments accrete,
their central density increases, and it becomes computationally im-
practical to follow their internal evolution until they undergo the
second collapse to form stellar cores because of the short dynam-
ical time-scales involved. Therefore, when the central density of a
pressure-supported fragment exceeds ρs = 10−11 g cm−3, we insert
a sink particle into the calculation (Bate et al. 1995). The gas within
radius racc = 5 au of the centre of the fragment (i.e. the location of
the SPH particle with the highest density) is replaced by a point
mass with the same mass and momentum. Any gas that later falls
within this radius is accreted by the point mass if it is bound and its
specific angular momentum is less than that required to form a cir-
cular orbit at radius racc from the sink particle. Thus, gaseous discs
around sink particles can only be resolved if they have radii �10 au.
Sink particles interact with the gas only via gravity and accretion.

Since all sink particles are created from pressure-supported frag-
ments, their initial masses are ≈10 Jupiter-masses (MJ), as given
by the opacity limit for fragmentation (Boss 1988). Subsequently,
they may accrete large amounts of material to become higher mass
brown dwarfs (�75 MJ) or stars (�75 MJ), but all the stars and brown
dwarfs begin as these low-mass pressure-supported fragments.

The gravitational acceleration between two sink particles is New-
tonian for r � 4 au, but is softened within this radius using spline
softening (Benz 1990). The maximum acceleration occurs at a dis-
tance of ≈1 au; therefore, this is the minimum separation that a
binary can have even if, in reality, the orbit of the binary would have
been hardened.

Replacing the pressure-supported fragments with sink particles
is necessary in order to perform the calculation. However, it is not
without a degree of risk. If it were possible to follow the fragments
all the way to stellar densities (as done by Bate 1998) and still
follow the evolution of the large-scale cloud over its dynamical
time-scale, we might find that a few of the objects that we replace
with sink particles merge together or are disrupted by dynamical
interactions. We have tried to minimize the degree to which this may
occur by insisting that the central density of the pressure-supported
fragments exceeds ρs before a sink particle is created. This is
two orders of magnitude higher than the density at which the
gas is heated and ensures that the fragment is self-gravitating,
centrally condensed and, in practice, roughly spherical before
it is replaced by a sink particle. In theory, it would be possible
for a long collapsing filament to exceed this density over a large
distance, thus making the creation of one or more sink particles
ambiguous. However, the structure of the collapsing gas that results
from the turbulence prohibits this from occurring; no long roughly
uniform-density filaments with densities ≈ ρs form during the
calculation. Furthermore, each pressure-supported fragment must
undergo a period of accretion before its central density exceeds ρs

and it is replaced by a sink particle. For example, it is common in
the calculation to be able to follow a pressure-supported fragment
that forms via gravitational instability in a disc for roughly half
an orbital period before it is replaced. Thus, the fragments do
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have some time in which they may be disrupted or merge. Only oc-
casionally during the calculation are low-mass pressure-supported
fragments disrupted; most are eventually replaced by sink particles.

2.3 Initial conditions

The initial conditions consist of a large-scale, turbulent molecular
cloud. The cloud is spherical and uniform in density with a mass
of 50 M� and a diameter of 0.375 pc (77 400 au). At the tempera-
ture of 10 K, the mean thermal Jeans mass is 1 M� (i.e. the cloud
contains 50 thermal Jeans masses). The free-fall time of the cloud
is tff = 6.0 × 1012 s or 1.90 × 105 yr.

Although the cloud is uniform in density, we impose an initial
supersonic turbulent velocity field on it in the same manner as
Ostriker, Stone & Gammie (2001). We generate a divergence-free
random Gaussian velocity field with a power spectrum P(k) ∝ k−4,
where k is the wavenumber. In three dimensions, this results in a
velocity dispersion that varies with distance, λ, as σ (λ) ∝ λ1/2 in
agreement with the observed Larson scaling relations for molecular
clouds (Larson 1981). The velocity field is normalized so that the
kinetic energy of the turbulence equals the magnitude of the gravi-
tational potential energy of the cloud. The initial root-mean-square
Mach number of the turbulence is M= 6.4.

2.4 Resolution

The local Jeans mass must be resolved throughout the calculation
to model fragmentation correctly (Bate & Burkert 1997; Truelove
et al. 1997; Whitworth 1998; Boss et al. 2000). Bate & Burkert
(1997) found that this requires �2 Nneigh SPH particles per Jeans
mass; Nneigh is insufficient. We have repeated their calculation using
different numbers of particles and find that 1.5Nneigh = 75 particles
is also sufficient to resolve fragmentation (Bate, Bonnell & Bromm
2002b). The minimum Jeans mass in the calculation presented here
occurs at the maximum density during the isothermal phase of the
collapse, ρ = 10−13 g cm−3, and is ≈0.0011 M� (1.1 MJ). Thus,
we use 3.5 × 106 particles to model the 50-M� cloud. In fact, a gas
clump with the above mass and density could not collapse because as
soon as it was compressed it would heat up (equation 1) and would no
longer contain a Jeans mass. Therefore, in practice, any collapsing
gas clump in the simulation contains many more SPH particles than
the ‘minimum’ Jeans mass above. This SPH calculation is one of
the largest ever performed. It required approximately 95 000 CPU
hours on the SGI Origin 3800 of the United Kingdom Astrophysical
Fluids Facility (UKAFF).

Table 1. The properties of the seven close binary systems at the end of the calculation. The numbers identifying the individual stars or brown dwarfs from
which the binary systems are composed are allocated in order of their formation. We list the masses of the two components M1 and M2, the mass ratio q, and
the semi-major axis a. Note that the mass ratios tend to be high, with no values less than q = 0.29 and most greater than q = 1/2. Asterisks indicate when the
semi-major axis is less than the gravitational softening length. If gravitational softening had not been used, these systems may have been hardened further.

Binary M1 M2 q a Notes at the end of the calculation
M� M� au

3,10 0.73 0.41 0.56 1.1∗ In hierarchical triple, 0.083 M� at 28 au; circumtriple disc; member of a bound group
7,8 0.53 0.24 0.44 2.0∗ Ejected from cloud
20,22 0.35 0.11 0.33 2.2∗ In hierarchical triple, 0.23 M� at 28 au; circumtriple disc; member of a bound group
26,40 0.13 0.039 0.29 6.7 Circumbinary disc; member of septuple system with (39,41), ((45,38),43)
39,41 0.070 0.047 0.67 5.7 Circumbinary disc; member of septuple system with (26,40), ((45,38),43)
42,44 0.10 0.095 0.93 2.6∗ In unstable quintuple system; circumquadruple disc
45,38 0.083 0.079 0.96 8.8 In hierarchical triple, 0.022 M� at 90 au; circumtriple disc; member of septuple system

3 R E S U LT S

3.1 Evolution of the cloud

The hydrodynamical evolution of the cloud produces shocks which
decrease the turbulent kinetic energy initially supporting the cloud.
In parts of the cloud, gravity begins to dominate and dense self-
gravitating cores form and collapse. These dense cores are the sites
where the formation of stars and brown dwarfs occurs. Although
the cloud initially contains more than enough turbulent energy to
support itself against gravity, this turbulence decays on the dynam-
ical time-scale of the cloud and star formation begins after just one
global free-fall time at t = 1.04tff (i.e. t = 1.97 × 105 yr). This rapid
decay of the turbulence is consistent with other numerical stud-
ies of turbulence in molecular clouds (e.g. MacLow et al. 1998;
Stone, Ostriker & Gammie 1998; Ostriker et al. 2001). We fol-
lowed the calculation for ≈69 000 yr after the star formation be-
gan until t = 1.40tff (t = 2.66 × 105 yr). At this point we had ex-
hausted our allocation of computer time and the calculation was
stopped.

Fig. 1 illustrates the state of the cloud at the end of the calcu-
lation. The star formation occurs in three main dense cores within
the cloud, resulting in three stellar groups. These groups are com-
posed of single, binary and higher order systems that were produced
via a combination of the fragmentation of collapsing gas filaments
(whose collapse is halted when the gas heats up at high densities;
Inutsuka & Miyama 1992), the fragmentation of massive circum-
stellar discs (e.g. Bonnell 1994; Whitworth et al. 1995; Burkert,
Bate & Bodenheimer 1997), and star-disc capture (Larson 1990;
Clarke & Pringle 1991a,b). At any particular time, the largest of
the stellar groups contains no more than ≈20 objects. Thus, the
groups dissolve quickly. In fact, the time-scales for star formation
within the dense cores and the dissolution of the groups are both ≈2
× 104 yr. Thus, the stellar groups undergo chaotic evolution with
stars and brown dwarfs being ejected from the cloud even as new
objects are forming. If the calculation were followed until well af-
ter star formation had ceased, all of the groups would dissolve on
time-scales of a few tens of thousands of years.

When the calculation is stopped, the cloud has produced 23 stars
and 18 brown dwarfs. An additional nine objects have substellar
masses, but are still accreting. Three of these would probably end
up with substellar masses if the calculation were continued, but the
other six are likely to become stars. The formation mechanism of
the brown dwarfs in this calculation has been discussed by Bate
et al. (2002a). The evolution of the cloud and the properties of the
stars and brown dwarfs are discussed in detail in Bate et al. (2002b).
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Figure 3. As an example of the way in which accretion can harden the orbit
of a binary, we present the evolution of brown dwarfs 39 and 41 versus
time (see also Fig. 2d, steps 5–7). Left panels: column density log N at two
times during the evolution. The binary, consisting of objects 39 and 41, is
indicated by the arrow. Top-right panel: the separation of brown dwarfs 39
and 41 (blue) and the distance between brown dwarf 39 and the closest
object apart from 41 (green). Bottom-right panel: the masses of 39 (red)
and 41 (blue). Dynamical interactions in an unstable multiple system force
39 and 41 to form an eccentric binary system with a semi-major axis of
≈37 au at t ≈ 59000 yr. Over the next 5000 years, accretion reduces the
semi-major axis of this binary by nearly an order of magnitude. Dynamical
interactions have only a minimal effect on the binary’s separation during
this period (as shown by the green line). Note that object 39 has a mass of
0.070 M� at the end of the calculation (Table 1) and would probably enter
the stellar-mass regime if the calculation were continued. The final mass of
object 41 is unclear. Time is given in years after the onset of star formation
(star formation begins at t = 1.04tff = 1.97 × 105 yr).

In this paper, we concentrate on the mechanism by which the close
binary systems form.

3.2 The formation of close binary systems

When the calculation is stopped, amongst the 50 stars and brown
dwarfs, there are seven close binary systems with separations less
than 10 au (Table 1 and Figs 1 and 2). Six of these close binaries
are members of unstable multiple systems, but one has been ejected
from the cloud on its own and will evolve no further (Figs 1 and 2).

As described in the introduction, it seems that binaries with sep-
arations �10 au cannot form by direct fragmentation because frag-
mentation is halted by the formation of pressure-supported frag-
ments with radii of ≈5 au. Our calculation models this opacity limit
for fragmentation and, as expected, none of the fragments in our cal-
culation form closer than ≈10 au from each other. The three smallest
separations between any existing object and a forming fragment are
9, 21 and 22 au and only the last of these ends up in a close binary
system. What mechanism(s) produce the seven close binary systems
in our calculation?

In Fig. 2, we trace the histories of the stars and brown dwarfs that
play a role in producing each of the seven close binary systems. We
find that the close binary systems are produced as a natural conse-

Figure 4. An example of the way in which gravitational torques and accretion
from a circumtriple disc can alter the orbit of a triple system. Left panels:
column density log N at two times during the evolution. Top-right panel:
the separations of stars 19 (blue), 22 (green), and 25 (red) from star 20.
Bottom-right panel: the masses of stars 19 (blue), 20 (cyan), 22 (green), and
25 (red). A triple system consisting of a close binary (stars 19 and 20) and a
wide companion (star 25) undergoes an exchange interaction at t ≈ 63000
yr in which star 19 is ejected and replaced by star 22. Subsequently, the
system evolves only through its interaction with the circumtriple disc which
decreases the semi-major axis of star 25’s orbit around the close binary (stars
20 and 22) from 36 to 28 au (see also Fig. 2b, steps 10 and 11). Note that
the circumtriple disc contains a significant fraction of the system’s mass and
is subject to gravitational instabilities, as demonstrated by the spiral density
waves. Time is given in years after the onset of star formation.

quence of the evolution of wide binaries and multiple systems in a
gas-rich environment. Three processes are involved: the accretion
of gas, the interaction of a binary or triple with its circumbinary or
circumtriple disc, and dynamical interactions between objects.

3.2.1 Accretion

Accretion aids in the production of close binaries in two main ways.
First, accretion on to a binary can decrease its separation (e.g. Fig.
3; Fig. 2d, steps 5–7). This effect of gas accretion on the orbital
separation of a binary has been studied extensively (Artymowicz
1983; Bate 1997; Bate & Bonnell 1997; Bate 2000). Bate & Bonnell
(1997) show that accretion on to a binary from a gaseous envelope
decreases the orbital separation of a binary unless the specific angu-
lar momentum of the accreted gas is significantly greater than that
of the binary. If a binary accretes a large amount of material com-
pared to its initial mass (e.g. a factor �10) this can easily reduce the
separation of the binary by 1–2 orders of magnitude (Bate 2000).

Secondly, accretion can similarly destabilize stable hierarchical
multiple systems by reducing the separation of wide components
(e.g. Fig. 4; Fig. 2b, step 11; Fig. 2c, steps 3 and 5; Fig. 2d, step 2).
This and other effects of accretion on the stability and mass ratios of
triple systems were studied by Smith, Bonnell & Bate (1997). The
destabilization of multiple systems contributes to the production of
close binaries because it forces the system to undergo dynamical
interactions (Section 3.2.3).
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Figure 5. An example of the way in which gravitational torques and accretion
from a circumbinary disc can harden the orbit of a binary (see also Fig. 2b,
step 1). Left panels: column density log N at two times during the evolution.
Right-panels: the evolution of the separation and masses of brown dwarfs
19 (red) and 23 (blue) versus time. Time is given in years after the onset of
star formation.

3.2.2 Circumbinary and circumtriple discs

If a binary is surrounded by a circumbinary disc, gravitational
torques from the binary transfer angular momentum from the or-
bit of the binary into the disc, causing the binary’s components to
spiral together (Artymowicz et al. 1991; Bate & Bonnell 1997).
Thus, a wide binary can be hardened into a close binary (e.g.
Fig. 5; Fig. 2b, steps 1 and 6; Fig. 2d, step 7). Similarly, a disc
around a hierarchical triple can reduce the separation of the wide
companion, destabilizing the system (e.g. Figs 4 and 6; Fig. 2b, step
11; Fig. 2c, steps 3 and 5; Fig. 2d, step 2).

Such disc interactions are very efficient; even relatively low-mass
discs can have a significant effect over time (Pringle 1991). The cir-
cumbinary and circumtriple discs in this calculation frequently con-
tain a significant fraction of the system’s mass as can be observed by
the spiral density waves caused by gravitational instabilities within
them (Figs 1, 3, 4 and 6). This makes it difficult to separate the
effects of accretion and gravitational torques, but, in any case, these
discs play an important role in reducing the separations of binaries
and triples.

3.2.3 Dynamical interactions

Dynamical interactions can lead to the orbital evolution of a binary
in several ways. If the orbital velocity of a binary is greater than the
velocity of an incoming object while it is still at a great distance (i.e.
the binary is ‘hard’), the binary will survive the encounter (Hut &
Bahcall 1983). However, several outcomes are possible. The binary
may simply be hardened by the encounter, with the single object
removing energy and angular momentum. Alternately, if the en-
counter is sufficiently close, an unstable multiple system will be
formed. Its chaotic evolution will usually lead to the ejection of the

Figure 6. An example of how a combination of dynamical interactions, the
interaction of a triple system with a disc, and accretion can produce close
binaries (see also Fig. 2c). Left panels: column density log N at two times
during the evolution. Bottom-right panel: the masses of objects 32 (red), 42
(green), and 44 (blue) versus time. Top-right panel: the separations of stars
32 and 42 (blue), 32 and 44 (green), and 42 and 44 (red). An unstable triple
system consisting of a 16-au binary (stars 32 and 42) and a wide companion
(star 44) undergoes an exchange interaction at t ≈ 58000 yr to produce a
hierarchical triple consisting of a 12-au binary (stars 32 and 44) and star 42
in a 35-au orbit. The wide companion’s orbit decays due to its interaction with
a circumtriple disc, forcing a second exchange interaction that leaves stars
42 and 44 in a 5-au binary and star 32 in a 32-au orbit. Subsequent interaction
with the circumtriple disc hardens the triple and accretion hardens the close
binary. Note that continued accretion eventually results in three stellar-mass
objects (Table 1). Time is given in years after the onset of star formation.

object with the lowest mass. If the ejected object was a component
of the original binary, the net effect is an exchange interaction.

The suggestion that dynamical encounters play an important role
in the formation of close binaries has been made by Tokovinin
(1997, 2000), who observed that many close binaries have wider
companions (see below). In the calculation discussed here, dynam-
ical encounters play the dominant role in producing close binaries
(e.g. Fig. 6 and the exchange interactions, hardening by fly-bys,
and binary–binary interactions described in Fig. 2). However, it is
important to note that N-body dynamical interactions alone cannot
produce the high frequency of close binaries that we obtain. In-
deed, Kroupa & Burkert (2001) find that N-body calculations which
begin with star clusters (100 to 1000 stars) consisting entirely of
binaries with periods 4.5 < log (P/days) < 5.5 produce almost no
binaries with periods log (P/days) < 4. Similarly, the dissolution of
small-N clusters typically results in binaries with separations only
an order of magnitude smaller than the size of the initial cluster
(Sterzik & Durisen 1998).

The key difference in this calculation is the effect of the gas-rich
environment. Along with the effects from accretion and circumbi-
nary/circumtriple discs discussed above, the presence of gas allows
dynamical encounters to be dissipative and to transport angular mo-
mentum. Such dissipative encounters include star-disc encounters
(Larson 1990; Clarke & Pringle 1991a, b; McDonald & Clarke
1995; Hall, Clarke & Pringle 1996), where the dissipation of kinetic
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energy allows the formation of bound systems from objects that
would otherwise be unbound, and other tidal interactions (Larson
2002).

3.3 The resulting properties of close binary systems

As mentioned above, dynamical exchange interactions typically
lead to the ejection of the least massive component. Thus, if a binary
encounters a star whose mass is in between the masses of the binary’s
components, the binary’s secondary will usually be replaced and
the mass ratio of the binary will be equalized. In addition, gas with
high specific angular momentum that accretes from a circumbinary
disc or a gaseous envelope on to a binary, is preferentially captured
by the secondary and, thus, also drives the mass ratio towards unity
(Artymowicz 1983; Bonnell & Bastien 1992; Whitworth et al. 1995;
Bate & Bonnell 1997; Bate 2000). Even if accretion comes from a
relatively slowly rotating cloud, the long-term effect of this accre-
tion is usually to equalize the components of the binary (Bate 2000).
Thus, each of the mechanisms involved in producing close binaries
favours the production of equal-mass systems. This is reflected in the
mass ratios of the seven close binary systems that form in our calcu-
lation (Table 1), all of which have values q � 0.3 and most of which
have q > 1/2. Thus, the observational result that close binaries
(periods �10 yr) tend to have higher mass ratios than wider binaries
(Mazeh et al. 1992; Halbwachs, Mayor & Udry 1998; Tokovinin
2000) is explained naturally if these processes are an integral part
of the formation mechanism for close binaries.

Overall, the calculation produces seven close binaries among 50
stars and brown dwarfs, giving a close-binary fraction of 7/43 = 16
per cent. Given the small numbers, this is in good agreement with
the observation that ≈20 per cent of solar-type stars have a less
massive main-sequence companion within 10 au (Duquennoy &
Mayor 1991). Thus, dynamical encounters and orbital decay can
produce the observed frequency of close binaries.

However, because dynamical exchange interactions preferentially
select the two most massive objects, another consequence of the way
in which close binaries form is that the frequency of close binaries
increases with the mass of the primary. This can be understood by
considering a binary and an incoming object whose mass is greater
than either of the two components of the binary. In this case, the
typical result is that the incoming object and the primary from the
original binary form a new binary. After several such exchange in-
teractions, the mass of the primary in the new binary can be much
greater than the mass of the original primary. In the calculation pre-
sented here, the dependence of the frequency of close binaries on
stellar mass is quite strong. Of ≈20 brown dwarfs, there is only one
binary brown dwarf system (and if the calculation were followed
further, at least one of the components would probably accrete into
the stellar regime), while of the 11 stars with masses >0.2 M�,
five are members of close binary systems. While it is difficult to
extrapolate from our low-mass star-forming cloud to larger star clus-
ters and more massive stars, this trend of an increasing frequency of
close binaries with stellar mass is supported by observational sur-
veys (Garmany et al. 1980; Abt et al. 1990; Morrell & Levato 1991;
Mason et al. 1998).

Finally, we note that at the end of the calculation, only one of
our close binaries has been ejected from the cloud and is on its
own. The others remain members of larger-scale bound groups and
three are members of hierarchical triple systems (Table 1; Fig. 1).
This large number of wider companions is yet another indication
of the importance of multiple systems in producing close binaries.
Even allowing for the eventual dissolution of the bound groups, it

seems likely that some of the hierarchical triple systems will survive.
Although the true frequency of wide companions to close binaries is
not yet well known, many close binaries do have wider components
(e.g. Mayor & Mazeh 1987; Tokovinin 1997, 2000). Indeed, it was
this observation that led Tokovinin (1997) to propose that dynamical
interactions in multiple systems may play an important role in the
formation of close binary systems. Further surveys to determine the
true frequency of wide companions to close binary systems would
be invaluable.

4 C O N C L U S I O N S

We have presented results from a hydrodynamic calculation of the
collapse and fragmentation of a turbulent molecular cloud to form
50 stars and brown dwarfs. The calculation mimics the opacity limit
for fragmentation by using a barotropic equation of state to model
the heating of collapsing gas at high densities. This results in a
minimum mass of ≈10 Jupiter masses for the lowest mass brown
dwarfs (see Bate et al. 2002a,b) and prevents fragmentation on scales
smaller than ≈10 au. Despite this lower limit on the initial minimum
separation between fragments, we find that as the stellar groups and
unstable multiple systems evolve in the gas-rich environment, a high
frequency of close binary systems (separations �10 au) is produced.

Examining the history of these close binary systems, we find that
they are formed through a combination of dynamical interactions
in unstable multiple systems, and orbital decay due to accretion
and/or the interaction of binary and triple systems with circumbinary
and circumtriple discs. These formation mechanisms allow realistic
numbers of close binary systems to be produced without the need for
fragmentation on length-scales <10 au. This avoids the difficulties
associated with the fragmentation of optically thick gas during the
collapse initiated by the dissociation of molecular hydrogen (Boss
1989; Bonnell & Bate 1994; Bate 1998, in preparation).

As a consequence of the dependence of close binary formation on
dynamical exchange interactions and the accretion of material with
high specific angular momentum, we find that close binaries tend
not to have extreme mass ratios. All of our systems have mass ratios
q � 0.3. Furthermore, the frequency of close binaries is dependent
on mass in that massive stars are more likely to have close compan-
ions than lower mass stars. These properties are in good agreement
with the results of observational surveys. At the end of our cal-
culation, many of the close binaries are members of hierarchical
triple systems. Although these systems may not yet have finished
evolving, the implication is that many close binaries ought to have
wider companions. Recent observations support this hypothesis, but
larger surveys to determine the frequency of wide companions to
close binary systems are necessary to demonstrate it conclusively.
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