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ABSTRACT
We report the statistical properties of stars, brown dwarfs and multiple systems obtained from
the largest hydrodynamical simulation of star cluster formation to date that resolves masses
down to the opacity limit for fragmentation (a few Jupiter masses). The simulation is es-
sentially identical to that of Bate, Bonnell & Bromm except that the initial molecular cloud
is larger and more massive. It produces more than 1250 stars and brown dwarfs, providing
unprecedented statistical information that can be compared with observational surveys. The
calculation uses sink particles to model the stars and brown dwarfs. Part of the calculation is
re-run with smaller sink particle accretion radii and gravitational softening to investigate the
effect of these approximations on the results.

We find that hydrodynamical/sink particle simulations can reproduce many of the ob-
served stellar properties very well. Binarity as a function of primary mass, the frequency of
very-low-mass (VLM) binaries, general trends for the separation and mass ratio distributions
of binaries, and the relative orbital orientations of triples systems are all in reasonable agree-
ment with observations. We also examine the radial variations of binarity, velocity dispersion,
and mass function in the resulting stellar cluster and the distributions of disc truncation radii
due to dynamical interactions. For VLM binaries, because their separations are typically close,
we find that their frequency is sensitive to the sink particle accretion radii and gravitational
softening used in the calcuations. Using small accretion radii and gravitational softening re-
sults in a frequency of VLM binaries similar to that expected from observational surveys
(≈ 20 percent). We also find that VLM binaries evolve from wide, unequal-mass systems
towards close equal-mass systems as they form. The two main deficiencies of the calculations
are that they over produce brown dwarfs relative to stars and that there are too few unequal
mass binaries with K and G-dwarf primaries. The former of these is likely due to the absence
of radiative feedback and/or magnetic fields.

Key words: ISM: clouds, stars: binaries: general, stars: formation, stars: low-mass, brown
dwarfs, stars: luminosity function, mass function, stars: kinematics.

1 INTRODUCTION

Understanding the origin of the statistical properties of stellar sys-
tems is the fundamental goal of a complete theory of star formation.
In terms of their impact on galaxy formation and evolution the most
important statistical properties are probably the stellar initial mass
function (IMF) and the star formation rate and efficiency. However,
for understanding the formation and evolution of stellar clusters,
stellar systems themselves, protoplanetary discs and planetary sys-
tems many more statistical properties are important. Furthermore,
there are currently many models that have been proposed for the
origin of the IMF (see the recent review, Bonnell, Larson & Zin-
necker 2007 or the introduction of Bate & Bonnell 2005). Many
of these are able to explain qualitatively the observed form of the
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IMF, but most of these do not predict other statistical properties. A
complete model must be able to explain the origin of all the statis-
tical properties of stellar systems, and how these depend on varia-
tions in environment and initial conditions. Along with the IMF and
star formation rate and efficiency, these other statistical properties
include the structure of stellar clusters and stellar velocity disper-
sions, the properties of multiple stellar systems, jets, protoplanetary
discs, and the rotation rates and magnetic fields of stars. In par-
ticular, when considering binary, triple, and higher-order multiple
stellar systems there are many statistical properties that require un-
derstanding such as their frequencies, their mass ratios, their orbital
separations and eccentricities, relations between orbits and mass ra-
tios in hierarchical systems, and relative stellar rotations.

To investigate the origin of a wide range of statistical proper-
ties of stars directly through hydrodynamical calculations is diffi-
cult because it is necessary to produce a large number of objects
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(to get statistically significant results) and to use high resolution
(to model low-mass objects such as brown dwarfs, multiple sys-
tems, and circumstellar discs). One approach is to perform a large
number of high-resolution calculations of the collapse of isolated
small molecular cloud cores (e.g. Delgado-Donate, Clarke & Bate
2004; Delgado-Donate et al. 2004; Goodwin, Whitworth & Ward-
Thompson 2004a,b,c; Goodwin, Whitworth & Ward-Thompson
2006). Such calculations have been able to qualitatively match
some of the observed statistical properties of stellar systems. For
example, Delgado-Donate et al. (2004) found that multiplicity is
an increasing function of primary mass (though they obtained a
steeper function than is observed). Goodwin et al. (2004c) found
that star formation in small cores might be a good explanation for
the somewhat unusual stellar mass function in Taurus (namely the
relatively high proportion of stars with masses≈ 1 M�). However,
such calculations are not applicable to denser star-forming regions
since they neglect interactions between cores and protostellar sys-
tems. Furthermore, they use an arbitrary population of dense cores
for their initial conditions which may or may not be a good repre-
sentations of real dense cores.

Over the past few years, we have performed large-scale hydro-
dynamical calculations of the collapse and fragmentation of turbu-
lent molecular clouds to investigate the origins of stellar proper-
ties (Bate et al. 2002a,b, 2003; Bate & Bonnell 2005; Bate 2005)
(hence forth, the latter three of these papers will be referred to
as BBB2003, BB2005, and B2005, respectively). In these large-
scale calculations, dense cores are formed self-consistently from
hydrodynamical flows on larger scales and interactions between
dense cores and protostellar systems occur naturally. These cal-
culations have differed from most other large-scale hydrodynam-
ical star formation calculations in that they modelled clouds that
were large enough to produce dozens of stars and yet simultane-
ously they resolved down to and beyond the opacity limit for frag-
mentation. Thus, they resolved the entire mass function, captur-
ing the formation of all stars and brown dwarfs. They also allowed
discs with sizes down to ≈ 10 AU and binaries with separations
of a few AU to be resolved. Earlier similar large-scale hydrody-
namical calculations (Klessen, Burkert & Bate 1998; Klessen &
Burkert 2000, 2001; Klessen 2001; Bonnell et al. 2001; Bonnell &
Bate 2002; Bonnell, Bate & Vine 2003) formed large numbers of
stars, but were unable to resolve brown dwarfs, most binaries and
discs. All these calculations used smoothed particle hydrodynamics
(SPH) with sink particles to model the star-forming clouds. Most
recently, grid-based adaptive mesh refinement (AMR) calculations
have also begun to compete, forming up to a few dozen objects and
resolving discs and binaries (Li et al. 2004; Offner, Klein & Mc-
Kee 2008). However, regardless of whether SPH or AMR has been
used, even the largest high-resolution large-scale calculations pub-
lished to date have only formed a few dozen stars and brown dwarfs
making it difficult to compare the results with observations in any
detail.

In this paper, we report the results from two large-scale hydro-
dynamical calculations of the collapse and fragmentation of turbu-
lent molecular clouds. The calculations follow the evolution of 500
M� clouds (similar to the calculation presented by BBB2003, but
an order of magnitude more massive) to form hundreds of stars and
brown dwarfs. Two versions of the same calculation are performed,
one with sink particles with radii of 5 AU (as in BBB2003) and a
re-run version that has sink particle radii of only 0.5 AU but which
is not followed as far. The large accretion radii calculation forms
1254 stars and brown dwarfs in 1.5 initial cloud free-fall times.
This large number of objects allows us, for the first time, to make

a meaningful comparison of the statistical properties of stars and
binary and multiple systems with observations.

The paper is structured as follows. In Section 2, we briefly
describe the numerical method and the initial conditions for the
simulations. In Section 3, we present our results and compare them
with the results of observational surveys. Our conclusions are given
in Section 4.

2 COMPUTATIONAL METHOD

The calculations presented here were performed using a three-
dimensional SPH code. The SPH code is based on a version orig-
inally developed by Benz (Benz 1990; Benz et al. 1990). The
smoothing lengths of particles are variable in time and space, sub-
ject to the constraint that the number of neighbours for each parti-
cle must remain approximately constant at Nneigh = 50. The SPH
equations are integrated using a second-order leap-frog integrator
with individual time steps for each particle. Gravitational forces
between particles and a particle’s nearest neighbours are calculated
using a binary tree. We use the standard form of artificial viscos-
ity (Monaghan & Gingold 1983; Monaghan 1992) with strength
parameters αv = 1 and βv = 2. Further details can be found in
Bate et al. (1995). The code has been parallelised by M. Bate using
OpenMP.

2.1 Equation of state

To model the thermal behaviour of the gas without performing ra-
diative transfer, we use a barotropic equation of state for the thermal
pressure of the gas p = Kρη , where K is a measure of the entropy
of the gas. The value of the effective polytropic exponent η, varies
with density as

η =

{
1, ρ 6 ρcrit,

7/5, ρ > ρcrit.
(1)

We take the mean molecular weight of the gas to be µ = 2.46. The
value of K is defined such that when the gas is isothermal K = c2

s ,
with the sound speed cs = 1.84 × 104 cm s−1 at 10 K, and the
pressure is continuous when the value of η changes.

The value of the critical density above which the gas becomes
non-isothermal is set to ρcrit = 10−13 g cm−3. This equation of
state has been chosen to match closely the relationship between
temperature and density during the spherically-symmetric collapse
of molecular cloud cores with solar metallicity as calculated with
frequency-dependent radiative transfer (e.g., Masunaga & Inutsuka
2000). The equation of state is discussed further by BBB2003.

The heating of the molecular gas that begins at the critical den-
sity inhibits fragmentation at higher densities. This effect is known
as the opacity limit for fragmentation (Low & Lynden-Bell 1976;
Rees 1976; Silk 1977a,b; Boyd & Whitworth 2005). It results in
the formation of distinct pressure-supported fragments within col-
lapsing gas because the temperature increases quickly enough with
density that the Jeans mass increases, and the high density region
that was collapsing becomes Jeans stable. These regions stop col-
lapsing and can only contract as they accrete mass. The value of
the initial mass of a fragment presumably also gives the minimum
mass for a brown dwarf, since any subsequent accretion will only
increase a fragment’s mass. This minimum mass depends on the
value of the critical density and is approximately equal to the Jeans
mass at that density and temperature. The lowest mass object pro-
duced by the calculations was ≈ 4 Jupiter masses (MJ).
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Stellar and multiple star properties from simulations 3

Calculation Initial Gas Initial Jeans Mach Accretion Gravity End No. Stars No. Brown Mass of Stars & Mean
Mass Radius Mass Number Radii Softening Time Formed Dwarfs Formed Brown Dwarfs Mass
M� pc M� AU AU tff M� M�

BBB2003 50 0.188 1 6.4 5 4 1.40 >23 627 5.9 0.12
Main 500 0.404 1 13.7 5 4 1.50 >459 6795 191 0.15

1.04 >102 6119 32.6 0.15
Re-run 500 0.404 1 13.7 0.5 0 1.04 >94 6164 32.0 0.12

Table 1. The parameters and overall statistical results for the BBB2003 calculation and the two calculations presented here. The initial conditions were similar
except that the two calculations presented here are of more massive, larger clouds than that presented by BBB2003. In particular, the initial densities and mean
thermal Jeans masses were identical. In each case, the magnitudes of the initial turbulent velocity fields were scaled so that the kinetic energy equalled the
magnitude of the gravitational potential energy. The calculations were run for different numbers of initial cloud free-fall times. Brown dwarfs are defined as
having final masses less than 0.075 M�. The numbers of stars (brown dwarfs) are lower (upper) limits because some of the brown dwarfs were still accreting
when the calculations were stopped. The only difference between the main and re-run calculations presented here are in the accretion radii and gravitational
softening of the sink particles and the fact that evolution of the re-run calculation could not be followed as long due to computational limitations.

2.2 Sink particles

As the pressure-supported fragments accrete, their central den-
sity increases, and it becomes computationally impractical to fol-
low their internal evolution because of the short dynamical time-
scales involved. Therefore, when the central density of a pressure-
supported fragment exceeds ρs = 1000ρcrit, we insert a sink parti-
cle into the calculation (Bate et al. 1995). This value of ρs is a factor
of ten higher than in earlier calculations (e.g., BBB2003) which al-
lows more time for an object to merge or be disrupted before being
replaced by a sink particle.

In the main calculation discussed in this paper, a sink parti-
cle is formed by replacing the SPH gas particles contained within
racc = 5 AU of the densest gas particle in a pressure-supported
fragment by a point mass with the same mass and momentum. Any
gas that later falls within this radius is accreted by the point mass if
it is bound and its specific angular momentum is less than that re-
quired to form a circular orbit at radius racc from the sink particle.
Thus, gaseous discs around sink particles can only be resolved if
they have radii ∼> 10 AU. Sink particles interact with the gas only
via gravity and accretion. The angular momentum accreted by a
sink particle is recorded but plays no further role in the calculation.

Since all sink particles are created from pressure-supported
fragments, their initial masses are several MJ, as given by the opac-
ity limit for fragmentation. Subsequently, they may accrete large
amounts of material to become higher-mass brown dwarfs (∼< 75
MJ) or stars (∼> 75 MJ), but all the stars and brown dwarfs begin
as these low-mass pressure-supported fragments.

In the main calculation, the gravitational acceleration between
two sink particles is Newtonian for r > 4 AU, but is softened
within this radius using spline softening (Benz 1990). The maxi-
mum acceleration occurs at a distance of ≈ 1 AU; therefore, this is
the minimum separation that a binary can have even if, in reality,
the binary’s orbit would have been hardened.

Part of the main calculation was re-run from just before the
first star formed with sink particle accretion radii of racc = 0.5 AU
and with no gravitational softening between sink particles. This
was done to investigate the dependence of the results on these ap-
proximations. This partial re-run (referred to henceforth as the re-
run calculation) could not be followed as long as the main calcula-
tion due to the smaller timesteps required.

Sink particles were permitted to merge in either calculation
if they passed within 0.02 AU of each other (i.e., ≈ 4 R�). This
radius was chosen because recently formed protostars are thought
to have relatively large radii (e.g., Larson 1969). Again, this dif-

fers from previous similar calculations. In the main calculation, 23
mergers occurred. In the re-run calculation, 20 mergers occurred
(in a shorter period of time).

The benefits and potential problems associated with introduc-
ing sink particles are discussed in more detail in BBB2003 and will
be further examined in this paper.

2.2.1 Identification of multiple stellar systems

With the calculations presented in this paper producing many hun-
dreds of stars and brown dwarfs it is important to automate the anal-
ysis as much as possible. Much of this is straightforward. However,
in order to analyse binaries and multiple stellar systems we first
need to identify them. This is done as follows.

At the end of each calculation we essentially construct a struc-
ture ‘tree’. We begin with every star or brown dwarf (sink particle)
being a ‘node’. We then loop over all pairs of nodes calculating
the closest pair of ‘nodes’ that are gravitationally bound to each
other (i.e. the sum of their relative gravitational and kinetic ener-
gies is negative). This pair of ‘nodes’ then becomes a new node
and the original nodes are removed. For example, if the two nodes
are single stars these nodes are replaced by a new node containing
a binary that is located at the binary’s centre of mass and has the
binary’s mass and centre of mass velocity. If one node is a binary
and the other is a single star, the new node contains a triple system.
This process is then repeated until no new nodes are formed. The
result is a structure tree that contains single objects (e.g. some that
might have been ejected), binaries or multiples that are not bound
to any other node), and some nodes which may contain clusters of
dozens or hundreds of stars and brown dwarfs, many of which may
also be binaries or multiples within these clusters.

The observant reader may note later in the paper that there are
a few binaries that have separations of several thousand AU. These
have been checked manually. They are wide binaries in the periph-
ery of the cluster. They are composed of ejected objects that happen
to be gravitationally bound to one another due to their similar ejec-
tion velocities.

2.3 Initial conditions

The initial conditions are essentially identical to the calculation of
Bate et al. (2002a,b) and BBB2003, except that the cloud has ten
times the mass and a larger radius so as to give the same initial
density, and a larger Mach number so as to balance the turbulent
and gravitational energies initially. A 500-M� molecular cloud was
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4 M.R. Bate

Figure 1. The global evolution of the main calculation. Shocks lead to the dissipation of the turbulent energy that initially supports the cloud, allowing parts
of the cloud to collapse. Star formation begins at t = 0.715tff in a collapsing dense core. By t = 1.20tff the cloud has produced five main sub-clusters, and
by the end of the calculation four out of five of these sub-clusters have merged into a single large cluster. Each panel is 0.8 pc (165,000 AU) across. Time is
given in units of the initial free-fall time, tff = 1.90×105 yr. The panels show the logarithm of column density, N , through the cloud, with the scale covering
−1.4 < log N < 1.0 with N measured in g cm−2.
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Figure 2. The global evolution of the re-run calculation with smaller sink particle accretion radii and no gravitational softening between sink particles. The
global evolution is very similar to the main calculation, but due to the chaotic nature of the dynamics on small-scales the detailed structure of the multiple
systems and the ejections differ. The calculation is only followed to just over one free-fall time because it is much more computationally expensive. Each panel
is 0.8 pc (165,000 AU) across. Time is given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the logarithm of column density, N ,
through the cloud, with the scale covering −1.4 < log N < 1.0 with N measured in g cm−2.

set up as a uniform-density sphere. The cloud’s radius was set to
0.404 pc (83300 AU). At the initial temperature of 10 K, the mean
thermal Jeans mass is 1 M� (i.e., the cloud contains 500 thermal
Jeans masses).

Although the cloud was uniform in density, we imposed an
initial supersonic ‘turbulent’ velocity field in the same manner as
Ostriker, Stone & Gammie (2001) and BBB2003. We generated a
divergence-free random Gaussian velocity field with a power spec-
trum P (k) ∝ k−4, where k is the wavenumber. In three dimen-
sions, this results in a velocity dispersion that varies with distance,
λ, as σ(λ) ∝ λ1/2 in agreement with the observed Larson scal-
ing relations for molecular clouds (Larson 1981). The velocity field
was generated on a 1283 uniform grid and the velocities of the par-
ticles were interpolated from the grid. As in BBB2003, the veloc-
ity field is normalised so that the kinetic energy of the turbulence
equals the magnitude of the gravitational potential energy of the
cloud. Thus, the initial root-mean-square (rms) Mach number of
the turbulence wasM = 13.7. This is higher than that in BBB2003
(which wasM = 6.4).

The initial free-fall times of the cloud was tff = 6.0× 1012 s
or 1.90× 105 years (the same as in BBB2003).

2.4 Resolution

The local Jeans mass must be resolved throughout the calculations
to model fragmentation correctly (Bate & Burkert 1997; Truelove
et al. 1997; Whitworth 1998; Boss et al. 2000; Hubber, Goodwin
& Whitworth 2006). This requires ∼> 1.5Nneigh SPH particles per
Jeans mass; Nneigh is insufficient (BBB2003). The minimum Jeans
mass occurs at the maximum density during the isothermal phase of
the collapse, ρcrit = 10−13 g cm−3, and is≈ 0.0011 M� (1.1 MJ).
Thus, we used 3.5× 107 particles to model the 500-M� clouds.

The main calculation required approximately 100,000 CPU
hours on a 1.65GHz IBM p570 compute node of the United King-
dom Astrophysical Fluids Facility (UKAFF) while the re-run cal-
culation took approximately half as long.

3 RESULTS

The main calculation is the largest simulation of star cluster forma-
tion to date in which collapsing gas is resolved down to the opacity
limit for fragmentation. The simulation is similar to that presented
by BBB2003, but is of a more massive cloud. The main purpose
of performing the simulation was simply to provide much more ac-
curate statistical information. BBB2003 only formed 50 stars and
brown dwarfs, whereas the main calculation here forms 1254 stars
and brown dwarfs in 1.50tff (285,350 years) and even the re-run
calculation that uses smaller accretion radii and no gravitational
softening produces 258 objects in 1.038tff (197,460 years). See Ta-
ble 1 for a summary of the statistics, including the numbers of stars
and brown dwarfs produced by the end of the two calculations, the
total mass that has been converted to stars and brown dwarfs, and
the mean stellar mass.

In BBB2003, although binaries and higher-order multiple sys-
tems were produced by the simulation, with such small numbers of
objects little could be said about their statistical properties. Even
adding together the results of the three simulations presented by
BBB2003, BB2005 and B2005 (which had different initial condi-
tions or thermal physics) only provides 22 binary systems, 15 of
which are components of triple and/or quadruple systems. By con-
trast the new calculations presented here provide a wealth of binary
and high-order multiple systems. The main calculation produced 90
binary, 23 triple, and 25 quadruple systems, including 38 very-low-
mass (VLM) multiples in which all components are VLM (masses
less than 0.1 M�). Note that throughout the rest of this paper we
will usually refer to VLM objects rather than brown dwarfs in order
to allow better comparison to be made with observational surveys
that often combine studies of very-low-mass stars and high-mass
brown dwarfs in order to increase the sample sizes. At times we will
also make a distinction between VLM objects and low-mass brown
dwarfs. The latter are the subset of VLM objects whose masses
are less than 0.03 M� (30 Jupiter masses). The re-run calculation
produced 17 binary, 6 triple, and 17 quadruple systems including
13 VLM multiples. Thus, we have the ability not just to examine
the frequencies of binary stars and VLM objects, but binarity as a
function of primary mass, and the separation and mass ratio distri-
butions.

The star formation process itself is similar to that seen in
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6 M.R. Bate

Figure 3. Histograms giving the initial mass function of the 1254 stars and
brown dwarfs that had been produced by the end of the main calculation.
The single hashed region gives all objects while the double hashed region
gives those objects that have stopped accreting. Parameterisations of the
observed IMF by Salpeter (1955), Kroupa (2001) and Chabrier (2003) are
given by the magenta line, red broken power law, and black curve, respec-
tively. The numerical IMF broadly follows the form of the observed IMF,
with a Salpeter-like slope above ∼ 0.5 M� and a turnover at low masses.
However, it clearly over produces brown dwarfs by a factor of ≈ 4.

BBB2003, BB2005, B2005. Figure 1 shows snapshots of column
density from the main calculation illustrating the global evolu-
tion. The initial turbulent velocity field generates structures with
those that are strongly self-gravitating collapsing to form stellar
groups and clusters. The main difference from the earlier calcula-
tions is that with such a large cloud at least 5 sub-clusters contain-
ing dozens to hundreds of objects form (t ≈ 1.10 − 1.20tff ), and
then merge together to form a single dense stellar cluster by the end
of the calculation. Such hierarchical build-up of a stellar cluster was
previously highlighted in the lower-resolution simulation of a 1000
M� cloud performed by Bonnell et al. (2003). The evolution of
the cloud and the formation and merger of the sub-clusters is best
viewed in a animation. Animations of the main calculation can be
downloaded from http://www.astro.ex.ac.uk/people/mbate/Cluster/
in both the colour scheme of Figure 1 and as a 3-D red-cyan movie.
Unfortunately, the resolved circumstellar discs and binary systems
are not visible on the scale of Figure 1, however, with well over
100 multiple systems it is impossible to display these in a paper.
In Figure 2 we display the global evolution of the re-run calcula-
tion. There are no substantial differences on large-scales between
the two calculations, with the exception of the different pattern of
ejected objects visible at t = 1.00tff (c.f. the two panels in Fig-
ures 1 and 2). Since the dynamics of individual stellar systems is
chaotic, even changing the sink particle parameters on very small
scales affects the outcomes of dynamical interactions. In the fol-
lowing subsections of the paper, we examine the statistical proper-
ties of the stellar systems.

3.1 The initial mass function

The initial mass function produced by the end of the main calcu-
lation is shown in Figure 3 and is compared with the parameter-
isations of the observed IMF given by Chabrier (2003), Kroupa
(2001), and Salpeter (1955). The IMFs obtained from BBB2003
and B2005 were, within the statistical uncertainties, consistent
with the observed IMF. However, the IMF from the main calcu-
lation reported on here is much more accurately determined and is

clearly not consistent with the observed IMF. The computed IMF
has a similar overall form to the observed IMF, with a reasonable
Salpeter-type slope at the high-mass end, a flattening below a solar-
mass, and an eventual turn over. However, it significantly over pro-
duces brown dwarfs. The calculation produces 459 stars and 795
brown dwarfs (masses < 0.075 M�). Even taking into account that
46 of the brown dwarfs are still accreting when the calculation is
stopped and may eventually reach stellar masses, the ratio of brown
dwarfs to stars is at least 3:2 whereas recent observations suggest
that the IMF produces more stars than brown dwarfs (Greissl et al.
2007; Andersen et al. 2008). Andersen et al. (2008) find that the ra-
tio of stars with masses 0.08−1.0 M� to brown dwarfs with masses
0.03− 0.08 M� is N(0.08− 1.0)/N(0.03− 0.08) ≈ 5± 2. For
the main calculation, this ratio is 408/326 = 1.25. Although the
IMF below 0.03 M� is not yet well constrained observationally the
number of objects seems to be decreasing for lower masses. Thus,
it is unlikely that the true ratio of brown dwarfs to stars exceeds
1:3. The main calculation, therefore, over produces brown dwarfs
relative to stars by a factor of≈ 4 compared with the observed IMF.

3.1.1 The dependence of the IMF on numerical approximations
and missing physics

There are several potential causes of brown dwarf over production
that may be divided into two categories: numerical effects or ne-
glected physical processes. Arguably, the main numerical approx-
imation made in the calculations is that of sink particles. High-
density gas is replaced by a sink particle whenever the maximum
density exceeds 10−10 g cm−3 and the gas within a radius of 5
AU is accreted onto the sink particle producing a gravitating point
mass containing a few Jupiter masses of material. These sink parti-
cles then interact with each other ballistically, which, for example,
might plausibly artificially enhance ejections and the production of
low-mass objects.

In order to investigate the effect of the sink particle approxi-
mation on the results, we re-ran part of the main calculation with
smaller sink particles (accretion radii of 0.5 AU) and without grav-
itational softening between sink particles (they were allowed to
merge if them came within 4 R� of each other). This calculation
was only followed to 1.038 tff due to its much more time consum-
ing nature. The small accretion radius calculation produced 258
stars and brown dwarfs in the same time period that the main cal-
culation produced 221 objects. Because the calculations are chaotic
identical results should not be expected. The main question to an-
swer is whether or not the results are statistically different.

In Figures 4 and 5 we compare the IMFs produced by the main
calculation and the smaller sink particle calculation at the same
time. The smaller sink particle calculation produces twice as many
objects with masses less than 10 Jupiter masses than the main cal-
culation, but overall the two IMFs are very similar. A K-S test run
on the two distributions shows that they have a 13% probability
of being drawn from the same underlying IMF (i.e. they are sta-
tistically indistinguishable). Removing objects with less than 10
Jupiter-masses from the K-S test results in a 38% probability of
the two distributions being drawn from the same underlying IMF.
We conclude that variations in the sink particle accretion radii and
gravitational softening may have an effect on the production of ex-
tremely low-mass objects. However, changes to the sink particle
parameters do not significantly alter the overall results and, thus,
the use of sink particles is probably not responsible for the signifi-
cant over production of brown dwarfs.

It seems most likely that the over production of brown dwarfs
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Figure 4. Histograms giving the initial mass function of the 221 stars and brown dwarfs at t = 1.038tff in the main calculation (left), and the 258 objects
formed at the same time in the re-run calculation with smaller sink particle accretion radii and no gravitational softening between sink particles (right). The
re-run calculation appears to produce a few more very low-mass brown dwarfs (masses less than 10 Jupiter-masses), but even this difference is not statistically
significant (see Figure 5) so we conclude that changing the sink particle parameters does not adversely affect the resulting IMF. Comparing the left panel with
the IMF in Figure 3 at the end of the main calculation, we find that much of the over-production of brown dwarfs occurs late in the calculation (see also Figure
6).

Figure 5. The cumulative IMFs from the main calculation (solid line) and
the re-run calculation with small accretion radii (dot-dashed line) both at
1.038 tff (see Figure 4 for differential graphs of the IMFs). The calcula-
tion with the smaller accretion radii seems to produce more very low-mass
brown dwarfs with masses less than 10 Jupiter masses. However, even with
this apparent difference, a Kolmogorov-Smirnov (K-S) test on the two dis-
tributions gives a 13% probability that the two IMFs were drawn from the
same underlying distribution (i.e. they are statistically indistinguishable).
Thus, the results do not seem to be adversely affected by the sink particle
approximation.

is related to physical processes that are not included in the cal-
culations. Whitehouse & Bate (2006) showed that replacing the
barotropic equation of state by radiative transfer can lead to tem-
peratures up to an order of magnitude higher near young low-mass
protostars and, thus, potentially strongly inhibits fragmentation.
Krumholz (2006) made a similar argument analytically. Further-
more, in purely hydrodynamical/sink particles star cluster forma-
tion calculations, many of the brown dwarfs formed originate via
disk fragmentation (e.g. Bate et al. 2002a found that 3/4 of the
brown dwarfs originated from disc fragmentation). Rafikov (2005),

Figure 6. Time of formation and mass of each star and brown dwarf at the
end of the main calculation. It is clear that the objects that are the most mas-
sive at the end of the calculation are actually some of the first to collapse and
form sink particles. Furthermore, the longer the calculation proceeds, the
higher the ratio brown dwarfs to stars becomes. Objects that are still accret-
ing significantly at the end of the calculation are represented with vertical
arrows. The horizontal dashed line marks the star/brown dwarf boundary.
Time is measured from the beginning of the calculation in terms of the free-
fall time of the initial cloud (top) or years (bottom).

Matzner & Levin (2005), Kratter & Matzner (2006), and Whit-
worth & Stamatellos (2006) have all pointed out that accurate treat-
ments of radiative transfer are likely to significantly decrease disc
fragmentation. Along with the likely effect of radiative feedback
on fragmentation, we note that as the main calculation progresses
the ratio of low-mass to high-mass objects increases. This can be
seen in Figure 6 which plots the final mass of an object versus its
time of formation, as well as by comparing Figure 3 with the left
panel of Figure 4 which show the IMF from the main calculations

c© 0000 RAS, MNRAS 000, 000–000



8 M.R. Bate

Figure 7. The time-averaged accretion rates of the objects formed in the
main calculation versus their final masses. The accretion rates are calculated
as the final mass of an object divided by the time between its formation and
the termination of its accretion or the end of the calculation. Objects that are
still accreting significantly at the end of the calculation are represented with
horizontal arrows. There is no dependence of mean accretion rate on final
mass for objects with less than ∼ 0.5 M� (and a large dispersion). How-
ever, there is a low-accretion rate region of exclusion for the most massive
objects since only objects with mean accretion rates greater than their mass
divided by their age can reach these high masses during the calculation. The
horizontal solid line gives the mean of the accretion rates: 1.02 × 10−5

M� yr−1. The accretion rates are given in M�/tff on the left-hand axes
and M� yr−1 on the right-hand axes. The vertical dashed line marks the
star/brown dwarf boundary.

at t = 1.50tff and t = 1.038tff , respectively. Radiative feedback
is likely to heat the entire central cluster region later in the calcu-
lation, potentially curtailing off the formation of many of the late
low-mass objects.

Another possibility is the effect of magnetic fields. Recently,
Price & Bate (2007) showed that stronger magnetic fields generally
inhibit disc formation and binary formation (see also Hennebelle &
Fromang 2008; Hennebelle & Teyssier 2008). Price & Bate (2008)
ran star cluster formation simulations similar to BBB2003, but with
magnetic fields. They found that the extra pressure support pro-
vided by magnetic fields generally decreased the rate of star forma-
tion and the importance of dynamical interactions between objects.
Stronger magnetic fields resulted in a decrease in the ratio of brown
dwarfs to stars (though the total numbers of objects formed in the
calculations were small, ranging from 15 to 69).

In summary, we have shown for the first time that purely hy-
drodynamical simulations of star cluster formation over produce
brown dwarfs. This result is statistically robust. This disagreement
with observations is most likely due to the neglect of the physical
processes of radiative feedback and/or magnetic fields.

3.1.2 The origin of the initial mass function

BB2005 analysed the earlier calculation presented by BBB2003
and another calculation beginning with a denser cloud to deter-
mine the origin of the IMF in those calculations (see also B2005).
They found that the IMF resulted from competition between ac-
cretion and ejection. There was no significant dependence of the
mean accretion rate of an object on its final mass. Rather, there was

Figure 8. The time between the formation of each object and the termina-
tion of its accretion or the end of the main calculation versus its final mass.
Objects that are still accreting significantly at the end of the calculation are
represented with arrows. As in BBB2003, BB2005, and B2005, there is a
clear linear correlation between the time an object spends accreting and its
final mass. The solid line gives the curve that the objects would lie on if
each object accreted at the mean of the time-averaged accretion rates. The
accretion times are given in units of the tff on the left-hand axes and years
on the right-hand axes. The vertical dashed line marks the star/brown dwarf
boundary.

a roughly linear correlation between an object’s final mass and the
time between its formation and the termination of its accretion. Fur-
thermore, the accretion on to an object was usually terminated by a
dynamical interaction between the object and another system, eject-
ing the object. Thus, objects formed with very low masses (a few
Jupiter masses) and accreted to higher masses until their accretion
was terminated, usually, by a dynamical encounter. This combina-
tion of competitive accretion and stochastic ejections produced the
mass function.

In Figures 7, 8, and 9, we plot similar figures to those found
in BB2005 and B2005. These figures display the same trends as
found by BB2005, but with a much greater statistical significance.
Figure 7 gives the time-averaged accretion rates of all the objects
formed in the main calculation versus the object’s final mass. The
time-averaged accretion rate is the object’s final mass divided by
the time between its formation (i.e. the insertion of a sink particle)
and the end of its accretion (defined as the last time its accretion
rate drops below 10−7 M�/yr) or the end of the calculation. As in
BB2005, there is no dependence of the time-averaged accretion rate
on an object’s final mass, except that objects need to accrete at a rate
at least as quickly as their final mass divided by their age (i.e., the
lower right potion of Figure 7 cannot have any objects lying in it).
This means that the most massive stars have higher time-averaged
accretion rates than the bulk of the stars and VLM objects. On the
other hand, if the calculation were continued longer, objects that
are accreting with lower time-averaged accretion rates could also
reach high masses.

The mean of the accretion rates is 1.02× 10−5 M�/yr, which
is within a factor of two of the mean accretion rates of the three cal-
culations analysed by BB2005 and B2005. Thus, the mean accre-
tion rate does not depend significantly on cloud density (BB2005),
the equation of state of high-density gas (B2005), or on the total
mass of the gas cloud (this work). The dispersion in the accre-
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Figure 9. For each single object that has stopped accreting by the end of the
main calculation, we plot the time of the ejection of the object from a mul-
tiple system versus the time at which its accretion is terminated. As in the
smaller calculations of BBB2003, BB2005, and B2005, these times are cor-
related, showing that the termination of accretion on to an object is usually
associated with dynamical ejection of the object. Open circles give those
objects where multiple ‘ejections’ are detected by the ejection detection
algorithm and, hence, the ejection time is ambiguous (see the main text).
Binaries have been excluded in the plot because it is difficult to determine
when a binary has been ejected.

tion rates is about 0.4 dex, also similar to the previous simulations.
Rather, the primary determinant of the final mass of a star or brown
dwarf is the period over which it accretes. Figure 8 very clearly
shows the linear relation (with some dispersion) between the pe-
riod of time over which an object accretes and it’s final mass.

Finally, in Figure 9, for each object that has stopped accreting
by the end of the main calculation (excluding the components of
binaries), we plot the time at which the object undergoes an ejec-
tion versus the time that its accretion is terminated. There is a very
strong correlation between the two showing that accretion is usu-
ally terminated by a dynamical encounter with other objects, and
confirming the results of BB2005 and B2005. We define the time
of ejection of an object as the last time the magnitude of its accel-
eration drops below 2000 km s−1 Myr−1 (or the end of the cal-
culation). The acceleration criterion is based on the fact that once
an object is ejected from a stellar multiple system, sub-cluster, or
cluster through a dynamical encounter, its acceleration will drop to
a low value. The specific value of the acceleration was chosen by
comparing animations and graphs of acceleration versus time for
individual objects. We exclude binaries because they have large ac-
celerations throughout the calculation which frequently results in
false detections of ejections. Also, in Figure 9, we use two differ-
ent symbols (filled circles and open circles). For the former we are
confident of the ejection time. However, for those objects denoted
by the open circles, we find that at least two ‘ejections’ more than
2000 years apart have occurred. These are usually objects that have
had a close dynamical encounter with a multiple system that has
put them into long-period orbits rather than ejecting them. In these
cases, we chose the ‘ejection’ time closest to the accretion termina-
tion time but we use an open symbol to denote our uncertainty in
whether or not we have identified the best time for the dynamical
encounter.

In terms of raw results, we find that, excluding binaries, for

Figure 10. The magnitudes of the velocities of each star and brown dwarf
relative to the centre-of-mass velocity of the stellar system at the end of the
main calculation. For binaries, the centre-of-mass velocity of the binary is
given, and the two stars are connected by dotted lines and plotted as squares
rather than circles. Objects still accreting at the end of the calculation are
denoted by horizontal arrows. The root mean square velocity dispersion for
the association (counting each binary once) is 5.6 km s−1 (3-D) or 3.2
km s−1 (1-D). There is a weak dependence of the velocity dispersion on
mass with VLM objects having a slighly lower velocity dispersion than stars
(see the main text). Binaries are found to have a lower velocity dispersion
than single objects of only 3.8 km s−1 (3-D). The vertical dashed line marks
the star/brown dwarf boundary.

635 objects out of 899 (71%) the accretion termination time and
the ejection time are within 2000 years of each other. If we also ex-
clude those objects for which we are uncertain in our identifications
of the ejection times as described above, we find 483 objects out of
592 (82%) are consistent with ejection terminating their accretion.
These are probably lower limits in the sense that it is difficult to
determine in an automated way the time at which an ejection oc-
curs and an erroneous value is much more likely to differ from the
accretion termination time by more than 2000 years than coincide
with it. In any case, it is clear that for the majority of objects their
accretion is terminated by dynamical encounters with other stellar
systems.

3.2 Stellar cluster properties

At the end of the main calculation, the bulk of the stars and brown
dwarfs are contained within a single compact stellar cluster sur-
rounded by a low density halo of objects (lower right panel of Fig-
ure 1). The stellar cluster has a half-mass radius of only 10,900 AU
(0.053 pc), ignoring the gas. The radii containing 80% and 90% of
the mass are 29,800 AU (0.14 pc) and 54,200 AU (0.26 pc), respec-
tively.

In Figure 10, we plot the magnitude of the velocity of every
star or brown dwarf relative to the centre of mass of the stellar sys-
tem at the end of the main calculation. For binaries, we plot the
two components with the centre of mass velocity of the binary us-
ing filled squares connected by a dotted line. The overall root mean
square (rms) velocity dispersion (counting each binary only once)
is 5.6 km s−1 (3-D) or 3.2 km s−1 (1-D). BBB2003, BB2005, and
B2005, found no significant dependence of the velocity dispersion
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Quantity / Distance range < 1000 AU 1000− 3000 AU 3000− 104 AU 1− 3× 104 AU 3− 10× 104 AU > 1× 105 AU

Median mass [M�] 0.18 0.024 0.035 0.056 0.054 0.045
Upper quartile mass [M�] 0.30 0.091 0.098 0.15 0.18 0.095
Maximum mass [M�] 5.3 2.9 3.7 2.5 2.1 2.0
Velocity dispersion [km/s] 6.1 4.0 4.2 4.3 8.2 13.8
Number objects 8 56 569 408 172 41
Number binaries 2 8 68 55 13 0
Binary fraction 0.33 0.167 0.136 0.156 0.082 0.0

Table 2. Radial properties of the stellar cluster at the end of the main calculation. The cluster is very compact, with a half-mass radius of 10,900 AU. The radii
containing 80% and 90% of the mass are 29,800 and 54,200 AU, respectively. There is no evidence for radial mass segregation in terms of the median mass,
the upper quartile mass, and the maximum mass, except in the inner 1000 AU. In terms of the binary fraction and the stellar velocity dispersion, again there
very centre of the cluster has a higher velocity dispersion and a higher binary frequency than the bulk of the cluster. However, unlike the mass function, the
velocity dispersion and binary fraction also differ in the outer regions of the cluster (the outer 20% of the mass, beyond 3 half-mass radii). The outer regions
have a higher velocity dispersion and a lower binary fraction than the bulk of the cluster.

Figure 11. The cumulative fractions of stars as a function of distance from
the most massive star at the end of the main calculation. The solid line
gives the result for all stars, while the dotted, short-dashed, long-dashed,
and dot-dashed give the cumulative distributions for the stellar mass ranges
M < 0.1, 0.1 6 M < 0.3, 0.3 6 M < 1.0, and M > 1.0 M�,
respectively. There is no significant mass segregation observed.

on mass. Here, with a much larger sample of objects we find that
stars tend to have a slightly higher dispersion than VLM objects.
The rms velocity dispersion of VLM systems is 5.4 km s−1 (3-D)
while for the stars (masses > 0.1 M�) the rms velocity dispersion
is 6.9 km s−1 (3-D). Binaries have a velocity dispersion of only 3.8
km s−1 (3-D), significantly lower than single objects.

Since this is the first hydrodynamical calculation to form
a massive stellar cluster while simultaneously resolving brown
dwarfs and binaries it is of interest to examine how the stellar prop-
erties vary with radius. We define the cluster centre to be the lo-
cation of the most massive star (5.3 M�). In Table 2, we present
statistics on how the stellar masses, velocity dispersion, and binary
fraction vary with radius from the cluster centre. Note that for this
table, we have defined the binary fraction as the number of binaries
divided by the number of systems (single objects and binaries). We
do not make any attempt to identify triple or higher order systems.
Each binary is counted once and its centre-of-mass velocity is used
when calculating the stellar velocity dispersions.

We find that within the radius containing 80% of the mass

Figure 12. For each star and brown dwarf, we plot the magnitude of its
velocity relative to the centre-of-mass velocity of the stellar system versus
its distance from the most massive star in the cluster at the end of the main
calculation. For binaries, the centre-of-mass velocity of the binary is given
and the binary is plotted as a square rather than a circle. The velocity disper-
sion clearly on depends radius, with the outer regions having a significantly
larger velocity dispersion. These outer objects have been ejected (see also
Table 2).

(excluding the gas), there is little evidence of a radial variation in
the stellar mass function (see Figure 11), the velocity dispersion,
or the binary fraction. The exception may be the very centre of the
cluster (within 1000 AU of the most massive star) where the median
stellar mass, the upper quartile mass, the velocity dispersion, and
the binary fraction are all higher than in the bulk of the cluster.
However, there are only 8 objects in this region so the statistical
uncertainties are great.

In the periphery of the cluster containing 20% of the stellar
mass (perhaps better described as the halo) we do find statistically
significant differences. The mass function is still indistinguishable
from the mass function found in the bulk of the cluster (the median
mass, the upper quartile mass, and the maximum mass are all sim-
ilar to those values found in the bulk of the cluster). However, the
velocity dispersion increases monotonically as the distance from
the cluster centre increases (see Table 2 and Figure 12). This is be-
cause only objects that have been ejected quickly can have made
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it out to these distances by the end of the calculation. Also, the bi-
nary fraction decreases outside of the 80%-mass radius. It drops by
a factor of two between the 10,000-30,000 AU (1 − 3 half-mass
radii) radial bin and the 30,000-100,000 AU (3−9 half-mass radii)
bin and there are no binaries (out of 41 objects) more than 100,000
AU (> 9 half-mass radii) from the cluster centre. Presumably, even
though some binaries are ejected, they are less likely to be ejected
than single objects and the likelihood of them surviving the ejection
process decreases with increasing ejection velocity (since a closer
dynamical encounter is required to achieve a higher ejection veloc-
ity).

Observationally, the best cluster to compare our results to is
the Orion Nebula Cluster (ONC). Hillenbrand & Hartmann (1998)
examined its structure and dynamics. They estimated the stellar
mass to be≈ 2× 103 M� and the half-mass radius to be≈ 0.8 pc,
so the main simulation discussed here produces a cluster that is sig-
nificantly less massive and more compact than the ONC. Although
the ONC is larger and more massive, it is probably at a similar
stage of evolution as the main calculation when it is stopped in the
sense that it does not contain significant substructure (Bate, Clarke
& McCaughrean 1998; Scally & Clarke 2002) and, if it was assem-
bled from the merger of sub-clusters, the ONC’s period of violent
relaxation has ended. By contrast, the ρ Ophiuchi cloud contains
a similar mass of stars and gas to the calculations presented here
(Bontemps et al. 2001), but it is composed of many sub-clusters
rather than a single large cluster.

Hillenbrand & Hartmann investigated mass segregation in the
ONC and found that within the half-mass radius there was evidence
for general mass segregation with stars in various mass bins be-
coming more centrally concentrated with increasing stellar mass.
At larger radii, there was little evidence for mass segregation. At
the end of the main calculation, we find no significant mass seg-
regation. This is ironic since one of the main arguments usually
advanced in favour of the competitive accretion model for star for-
mation is that it naturally produces mass-segregated clusters (e.g.
Bonnell et al. 1997, 2001). The difference here is most probably
that the stellar cluster existing at the end of the main calculation
has just formed from the merger of 5 sub-clusters and even if these
sub-clusters were mass segregated before their mergers it is go-
ing to take some time for the entire cluster to settle down again.
This does illustrate that competitive accretion does not necessarily
produce clusters that are mass segregated throughout their entire
formation process.

Köhler et al. (2006) investigated binarity in the ONC. They
found that there was no significant dependence of the binary frac-
tion on the distance from the cluster centre by comparing samples
within ≈ 0.3 pc (approximately 40% of the half-mass radius) of
the centre with observations between 0.7 − 1.8 pc from the centre
(approximately 1 − 2 half-mass radii). They stated that this was
in contrast to the theory that the low binary frequency in the ONC
compared to low-density star forming regions was due to dynam-
ical disruption. However, their result is consistent with our hydro-
dynamical simulation in that we also find no significant variation of
binary fraction within 3 half-mass radii and binary disruption cer-
tainly occurs in the simulation. Only outside of 3 half-mass radii
does there appear to be a slow decline in binarity. Needless to say,
it would be interesting to try and detect a lower binary fraction or a
higher velocity dispersion at distances more than 3 half-mass radii
from the centre of the ONC to see whether the ONC displays vari-
ations like those apparent in the simulation. However, this would
presumably be very difficult given the low stellar density and the

Figure 13. The closest encounter distances of each star or brown dwarf
during the main calculation versus the final mass of each object. Objects that
are still accreting significantly at the end of the calculation are denoted with
arrows indicating that they are still evolving and that their masses are lower
limits. Binaries are plotted with the two components connected by dotted
lines and squares are used as opposed to circles. Encounter distances less
than 4 AU are upper limits since the point mass potential is softened within
this radius. The vertical dashed line marks the star/brown dwarf boundary.
The brown dwarfs in the top left corner of the figure that are still accreting
formed shortly before the calculation was stopped are thus still evolving
rapidly. They may not end up as brown dwarfs.

problems of determining membership so far from the cluster cen-
tre.

3.3 Stellar encounters and disc sizes

Reipurth & Clarke (2001) proposed that brown dwarfs may be
formed from dynamical ejections of low-mass objects from accret-
ing unstable multiple systems, thus terminating their accretion and
fixing them at low masses. Bate et al. (2002a), BBB2003, BB2005,
and B2005 performed hydrodynamical simulations in which it was
found that dynamical interactions were crucial in terminating ac-
cretion and setting an object’s mass, but that this applied to stars as
well as brown dwarfs (see also Section 3.1.2 of this paper). Brown
dwarfs were simply ejected soon after they had formed while those
objects ending up as stars suffered ejections only after a longer pe-
riod of accretion.

Reipurth & Clarke (2001) also speculated that if brown dwarfs
formed via ejection, they might have smaller, lower-mass discs than
stars. BBB2003, BB2005, and B2005 found that discs around stars
and brown dwarfs were frequently truncated by dynamical encoun-
ters. However, some large discs were found to exist around both
stars and brown dwarfs, while other stars and brown dwarfs had
discs truncated to below the resolution limit of ≈ 10 AU in their
calculations.

In the calculations presented here, discs are resolved with radii
down to≈ 10 AU in the main calculation and down to a few AU in
the re-run calculation. However, with SPH, the resolution length
depends on density. Thus, for example, more massive discs are
better resolved than low-mass discs. Furthermore, low-mass discs
evolve much more quickly than high-mass discs due to the artificial
viscosity present in the simulations (since the magnitude of the vis-
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cosity also depends on density). Because of these numerical effects
it is difficult to determine robustly the statistical properties of discs
(e.g. their size and mass distributions).

By contrast, it is relatively simple to determine the closest dy-
namical encounter every star or brown dwarf has had during the
calculation. In Figure 13, we plot the distance of the closest en-
counter that every star and brown dwarf has had by the end of the
main calculation. As in the earlier papers, there is a wide range of
closest encounter distances, but stars have generally had closer en-
counters than brown dwarfs. However, this is somewhat misleading
for several reasons. First, as will be seen in the next section, mul-
tiplicity is a strong function of primary mass. In Figure 13 it clear
that (close) binaries are responsible for many of the ‘closest en-
counters’. Second, objects that are still accreting at the end of the
calculation are still evolving and, since the mass of an object de-
pends on its ‘age’ more massive accreting objects are more likely
to have had close encounters. In particular, most objects with brown
dwarf masses that are still accreting have formed shortly before the
calculation was stopped. They have not had much time for dynam-
ical encounters to occur and may not end up as brown dwarfs. Fi-
nally, BBB2003, BB2005, and B2005 found that many stars that
had close encounters still had resolved discs at the end of their cal-
culations because those discs formed from accretion subsequent to
their closest dynamical encounter.

Despite these difficulties, if an object suffers a dynamical en-
counter that terminates its accretion this encounter will truncate any
disc that is larger than approximately 1/2 of the periastron distance
during the encounter (Hall, Clarke & Pringle 1996). Therefore, ex-
cluding binaries and objects that are still accreting, determining the
distribution of 1/2 of the closest encounter distance should give us
an indication of the disc size distribution around single objects that
have reached their final masses. Note that formally we have still
included the wide components of triple and quadruple systems,
but these constitute only 48 objects out of the 884 ‘single’ non-
accreting objects so should not adversely affect any conclusions.

In Figure 14, we plot the cumulative distributions of disc trun-
cation radii (taken to be 1/2 of the closest encounter distance) for
these objects. The solid line gives the cumulative distribution for
all 884 objects, while in the other distributions we break the sam-
ple into mass bins of M < 0.1, 0.1 6 M < 0.3, 0.3 6 M < 1.0,
and M > 1.0 M�. More massive stars tend to have had closer en-
counters and, thus, have smaller disc truncation radii. The median
truncation radius is two orders of magnitude larger for the VLM
objects than for the solar-type stars. In particular, we note that 10%
of VLM stars have truncation radii greater than 40 AU, while 1/3
have truncation radii greater than 10 AU.

We emphasise that Figure 14 should be used with caution.
First, the simulation presented here produces a very dense stellar
cluster. Disc truncation may be less important for setting disc sizes
in a lower-density star-forming region. Second, Figure 14 does not
give a disc size distribution. At best, it is a distribution of lower lim-
its to disc sizes because of the fact that stars can suffer a close dy-
namical encounter, but then accrete more material from the molec-
ular cloud and form a new disc. This happens frequently in the
simulation, especially for the higher mass stars. The distribution is
likely to be most useful for VLM objects because they tend to have
their accretion terminated soon after they form by dynamical en-
counters and generally will not subsequently accrete significantly
from the molecular cloud.

Armitage, Clarke & Palla (2003) considered the lifetimes of
circumstellar discs surrounding young stars. They obtained a good
fit to the observed distributions of lifetimes with a 1σ dispersion

Figure 14. Due to dynamical interactions, stars and brown dwarfs poten-
tially have their discs truncated to approximately 1/2 of the periastron sep-
aration during the encounter (see also Figure 13). At the end of the main
calculation, we plot the cumulative fraction objects as a function of the po-
tential truncation radius. We exclude binaries and any objects that are still
accreting at the end of the calculation. The solid line gives the result for
all stars and brown dwarfs, while the dotted, short-dashed, long-dashed,
and dot-dashed lines give the cumulative distributions for the mass ranges
M < 0.1, 0.1 6 M < 0.3, 0.3 6 M < 1.0, and M > 1.0 M�,
respectively. More massive stars tend to have had closer encounters.

of 0.5 dex in initial disc masses, with the exception of the ≈ 30%
of young weak-lined T-Tauri stars (WTTS) that appeared to have
lost their discs even with an age of 1 Myr. There are two points of
interest here. First, we note that the dispersion of the time-averaged
accretion rates for an object of a given final mass (Section 3.1.2
and Figure 7) is 0.4 dex in the main calculation (and similar values
were obtained by BBB2005 and B2005). This might naturally be
expected to lead to the dispersion in disc masses that Armitage et
al. required to explain the disc lifetime distributions. Second, we
find that many objects have had very close dynamical encounters.
For some objects, their closest encounters will be the one that ejects
them from stellar group they are formed in. Once they are ejected it
is unlikely they will accrete a new disc. Such objects might help to
explain the observation that some WTTS appear to have lost their
discs at a very young age (see also Armitage & Clarke 1997).

3.4 Multiplicity as a function of primary mass

We turn now to the properties of the binary and higher-order multi-
ple stars and brown dwarfs produced by the simulations. The prop-
erties of multiple stellar systems have been investigated in the past
through ensembles of small N−body (e.g., McDonald & Clarke
1993, 1995; Sterzik & Durisen 1998, 2003; Hubber & Whitworth
2005) or hydrodynamical (e.g., Delgado-Donate et al. 2004; Good-
win et al. 2004b,c) simulations, with some of the observed trends
in properties being reproduced depending on the input parameters.
However, this is the first time a large number of multiple stars
and brown dwarfs has been produced from a single hydrodynami-
cal simulation of star formation. Although the calculation produces
more brown dwarfs than is realistic, it is still of great importance
to compare the multiple systems with observations. It may be, for
example, that precisely modelling the IMF requires radiative trans-
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Figure 15. Multiplicity fraction as a function of primary mass. The left and right panels both give results from the main calculation, but different mass ranges
are used for the low-mass stars. On the right, the mass ranges are those given in the upper section of Table 3, while on the left only three mass ranges are used
for objects with masses M < 0.8 M� (namely, M < 0.03, 0.03 6 M < 0.1, and 0.1 6 M < 0.8 M�). The blue filled squares surrounded by shaded
regions give the results from the main calculation with their statistical uncertainties. The open black squares with error bars and/or upper/lower limits give the
observed multiplicity fractions from the surveys of Close et al. (2003), Basri & Reiners (2006), Fisher & Marcy (1992), Duquennoy & Mayor (1991), Preibisch
et al. (1999) and Mason et al. (1998), from left to right. The red filled squares and associated shaded regions in the right panel give the multiplicity fractions
excluding brown dwarf companions (masses < 0.075 M�) to allow better comparison with the surveys of Duquennoy & Mayor and Fischer & Marcy. The
general trend of increasing multiplicity with primary mass is well reproduced by the main calculation. Note that because the multiplicity is a steep function of
primary mass it is important to ensure that similar mass ranges are used when comparing the simulation with observations.

Mass Range [M�] Single Binary Triple Quadruple

M < 0.01 82 0 0 0
0.01 6 M < 0.03 348 8 1 0
0.03 6 M < 0.07 207 18 2 0
0.07 6 M < 0.10 78 6 1 2
0.10 6 M < 0.20 99 22 4 2
0.20 6 M < 0.50 59 23 5 10
0.50 6 M < 0.80 16 7 4 4
0.80 6 M < 1.2 7 3 3 3

M > 1.2 9 3 3 4

All masses 905 90 23 25

0.10 6 M < 0.20 (no BD) 116 15 0 1
0.20 6 M < 0.50 (no BD) 66 25 8 1
0.50 6 M < 0.80 (no BD) 18 10 3 1
0.80 6 M < 1.2 (no BD) 8 5 3 0

M > 1.2 (no BD) 12 4 3 0

Table 3. The numbers of single and multiple systems for different primary
mass ranges at the end of the main calculation. In the lower portion of the
table, the numbers exclude brown dwarf (M < 0.075 M� companions) to
allow better comparison with the surveys of Duquennoy & Mayor (1991)
and Fischer & Marcy (1992) which were not sensitive to brown dwarfs
(e.g. a solar-type star with any number of brown dwarf companions would
be counted as a single solar-type star, while a solar-type star with a close
brown dwarf companion and a wide M-star companion would be counted
as a solar-type binary).

fer to be included, but that some binary properties do not depend
significantly on whether radiative transfer is included or not.

Observationally, it is clear that the fraction of stars or
brown dwarfs that are in multiple systems increases with stellar
mass (massive stars: Mason et al. 1998; Preibisch et al. 1999;
intermediate-mass stars: Patience et al. 2002; solar-type stars:
Duquennoy & Mayor 1991; M-dwarfs: Fischer & Marcy 1992; and
very-low-mass stars and brown dwarfs: Close et al. 2003; Siegler

et al. 2005; Basri & Reiners 2006). It also seems that the multiplic-
ity of young stars in low-density star-forming regions is somewhat
higher than that of field stars (Leinert et al. 1993; Ghez et al. 1993;
Simon et al. 1995; Duchêne et al. 2007). However, IC348 has a
similar binary frequency to the field (Duchêne et al. 1999). In the
Orion Nebula Cluster, Köhler et al. (2006) find that the binary fre-
quency of low-mass stars is similar to that of field M dwarfs and
lower than that of field solar-type stars, but that stars with masses
M > 2 M� have a higher binarity than stars with 0.1 < M < 2
M� by a factor of 2.4 to 4.

To quantify the fraction of stars and brown dwarfs that are in
multiple systems we use the multiplicity fraction, mf , defined as a
function of stellar mass. We define this as

mf =
B + T + Q

S + B + T + Q
, (2)

where S is the number of single stars within a given mass range
and, B, T , and Q are the numbers of binary, triple, and quadruple
systems, respectively, for which the primary has a mass in the same
mass range. Note that this differs from the companion star fraction,
csf , that is also often used and where the numerator has the form
B + 2T + 3Q. We choose the multiplicity fraction following Hub-
ber & Whitworth (2005) who point out that this measure is more
robust observationally in the sense that if a new member of a multi-
ple system is found (e.g. a binary is found to be a triple) the quantity
remains unchanged. We also note that it is more robust for simula-
tions too in the sense that if a high-order system decays because it
is unstable the numerator only changes if a quadruple decays into
two binaries (which is quite rare). Furthermore, if the denominator
is much larger than the numerator (e.g. for brown dwarfs where the
multiplicity fraction is low) the production of a few single objects
does not result in a large change to the value of mf . This is useful
because many of the systems in existence at the end of the calcula-
tions presented here may undergo further dynamical evolution. By
using the multiplicity fraction our statistics are less sensitive to this
later evolution.

When analysing the simulations, some subtleties arise. For ex-
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ample, many ‘binaries’ are in fact members of triple or quadruple
systems and some ‘triple’ systems are components of quadruple or
higher-order systems. From this point on, unless otherwise stated,
we define the numbers of multiple systems as follows. The num-
ber of binaries excludes those that are components of triples or
quadruples. The number of triples excludes those that are mem-
bers of quadruples. However, higher order systems are ignored (e.g.
a quintuple system may consist of a triple and a binary in orbit
around each other, but this would be counted as one binary and one
triple). We need to stop counting larger and larger multiple systems
at some point because in fact the simulation forms one large clus-
ter to which many of the multiple systems are still bound when the
calculation is finished (see Section 2.2.1 for a description of how
we identify multiple systems). We choose quadruple systems as a
convenient point to stop as it is likely that most higher order sys-
tems would decay if the cluster was evolved for many millions of
years. The numbers of single and multiple stars produced by the
main hydrodynamical calculation are given in Table 3 following
these definitions.

In Figure 15, we plot the multiplicity fraction of the stars and
brown dwarfs as a function of stellar mass for the main calcula-
tion, based on the numbers given in Table 3. In the left panel,
we divide the objects into low-mass brown dwarfs (masses < 30
Jupiter-masses or 0.03 M�), VLM objects excluding the low-mass
brown dwarfs (masses 0.03 − 0.10 M�), low-mass stars (masses
0.10 − 0.80 M�), solar-type stars (masses 0.80 − 1.20 M�), and
intermediate mass stars (masses > 1.2 M�). In the right panel,
finer mass divisions are used for masses less than 0.8 M�. These
divisions are chosen for comparison with various observational sur-
veys. In Figure 15, the filled blue squares give the multiplicity
fraction while the surrounding blue hatched regions give the range
in stellar masses over which the fraction is calculated and the 1σ
(68%) uncertainty on the multiplicity fraction (e.g. for solar-type
primary stars, the multiplicity fraction is 0.56 ± 0.12). The black
open boxes and their associated error bars and/or upper/lower lim-
its give the results from a variety of observational surveys (see the
figure caption). Finally, in the right panel, the filled red squares and
their associated red hatched regions give the multiplicity fractions
excluding brown dwarfs (masses less than 0.075 M�).

The main hydrodynamical calculation clearly predicts that
the multiplicity fraction strongly increases with increasing primary
mass. Furthermore, the values in each mass range are in reasonable
agreement with observation. There is excellent agreement for solar-
type and low-mass stars. For intermediate mass stars the statistics
from the calculation are poor (and the observed value is also uncer-
tain), while for VLM objects the hydrodynamical calculation gives
a slightly lower prediction that the observations, but not unreason-
ably so.

In detail, we find:

Solar-type stars: Duquennoy & Mayor (1991) find an observed
multiplicity fraction of 0.58 ± 0.1. The main calculation gives a
multiplicity fraction of 0.56 ± 0.12. However, this figure includes
brown dwarf companions and Duquennoy & Mayor’s survey was
not sensitive to brown dwarfs. Excluding them, we obtain 0.50 ±
0.13 which is still in good agreement with the observed value.
M-dwarfs: Fischer & Marcy (1992) find an observed multiplicity

fraction of 0.42± 0.09. In the mass range 0.1− 0.8 M� we obtain
mf = 0.32±0.03 which is slightly lower than the observed value,
though still within the uncertainties. However, in this mass range
the multiplicity fraction changes quite rapidly with mass. Fischer
& Marcy’s sample contains stars with masses between 0.1 and 0.57

solar masses, but the vast majority have masses in the range 0.2 −
0.5 M� whereas in the hydrodynamical simulation around half of
the low-mass stars have masses less than 0.2 M�. In the 0.2− 0.5
M� mass range we obtain mf = 0.39±0.05. However, Fischer &
Marcy’s survey was also not sensitive to brown dwarfs companions.
Removing these, we obtain 0.34 ± 0.05. This value is consistent
with the observed value, lying well within the 1σ uncertainties.

VLM objects: There has been much interest in the multiplicity of
VLM objects in recent years (Martı́n et al. 2000, 2003; Close et al.
2003, 2007; Gizis et al. 2003; Pinfield et al. 2003; Bouy et al. 2003,
2006; Siegler et al. 2003, 2005; Luhman 2004; Maxted & Jeffries
2005; Kraus, White & Hillenbrand 2005, 2006; Basri & Reiners
2006; Reid et al. 2006; Allen et al. 2007; Konopacky et al. 2007;
Ahmic et al. 2007; Reid et al. 2008; Law, Hodgkin & Mackay 2008;
Maxted et al. 2008). For a recent review, see Burgasser et al. (2007).
Over the entire mass range of 0.003−0.10 M�, we find a very low
multiplicity of just 0.047 ± 0.008. We note the main calculation,
which is essentially a larger version of the calculation reported in
BBB2003, produces a VLM object multiplicity in agreement with
the earlier, smaller calculations which gave mf ≈ 0.06 (B2005).
However, in the earlier calculations it was impossible to sub-divide
the VLM objects because of the small numbers. As with the M-
dwarfs, the multiplicity drops rapidly with decreasing primary mass
and the observed VLM objects tend to have high masses. The main
calculation gives multiplicities of 0.22 ± 0.04 for the mass range
0.1 − 0.2 M�, 0.10 ± 0.03 for the mass range 0.07 − 0.10 M�,
0.09 ± 0.02 for the mass range 0.03 − 0.07 M�, 0.025 ± 0.008
for the mass range 0.01 − 0.03 M�, and 0.00 ± 0.01 for masses
less than 0.01 M�. Therefore, to compare with observations it is
very important to compare like with like. The observed frequency
of VLM binaries is typically found to be≈ 15% (Close et al. 2003,
2007; Martı́n et al. 2003; Bouy et al. 2003; Gizis et al. 2003; Siegler
et al. 2005; Reid et al. 2008). The surveys are most complete for
binary separations greater than a couple of AU. Recently (Basri
& Reiners 2006) estimated the total frequency (including spectro-
scopic systems) to be≈ 20−25%. These surveys typically targeted
primaries with masses in the range 0.03−0.1 M�, but most of these
objects in fact have masses greater than 0.07 M�. Thus, the closest
comparison with our calculation is our frequency of 0.10±0.03 for
the mass range 0.07 − 0.10 M�. This is somewhat lower than the
observed frequency (a factor of two at face value), but still in bet-
ter agreement than that from the earlier simulations (B2005). In the
next section we show that decreasing the accretion radii of the sink
particles increases the frequency of VLM binaries bringing them
into good agreement with the observed value. Thus, the main cal-
culation produces a VLM binary frequency that is consistent with
observations (at around the 2 − 3σ level), but it is lower and we
attribute this to the effects of the sink particle approximation rather
than a fundamental failing of the hydrodynamical star formation
model.

Low-mass brown dwarfs: The frequency of low-mass binary
brown dwarfs (primary masses less than 30 Jupiter masses) is ob-
servationally unconstrained. We predict that the multiplicity con-
tinues to fall as the primary mass is decreased as described above.
Even if our predicted multiplicities are under-estimated by a factor
of two or even three due to the effects of sink particles, we would
predict that the binary frequency in the mass range 0.01 − 0.03
M� is ∼< 7%. Companions to brown dwarfs with masses less than
10 Jupiter-masses should be exceptionally rare (∼< 3%).
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Figure 16. Multiplicity fraction as a function of primary mass for the main calculation at t = 1.038tff (left) and the re-run calculation at the same time (right).
The blue filled squares surrounded by shaded regions give the results from the calculations. The open black squares with error bars and/or upper/lower limits
give the observed multiplicity fractions from the surveys of Close et al. (2003), Basri & Reiners (2006), Fisher & Marcy (1992), Duquennoy & Mayor (1991),
Preibisch et al. (1999) and Mason et al. (1998), from left to right. The multiplicities for primaries with masses in the range 0.03 − 0.8 M� are higher in the
re-run calculation in which the sink particles have smaller accretion radii and no gravitational softening.

3.4.1 The dependence of multiplicity on sink particle
approximations

As with the IMF, the question arises of how dependent these results
are on the use of sink particles. In particular, in the main calcula-
tion, binaries cannot have separations smaller than 1 AU (due to
the gravitational softening) and the sink particle accretion radius
removes all gas within 5 AU of the sink particle, presumably af-
fecting close dynamical interactions between protostellar objects.
This is likely to have a severe effect on the properties of short pe-
riod binaries. As mentioned above and will be seen in more detail
in Section 3.3, this particularly affects VLM binaries whose median
separation in the main calculation (and observationally) is less than
10 AU.

In Figure 16, we compare the multiplicity fractions produced
by the main calculation (left) and the re-run calculation (right) at
the end time of the re-run calculation (tff = 1.038). The first point
to note is that the fractions given by the main calculation at 1.038
tff and at 1.50 tff are the same within the statistical uncertainties.
Therefore, we conclude that the fractions do not evolve signifi-
cantly with time (though their mass ratios and separations might
– see Sections 3.5 and 3.6). There are few stars with masses greater
than 0.8 M� at the earlier time because they have not yet had time
to accrete to high masses. Thus, the multiplicity fractions of solar-
type and intermediate mass stars are poorly defined. However, for
low-mass stars, the fractions are 0.51±0.07 and 0.32±0.03 respec-
tively, which lie within 2σ of each other. For VLM systems the frac-
tions are 0.10±0.04 and 0.092±0.016, respectively. For low-mass
brown dwarfs, the fractions are 0.054± 0.030 and 0.021± 0.007,
respectively.

We now compare the fractions give by the main calculation
and the re-run calculation which has smaller sink particle accre-
tion radii (left and right panels of Figure 16). The multiplicity frac-
tions are greater in the re-run calculation for VLM objects and low-
mass stars, but not for the low-mass brown dwarfs. An increase in
the multiplicity fractions for small sink particles is what we might
expect since binaries can become tighter (due to the absence of
gravitational softening) and dissipative processes can play a role
on smaller scales (due to the smaller accretion radii of only 0.5
AU). Low-mass stars in the re-run calculation have a multiplicity

of 0.60± 0.08, which differs by≈ 0.6σ from the main calculation
at the same time. VLM binaries have a multiplicity of 0.19± 0.05.
This is 1σ higher than the main calculation at the same time. Fi-
nally, low-mass brown dwarfs have a multiplicity of 0.026± 0.018
which differs by 0.6σ from the main calculation at the same time.

Clearly, even with such large numbers of objects, statistical
uncertainties still make comparison of the results difficult. How-
ever, the indication is that decreasing the sizes of the sink parti-
cles increases the multiplicity fractions, at least for the mass range
0.03−0.80 M�. In particular, decreasing the sizes of the sink parti-
cles maintains the good agreement with observations for solar-type
stars and low-mass stars, and improves the agreement for VLM ob-
jects. The multiplicity of 19± 5% for the mass range 0.03− 0.10
M� is in excellent agreement with the typically observed value of
≈ 15% Close et al. (2003) and the upper limit of 20 − 25% esti-
mated by Basri & Reiners (2006).

In summary, it seems that purely hydrodynamical simulations
of star formation using sink particles can reproduce the observed
multiplicities of solar-type stars, low-mass stars, and VLM ob-
jects. The results appear to depend slightly on the sink particle as-
sumptions, with smaller sink particles generally leading to slightly
higher multiplicities and better agreement with observations.

3.4.2 Star-VLM binaries

We turn now to the issue of VLM/brown dwarf companions to stars.
As in the previous section, we do not consider brown dwarf com-
panions as such, rather we consider VLM companions (< 0.1 M�)
to stars (> 0.1 M�). The main calculation produced 26 stellar-
VLM binaries out of 290 stellar systems, a frequency of 9.0±1.6%.
For the vast majority of these stellar-VLM binaries, the star is a
low-mass star: 14 of the primaries have masses between 0.1− 0.2
M�, 7 have primary masses in the range 0.2 − 0.5 M�, and 3
have primary masses between 0.5 and 0.8 M�. However, within
the statistical uncertainties, the frequency of VLM companions is
not found to depend on primary mass. Even around solar-type and
intermediate mass stars we find VLM companions, but the statis-
tics are very poor with only two out of the 35 systems with primary
masses greater than 0.8 M� being star/VLM binaries (6± 4%).

Although there is no statistically significant dependence of the
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frequency of such systems on primary mass, the separation distri-
butions are very different. For primaries with masses of 0.1 − 0.2
M�, the semi-major axes of all but 3 of the 14 systems are less than
30 AU. The other three all have semi-major axes greater than 1000
AU. This separation distribution is very similar to the VLM and
brown dwarf binaries discussed in Section 3.5. For the 7 primaries
with masses of 0.2− 0.5 M�, three have VLM companions within
10 AU, there is one at 49 AU, and the remaining three have wide
companions (greater than 1000 AU). The VLM companions of the
3 primaries with masses of 0.5−0.8 M� have semi-major axes be-
tween 27 and 65 AU. Finally, the 2 star/VLM binaries with primary
masses greater than 0.8 M� both have semi-major axes greater than
1000 AU. Thus, the typical separation of star/VLM binaries seems
to increase strongly as the mass of the primary increases.

In addition to the star/VLM binaries, there are four triple sys-
tems consisting of a star with two VLM companions and eight
quadruple systems that contain at least one star/VLM pair. In all
but three of these 12 systems the widest orbit has a semi-major axis
in the range 50− 500 AU. The remaining three systems have very
wide outer orbits (> 1000 AU).

There has been much discussion over the past decade of the
observed “brown dwarf desert” for close brown dwarf companions
solar-type stars (frequency≈ 1%; Marcy & Butler 2000; Grether &
Lineweaver 2006) and how this changes for wider separations and
different primary masses. McCarthy & Zuckerman (2004) found
that the frequency of wide brown dwarfs to G, K, and M stars be-
tween 75-300 AU was 1%±1%. The frequencies of wide brown
dwarf companions to A and B stars (Kouwenhoven et al. 2007), M
dwarfs (Gizis et al. 2003), and other brown dwarfs appears to be
similarly low, although the frequency of wide binary brown dwarfs
may be higher when they are very young (Close et al. 2007). Our
results are consistent with these observations in the sense that we do
not find brown dwarf companions to solar-type stars in close orbits
(frequency∼< 8% at the 95% confidence level), but that VLM com-
panions exist orbiting stars and brown dwarfs with a wide range
of masses. Our results are also in good agreement with surveys of
VLM objects that are frequently found to have companions, but
where their separations are usually less than ≈ 20 AU (Close et al.
2003, 2007; Allen et al. 2007). It would be of great interest to map
out the separation distributions of VLM companions over a wide
range of primary masses. From the results of the main calculation
we predict that the frequency of star-brown dwarf systems should
not depend greatly on primary mass, but that the typical star-brown
dwarf binary separation should increase monotonically from ∼< 10
AU for primary masses less than 0.2 M� to ∼ 50 AU for primary
masses ∼ 0.4 M� and to > 100 AU for solar-type stars.

3.4.3 The frequencies of triple and quadruple systems

Consulting Table 3, we find that the main calculation produced 905
single stars/brown dwarfs, 90 binaries, 23 triples and 25 quadru-
ples. This gives an overall frequency of triple and quadruple sys-
tems of only 2.3 ± 0.5% and 2.5 ± 0.5%, respectively. These are
upper limits because some of these systems may be disrupted if the
calculation were followed longer.

Although the overall frequencies are low, it is clear from
the table that the frequencies of high-order multiples depend
strongly on primary mass. For VLM primaries, the frequencies of
triple/quadruple systems range from 3.4±2.0% for the mass range
0.07 − 0.10 M� to 0.9 ± 0.6% for 0.03 − 0.07 M� and much
less than 1% for lower primary masses. For low-mass M-stars in
the range 0.10 − 0.20 M� the frequency of triples/quadruples is

5± 2%. For M-stars with masses in the range 0.20− 0.50, the fre-
quency of triples/quadruples is 15 ± 4% while for solar-type and
intermediate mass stars the frequency is ≈ 37± 12%.

How do these frequencies compare with observations? Fischer
& Marcy (1992) find 7 triples and 1 quadruple amongst 99 M-star
primaries giving a frequency of 8± 3%. As mentioned earlier, Fis-
cher and Marcy’s survey was not sensitive to brown dwarf compan-
ions and most of their M-stars had masses in the range 0.2 − 0.5
M�. Excluding brown dwarfs from the multiple statistics, we find a
frequency of 9± 3% for this stellar mass range, in excellent agree-
ment. Duquennoy & Mayor (1991) found 7 triples and 2 quadruples
from their 164 solar-type primaries giving a frequency of 5 ± 2%.
For solar-type stars (excluding brown dwarf companions), we find
a frequency of 18±10%. The large uncertainty in our result makes
comparison difficult for the solar-type stars, but our result is not
unreasonable, especially given the fact that Duquennoy & Mayor
admit that they are likely to have missed some high-order multiple
systems.

In summary, our frequencies of triples/quadruples are consis-
tent with current observational surveys, though more robust statis-
tics from observations, particularly for VLM objects, and improved
statistics from the simulations, particularly for intermediate-mass
stars, are obviously desireable.

3.5 Separation distributions of multiples

With 58 stellar and 32 VLM binaries we can, for the first time,
study the properties of a reasonably large sample of binary systems
formed in a single star cluster. The main calculation also produced
19 stellar and 4 VLM triple systems and 23 stellar and 2 VLM
quadruple systems.

Observationally, the median separation of binaries is found to
depend on primary mass. Duquennoy & Mayor (1991) found that
the median separation of solar-type binaries was ≈ 30 AU. Fischer
& Marcy (1992) found indications of a smaller median separation
of≈ 10 AU for M-dwarf binaries. Finally, VLM binaries are found
to have a median separation ∼< 4 AU (Close et al. 2003, 2007;
Siegler et al. 2005), with very few VLM binaries found to have
separations greater than 20 AU, particularly in the field (Allen et al.
2007). Most recently, Close et al. (2007) estimated that young VLM
objects have a wide (> 100 AU) binary frequency of ∼ 6%±3%
for ages less than 10 Myr, but only 0.3%±0.1% for field VLM ob-
jects.

Unfortunately, in the main calculation the gravitational force
between sink particles is softened when they approach within 4 AU
with the maximum acceleration, and hence the minimum binary
separation, occurring at 1 AU. Furthermore, gas within 5 AU of a
sink particle is accreted, meaning that dissipative interactions with
the gas are omitted on these scales. These numerical approxima-
tions necessarily affect the formation of the multiple systems. In
the re-run calculation, no gravitational softening is applied and bi-
naries with separations as small as 0.02 AU could be produced.
However, the sink particles still accrete gas within 0.5 AU which
is likely to affect binary formation and smaller numbers of mul-
tiple systems are produced in the re-run calculation giving poorer
statistics.

In Figure 17 we present the separation (semi-major axis) dis-
tributions of the stellar (primary masses greater than 0.10 M�) and
VLM multiples. These distributions are compared with the sur-
veys of Duquennoy & Mayor (1991), Fischer & Marcy (1992)
and the listing of VLM multiples maintained by N. Siegler at
http://vlmbinaries.org/, respectively. The filled histograms give the
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Figure 17. The distributions of separations (semi-major axes) of multiple systems with stellar (left) and VLM (right) primaries produced by the main cal-
culation. The solid, double hashed, and single hashed histograms give the orbital separations of binaries, triples, and quadruples, respectively (each triple
contributes two separations, each quadruple contributes three separations). In the stellar graph, the curve gives the G-dwarf separation distribution (scaled to
match the area) from Duquennoy & Mayor (1991). In the VLM systems graph, the open black histogram gives the (scaled to match the number in the 10-100
AU range) separation distribution of the known very-low-mass multiple systems maintained by N. Siegler at http://vlmbinaries.org/ (last updated on February
4th, 2008). The vertical dotted line gives the resolution limit of the calculations as determined by the gravitational softening and accretion radii of the sink
particles.

separations of binary systems, while the double hashed region adds
the separations from triple systems (two separations for each triple,
determined by sub-dividing the triple into a binary with a wider
companion), and the single hashed region includes the separations
of quadruple systems (three separations for each quadruple which
may be composed of two binary components or a triple with a wider
companion).

We find that in the main calculation the median separation (in-
cluding separations from binary, triple, and quadruple systems) in-
creases with increasing primary mass. The stellar systems have a
median separation of 26 AU while the VLM systems have a median
separation of 10 AU. These values are in reasonable agreement with
the observed values mentioned above, and the shapes of the sepa-
rations distributions for stellar and VLM primaries are satisfactory
(at least beyond 10 AU). However, it is also clear from Figure 17
that the resolution limits imposed by the sink particle approxima-
tions (vertical dotted lines) almost certainly affect the distributions
since the peaks of both the stellar and VLM distributions occur in
the 1− 10 AU separation bin.

To investigate the effects of the sink particle approximations
on the distributions, in Figure 18, we display the stellar and VLM
separation distributions from the re-run calculation (lower panels)
and the main calculation at the same time (t = 1.038tff ; upper
panels). As expected, reducing the sink particle accretion radii and
gravitational softening produces closer multiple systems. The ef-
fect on the stellar distribution is particularly pleasing in that the
separation distribution becomes more bell-like and the peak occurs
in the 10-100 AU bin (rather than the 1-10 AU bin) which is well
separated from the resolution limit (vertical dotted line).

More VLM multiple systems are formed in the re-run calcu-
lation and there are more with separations < 10 AU. Of even more

interest is the fact that, at t = 1.038tff , the median separations
of the VLM multiples in the main calculation and the re-run cal-
culation are similar to each other and similar to the stellar multi-
ples, but much larger than at the end of the main calculation (≈ 30
AU at early times, but ≈ 10 AU at the end of the main calcula-
tion). Admittedly, the smaller numbers of VLM multiples at early
times means that the uncertainties are large. However, this indicates
that VLM systems may form with reasonably wide separations and
evolve to smaller separations. We note that at t = 1.038tff two
thirds of the VLM multiples in the main calculation and more than
80% of those in the re-run calculation are still accreting (and, thus,
still evolving) whereas at the end of the main calculation all but
1 VLM multiple has ceased accreting. Bate et al. (2002b) discuss
how close binaries (separations less than 10 AU) are formed from
wider systems in the BBB2003 calculation through a combination
of dynamical encounters with other protostars, their interactions
with circumbinary and circumtriple discs, and accretion. Since the
main calculation is simply a larger version of BBB2003’s calcula-
tion, it is probable that such evolution is also occurring here. The
possibility of VLM binaries undergoing evolution has also been
suggested observationally. Close et al. (2007) and Burgasser et al.
(2007) suggest that young wide VLM binaries are disrupted, lead-
ing to the observed paucity of old wide VLM systems. They also
find evidence that a higher proportion of young VLM systems may
have unequal-mass components than for older systems (see also the
next section).

3.6 Mass ratio distributions of binaries

Along with the separation distributions of the multiple systems we
can investigate the mass ratio distributions. In this section we only
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Figure 18. The same as Figure 17 but the separation (semi-major axis) distributions are given at t = 1.038tff for the main calculation (top) and the re-run
calculation which uses sink particles with small accretion radii (0.5 AU) and without gravitational softening (bottom). As expected, reducing the length-scales
of the sink particle accretion radii and gravitational softening produces a higher fraction of small-separation multiple systems. In addition, the ‘pile up’ of
stellar system separations in the 1− 10 AU bin (top left) disappears when smaller separations are allowed (bottom left), recovering a bell-shaped distribution
more similar to the observed Duquennoy & Mayor (1991) distribution for solar-type primaries.

consider binaries, but we include binaries that are components of
triple and quadruple systems. A triple system composed of a bi-
nary with a wider companion contributes the mass ratio from the
binary, as does a quadruple composed of a triple with a wider com-
panion. A quadruple composed of two binaries orbiting each other
contributes two mass ratios - one from each of the binaries.

Observationally, the mass ratio distribution of binaries also is
found to depend on primary mass. Duquennoy & Mayor (1991)
found that the mass ratio distribution of solar-type binaries peaked
at M2/M1 ≈ 0.2. Halbwachs et al. (2003) found a bi-modal distri-
bution for spectroscopic binaries with primary masses in the mass

range 0.6 − 1.9 M� and periods ∼< 10 years with a broad peak in
the range M2/M1 = 0.2− 0.7 and a peak for equal-mass systems
(so-called twins; Tokovinin 2000b). They also noted that the fre-
quency of twins was higher for periods < 100 days, though this is
not relevant for the calculations presented here since they do not
probe such short periods. Mazeh et al. (2003) found a flat mass
ratio distribution for spectroscopic binaries with primaries in the
mass range 0.6 − 0.85 M�. Fischer & Marcy (1992) also found a
flat mass ratio distribution in the range M2/M1 = 0.4−1.0 for M-
dwarf binaries with all periods. Finally, VLM binaries are found to
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Figure 19. The mass ratio distributions of binary systems with stellar primaries in the mass ranges M1 > 0.5 M� (left) and M1 = 0.1 − 0.5 M� (centre)
and VLM primaries (right; M1 < 0.1 M�) produced by the main calculation. The solid black lines give the observed mass ratio distributions of Duquennoy
& Mayor (1991) for G dwarfs (left), Fischer & Marcy (1992) for M1 = 0.3− 0.57 M� (centre, solid line) and M1 = 0.2− 0.57 M� (centre, dashed line),
and of the known very-low-mass binary systems maintained by N. Siegler at http://vlmbinaries.org/ (right). The observed mass ratio distributions have been
scaled so that the areas under the distributions (M2/M1 = 0.4 − 1.0 only for the centre panel) match those from the simulation results. The VLM binaries
produced by the simulation are biased towards equal masses when compared with M dwarf binaries (primary masses in the range M1 = 0.1− 0.5 M�). 71%
of the VLM binaries have M2/M1 > 0.6 while for the M dwarf binaries the fraction is only 51%.

have a strong preference for equal-mass systems (Close et al. 2003;
Siegler et al. 2005; Reid et al. 2006).

In Figure 19, we present the mass ratio distributions of the
stars with masses > 0.5 M� (left panel), M-dwarfs with masses
0.1 6 M < 0.5 M� (centre panel), and VLM objects (right panel).
We compare the M-dwarf mass ratio distribution to that of Fischer
& Marcy (1992), and the higher mass stars to the mass ratio distri-
bution of solar-type stars obtained by Duquennoy & Mayor (1991).
The VLM mass ratio distribution is compared with the listing of
VLM multiples maintained by N. Siegler at http://vlmbinaries.org/.

We find that in the main calculation the ratio of near-equal
mass systems to systems with dissimilar masses decreases going
from VLM objects to M dwarfs in a similar way to the observed
mass ratio distributions, but that the trend is not as strong as in
the observed systems. Specifically, 71% of the VLM binaries have
M2/M1 > 0.6 while for primary masses 0.1 − 0.5 M� the frac-
tion is only 51%. The stellar mass ratio distribution is consistent
with Fischer & Marcy’s distribution. The VLM binaries, although
biased towards equal-mass systems, are not as strongly biased as
is observed. However, currently there is no volume-limited sample
for VLM systems and systems with more equal-mass components
are easier to detect so the degree to which the observed mass ratio
distribution might be affected by selection effects is not yet clear.

What is clear, however, is that the mass ratios of binaries with
primary masses greater than 0.5 M� do not agree with Duquennoy
& Mayor’s mass ration distribution. Of the 34 binaries, only 10
have mass ratios less than M2/M1 = 0.5.

In Figure 20, we display the stellar (primary masses > 0.1
M�) and VLM mass ratio distributions from the re-run calcu-
lation (lower panels) and the main calculation at the same time
(t = 1.038tff ; upper panels). The stellar mass ratio distributions
are not significantly different from each other or from Figure 19.
However, the VLM binary mass ratio distributions at early times
(for both the main and re-run calculations) are flatter than that ob-
tained at the end of the main calculation. Again, this implies that the
properties of the VLM binaries evolve. Both the apparent evolution
of VLM binary separations and mass ratios are consistent with the
evolution discussed by Bate et al. (2002b). Dynamical exchange

interactions between binaries and single objects tend to produce
more equal-mass components, as does accretion of gas from cir-
cumbinary discs or the accretion of infalling gas with high specific
angular momentum. Thus, the apparent evolution of both the VLM
binary separations and mass ratios may be due to evolution during
their formation.

3.6.1 Mass ratio versus separation

In Figure 21, we plot mass ratios against separation (semi-major
axis) for the binaries, triples, and quadruples at the end of the main
calculation. Note that for this figure we include systems that are
sub-components of higher-order systems. Thus, the closest two ob-
jects in a triple also appear in the plot as a binary. Similarly, for
quadruples consisting of two binary sub-components, each of the
binaries appears in the plot and for each of the quadruples that in-
volves a triple system, the triple appears in the plot.

There is clearly a relation between mass ratio and separa-
tion for the binaries with closer systems having a preference for
equal masses. The median mass ratios for binary separations in the
ranges 1 − 10, 10 − 100, 100 − 1000 and 1000 − 104 AU are
M2/M1 = 0.74, 0.57, 0.68, 0.17, respectively. Including the mass
ratios of triples and quadruples (as defined in the caption of Figure
21), these median values become 0.74, 0.41, 0.15, and 0.07, re-
spectively. The median mass ratio for triples is 0.11 and the median
mass ratio for quadruples is 0.07. However, the quadruples include
those composed of two binaries and those composed of a triple and
a fourth wide component. The mass ratios of the latter tend to be
much lower than those of the former. There are 8 quadruples com-
posed of two binaries and 16 composed of triples and a fourth com-
ponent. The median mass ratios for these two sub-samples are 0.45
and 0.03 respectively. There are also only 11 (out of 40) triples
composed only of stars (as opposed to containing VLM objects).
For these, the median mass ratio is 0.48. All but one of the quadru-
ple systems contains at least one VLM object.

A trend of more unequal mass binaries with increasing sep-
aration is expected from the evolution of protobinary systems ac-
creting gas from an envelope (Bate 2000). Furthermore, dynamical
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Figure 20. The mass ratio distributions of binary systems with stellar (M1 > 0.1 M�; left) and VLM (right) primaries produced by the main calculation
(upper panels) and re-run calculation (lower panels), both at t = 1.038tff . In the VLM graphs, the open black histogram gives the mass ratio distribution of the
known VLM multiple systems maintained by N. Siegler at http://vlmbinaries.org/ (scaled to match the total number) . The frequency of VLM binaries is higher
in the re-run calculation, but the mass ratio distributions of both stars and VLM objects are indistinguishable given the small number statistics. Comparing the
VLM panels with that in Figure 19 there is evidence that the VLM binaries begin with more uniform mass ratio distributions and evolve towards equal-masses
as the main calculation proceeds.

interactions between binaries and single stars tend to tighten bina-
ries at the same time as increasing the binary mass ratio through
exchange interactions.

Observationally, closer binaries are found to have a higher
fraction of ‘twins’ (Tokovinin 2000b; Soderhjelm 1997; Halbwachs
et al. 2003). Tokovinin (2000b) found evidence for the frequency of
twins falling off for orbital periods greater than 40 days, but Halb-
wachs et al. (2003) found that the fraction of near equal-mass sys-
tems (M2/M1 > 0.8) is always larger for shorter period binaries
than longer period binaries regardless of the dividing value of the

period (from just a few days up to 10 years). However, despite the
fact that the fraction of twins decreases with increasing separation,
the mass ratio distributions of both short-period and long-period bi-
naries appear to have a peak at M2/M1 = 1 (e.g. Tokovinin 2000b;
Halbwachs et al. 2003; Söderhjelm 2007). These observed relations
are in qualitative agreement with the decreasing median mass ratio
with increasing separation discussed above. In Figure 21, we also
note that although there is a higher fraction of twins at small sepa-
rations, there are still some wide twins (separations 30− 300 AU).

For stellar triple and quadruple systems, Tokovinin (2008) re-
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Figure 21. The mass ratios of binaries (filled circles), triples (open trian-
gles), and quadruples (open squares) as a function of semi-major axis for
the main calculation. For triples, the mass ratio compares the mass of the
widest component to the sum of the masses of the two closest components.
For quadruples involving a two binary components, the mass ratio is be-
tween the two binaries, and for quadruples involving a triple, the mass ratio
is between the mass of the fourth component and the triple. All mass ratios
are defined to be 6 1. There is a clear relationship between mass ratio and
separation with closer binaries having a greater fraction of near equal-mass
systems.

ports that triples are observed to have a median mass ratio of 0.39
independent of the outer orbital period while quadruples involving
two binary sub-components have a similar median mass ratio of
≈ 0.45, but there may be a dependence on the outer orbital period.
The median mass ratio of the triples systems from the main calcula-
tion are in agreement with observations, as long as we only consider
the triples containing stellar components (no VLM components).
This is consistent with the observational sample, but it does raise
the question of how many triple systems containing VLM compo-
nents exist in reality. Similarly, the median mass ratio of quadru-
ples containing two binary sub-systems is in good agreement with
observations, but all but one of the systems from the main calcu-
lation includes a VLM object whereas the observational sample is
dominated by stellar-only systems. It is also interesting to note that
quadruples composed of a triple and a wide fourth component out
number quadruples composed of two binaries by 2:1 in the main
calculation. Tokovinin (2000a) finds roughly equal numbers of such
quadruples. However, if the wide components of quadruples con-
taining triples as sub-components typically have low masses this
could be attributed to observational bias.

For the binaries, the clear trend of decreasing mass ratio with
separation may go some way to explaining the apparent deficit of
unequal-mass binaries with primary masses greater than 0.5 M�
in the main calculation (left panel of Figure 19). It is clear from
Figures 17 and 21 that the main calculation does not produce many
wide pure binaries – most of the wide systems are triples or quadru-
ples and the binaries components within them necessarily have
smaller separations than the wide tertiary or quartic components.
Since the mass ratio distributions in Figure 19 only contain binary

mass ratios an unequal-mass visual binary may in fact be composed
of an undetected close binary and a wider companion. However,
while an observer of the system would include the unequal mass
ratio of the wide system, only the mass ratio of the close binary
component would be included in a mass ratio distribution like Fig-
ure 19.

Therefore, one way to reconcile the main calculation with ob-
servations may be to include the mass ratios of tertiary and quartic
components. The problem with this is there is no unique way to do
this – should the mass ratio of a triple be simply the ratio of the
total mass of the binary to the third component? Should an attempt
be made to model the luminosities of the two stars in the binary?
What if the ratio of the two separations is small so that if an ob-
server identified it as a binary they would also have been likely to
separate it into a triple? Furthermore, Duquennoy & Mayor (1991)
actually found a rather low frequency of triple and higher-order sys-
tems anyway, so perhaps the question of how to treat these higher
order systems is not important. On the other hand, discussion con-
tinues as to how many triples and quadruples were missed by this
and other surveys.

For the moment, we conclude that the main calculation ap-
pears to under-produce unequal-mass solar-type binaries compared
with observations. However, this may at least be partially recon-
ciled if many of the observed binaries are in fact higher-order sys-
tems or, alternately, if the mass ratios of tertiary and quartic compo-
nents from the main calculation are included in the statistics. There
is much less of a difference between observations and the main
calculation for binaries with M dwarf primaries or VLM binaries
simply because

a) the frequency of higher-order systems decreases rapidly with
decreasing primary mass (Section 3.4.3) so the issue of how to treat
higher-order systems does not arise, and
b) the typical separation of binaries decreases with decreasing

primary mass (Section 3.5) so the wider systems that tend to
have more unequal masses are much less frequent for low primary
masses.

3.7 Orbital eccentricities

Observationally, there is observed to be an upper envelope to binary
eccentricities at periods less than a few years (Duquennoy & Mayor
1991; Halbwachs et al. 2003). However, the main calculation does
not allow us to probe such small separations. Observations also in-
dicate that eccentricities e < 0.1 are rare for periods greater than
≈ 100 days (separations∼> 1 AU). Finally, Halbwachs et al. (2003)
find that the eccentricities of so called ‘twins’ (binaries with mass
ratios M2/M1 > 0.8) with periods greater than ≈ 10 days (the
tidal circularisation radius) are lower than for more extreme mass
ratio systems.

In the upper panel of Figure 22 we plot the eccentricities ver-
sus semi-major axes of the orbits of the binaries, triples and quadru-
ples from the main calculation. The distribution of eccentricities
looks reasonable for separations greater than 10 AU. In particular,
of the 122 orbits with separations greater than 10 AU there are only
7 orbits with e < 0.1 and these all have separations between 10
and 100 AU.

However, there appears to be a strong excess of systems with
e > 0.7 and separations less than 10 AU. This is almost certainly an
artifact introduced by the sink particle approximation. The absence
of gas closer than 5 AU from a sink particle means that dissipa-
tive interactions between binary stars and the gas orbiting them are
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Figure 22. The eccentricity distribution of binary (filled circles), triple
(open triangles), and quadruple orbits (open squares) as a function of
semi-major axis for the main calculation at the end (top panel) and at
t = 1.038tff (centre panel) and for the re-run calculation (lower panel).
The distribution at the end of the main calculation looks reasonable ex-
cept for the group of binaries with semi-major axes less than ∼ 10 AU
and eccentricities e ∼> 0.7. These systems would presumably have smaller
eccentricities if the gas dynamics inside 5 AU of each sink particle were
modelled. This is tested by comparing the main calculation with the re-run
calculation at t = 1.038tff (the lower two panels). As expected, although
the main calculation still has a group of highly-eccentric close binaries,
these systems are absent in the re-run calculation.

absent. In Figure 22, we also plot eccentricity versus semi-major
axis for the orbits of binaries, triples, and quadruples from the main
calculation (middle panel) and re-run calculation (lower panel) at
t = 1.038tff . The re-run calculation has no indication of the excess
population at separations less than 10 AU and e > 0.7, whereas
even at this early time the main calculation has 5 binaries with sep-
arations less than 10 AU and e > 0.8. Thus, as expected, reducing
the sink particle accretion radii allows dissipative interactions be-
tween sink particles on smaller scales and brings the calculations
into better agreement with the observed eccentricity distributions.
The mean eccentricity of the systems in the re-run calculation is
〈e〉 = 0.44 for the binaries only and 〈e〉 = 0.45 if the orbits of the
triples and quadruples are also taken into account. The mean binary
eccentricity is in good agreement with the observed mean eccen-
tricities of long-period binaries (periods P ∼> 300 days: Duquen-
noy & Mayor 1991; Halbwachs et al. 2003).

We have also examined the dependence of the eccentricity on
the mass ratio (for binary orbits only, but including binaries that
are also components of higher order system) to see whether there is
any sign of the tentative correlation between mass ratio and eccen-
tricity found by Halbwachs et al. (2003). For the main calculation
the median eccentricity of binaries with mass ratios M2/M1 < 0.8
is e = 0.74 (100 orbits) while for M2/M1 > 0.8 the median
is e = 0.55 (46 orbits). Excluding orbits with separations less
10 AU (since they likely have high eccentricities due to the ab-
sence of dissipation on small scales) the median eccentricity of bi-
naries with mass ratios M2/M1 < 0.8 is e = 0.47 (47 orbits)
while for M2/M1 > 0.8 the median is e = 0.37 (10 orbits).
For M2/M1 > 0.9 the median is only e = 0.34 (7 orbits). For
the re-run calculation, the statistics are that the median binary ec-
centricity for mass ratios M2/M1 < 0.8 is e = 0.45 (33 orbits)
while for M2/M1 > 0.8 the median is e = 0.39 (10 orbits) and
e = 0.36 for M2/M1 > 0.9 (only 5 orbits). Thus, in all cases, we
find evidence for a link between mass ratio and eccentricity such
that ‘twins’ have lower eccentricities, as is observed, though the
effect is quite weak.

3.8 Relative alignment of orbital planes for triples

For a hierarchical triple system there are two orbital planes, one
corresponding to the short-period orbit and one to the long-period
orbit. There are many reasons why the inclinations of the orbital
planes may not be randomly distributed relative to one another. For
example, if the triple system forms from the fragmentation of a
disc around an initially single object, the orbital planes would be
expected to be nearly coplanar. If a triple system forms from a flat-
ten core it may have preferentially aligned orbital planes. If a triple
system forms with initially non-coplanar orbital planes and subse-
quently accretes a lot of mass this may drive its orbital planes into
closer alignment. On the other hand, if a triple system forms from
capture of a single object by a binary the orbital planes may be
very misaligned. Similarly, the wide tertiary in an initially aligned
triple system may be perturbed by a passing object resulting in mis-
aligned orbits.

Observationally, it is difficult to determine the relative orien-
tations of the two orbits of a triple system due to the number of
quantities that must be measured to fully characterise the orbits. In
particular, the relative angle between the two orbital angular mo-
mentum vectors is given by

cosΦ = cos i1 cos i2 + sin i1 sin i2 cos(Ω1 − Ω2), (3)

where i1 and i2 are the orbital inclinations and Ω1 and Ω2 are the
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Figure 23. The cumulative fraction of triples as a function of their rela-
tive orbital orientation angles at the end of the main calculation (top) and
at t = 1.038tff for the main calculation (centre) and the re-run calcula-
tion (bottom). In each case, the solid line gives the observed distribution
of orientation angles including the cos(Ω1 − Ω2) ambiguity (Sterzik &
Tokovinin 2002), the dot-dashed line gives actual the result from the simu-
lation, and the dashed line gives the simulation result including the ambigu-
ity present in the observed values. All simulated distributions are consistent
with the observed distribution. When the simulated distributions include the
angle ambiguity the probabilities that they are drawn from the same popu-
lation as the observed systems are 54%, 72%, and 66%, respectively. Even
when the actual simulated distributions are compared with the observed dis-
tribution the probabilities are 14%, 88% and 3.5%, respectively.

position angles of the lines of nodes. The latter are only known
with 180◦ ambiguity unless the ascending node is identified by ra-
dial velocities. Because for most observed triple systems the sign
of the cos(Ω1 − Ω2) term is not known, there are two possible
values of Φ. On the other hand, the mean value of Φ can be mea-
sured simply from knowledge of the number of co-rotating and
counter-rotating systems (Worley 1967; Tokovinin 1993; Sterzik
& Tokovinin 2002). These facts are important when we come to
compare our results with observations below.

The first studies (Worley 1967; van Albada 1968) of the rela-
tive orbital orientations of triple systems found a small tendency
towards alignment of the angular momentum vectors of the or-
bits. Of 54 systems with known directions of the relative motions,
39 showed co-revolution and 15 counter-revolution resulting in a
mean relative inclination angle of 〈Φ〉 ≈ 50◦. For 10 visual sys-
tems with known orbits, 5 systems were found to have Φ < 90◦,
2 had Φ > 90◦ and 3 were ambiguous. Fekel (1981) examined 20
systems with known orbits and periods of less than 100 years (for
the wide orbit). He found that 1/3 had non-coplanar orbits. Finally,
Sterzik & Tokovinin (2002) performed the most detailed study to
date. From 135 visual triple systems for which the relative direc-
tions of the orbital motions are known they found 〈φ〉 = 67◦ ± 9◦

and this result was also consistent with 22 systems for which the
orbits were known. They also found a tendency for the mean rel-
ative orbital angular momentum angle to increase with increasing
orbital period ratio (i.e. systems with more similar orbital periods
tend to be more closely aligned).

At the end of the main calculation there are 40 triple systems
(17 of these are sub-components of quadruple systems). The mean
relative orientation angle of the these systems is 〈Φ〉 = 65◦ ± 6◦,
in very good agreement with the observed value mentioned above.
This indicates that both the observed and simulated triple systems
have a small tendency towards orbital coplanarity. The re-run cal-
culation and the main calculation at t = 1.038tff formed 20 and
14 triples with 〈Φ〉 = 53◦ ± 7◦ and 〈Φ〉 = 69◦ ± 13◦, respec-
tively. In Figure 23, we compare the cumulative distributions of
the orbital orientation angles for the triple systems of Sterzik &
Tokovinin (2002) with those formed by the main calculation at the
end and at t = 1.038tff , and by the re-run calculation. The obser-
vational results (solid lines) include two angles for each observed
triple system due to the ambiguity described above. For the sim-
ulation results, we plot two cumulative distributions, one with the
actual angles (dot-dashed lines) and one with two angles (dashed
lines) for each triple (the true angle and the other possible angle al-
lowed by reversing the rotation of one of the orbits). The observed
and simulated distributions are in good agreement when the angle
ambiguity is included, but even without including the angle ambi-
guity the simulations are consistent with the observations.

In Figure 24 we plot the relative orbital orientation angle of
the 40 triple systems as functions of the semi-major axis of the wide
orbit and the ratio of the two orbital periods. There is no clear cor-
relation between the orbital orientation angle and semi-major axis
or period ratio, or indeed on other quantities such as primary mass
or the eccentricity of the long-period orbit. However, although the
triples are formed with a wide range of relative orbital inclinations,
the absence of any angles greater than 140 degrees seems to be sig-
nificant. This implies that the triple systems are not formed purely
by the capture of a third component. We also note that there ap-
pears to be a small collection of 4 nearly coplanar triples with wide
semi-major axes less than 100 AU, or 6 nearly coplanar triples with
period ratios of less than 100. This is intriguing, but unfortunately
is not statistically significant.
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Figure 24. The relative inclinations of the two orbital planes for the 40 triple systems produced by the main calculation (including those that are sub-
components of quadruples). We give plots of the relative orbital orientation angle versus the semi-major axis of the third component (left) and versus the
period ratio of the long and short period orbits (right). There are no triples with relative orbital angles > 140◦. There is also the hint of an excess of systems
with relative orbital angles less than ≈ 20◦ for systems with period ratios less than 100. Note that the two systems with period ratios PL/PS < 5 are still
dynamically unstable and would certainly undergo further evolution.

Figure 25. The mean relative orbital orientation angle for triple systems.
The blue filled circles give the results at the end of the main calculation with
their statistical uncertainties. The red open circles give the results from the
re-run calculation. The main calculation has not formed enough triple sys-
tems at t = 1.038tff to enable meaningful data to be plotted at the earlier
time. The black crosses give the observed mean angles from the Mulitple
Star Catalogue as calculated by Sterzik & Tokovinin (2002). The calcula-
tions are consistent with the observations and hint at an increasing mean
orientation angle with increasing period ratio, but they are also consistent
with a mean orientation angle that is independent of the period ratio.

As mentioned above, Sterzik & Tokovinin (2002) found a ten-
dency for the mean relative orbital orientation angle to increase
with increasing period ratio. In Figure 25 we reproduce their ob-
served results and plot the results from the main calculation and

the re-run calculation. Here we have performed averages over four
groups of 10 (5 for the re-run calculation) triples, sorted by pe-
riod ratio. Our results are consistent with the observed values and
there maybe a hint of a dependency on the period ratio, but our re-
sults are also consistent with no dependence. Better statistics are
required for both the simulations and observations to validate this
trend.

3.9 Relative alignment of discs and orbits

Finally, we consider the relative alignment of the spins of the sink
particles in binary systems. Unfortunately there is not a direct anal-
ogy with real binary systems in this case because the sink particles
are larger than stars and yet smaller than a typical disc. The ori-
entation of the sink particle spin thus represents the orientation of
the total angular momentum of the star and the inner part of its
surrounding disc. This distinction is important because during the
formation of an object the angular momentum usually varies with
time as gas falls on to it from the turbulent cloud. Thus, the orien-
tation of the sink particle frequently differs substantially from the
orientation of its resolved disc (if one exists) and, furthermore, the
orientations of both the sink particles and their discs change with
time while the object continues to accrete gas.

Observationally, Weis (1974) found a tendency for alignment
between the stellar equatorial planes and orbital planes among pri-
maries in F star binaries, but not A star binaries. The orbital sepa-
rations were mainly in the 10 − 100 AU range. Similarly, Guthrie
(1985) found no correlation for 23 A star binaries with separations
10-70 AU. Most recently, Hale (1994) considered 73 binary and
multiple systems containing solar-type stars and found evidence
for approximate coplanarity between the orbital plane and the stel-
lar equatorial planes for binary systems with separations less than
≈ 30 AU and apparently uncorrelated stellar rotation and orbital
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Figure 26. The relative inclinations of the rotation axes of the sink particles (modelling stars and their inner discs) of the binary systems produced by the
re-run calculation (including those that are sub-components of triples and quadruples). There is an excess of nearly aligned systems with a high total mass
and/or orbital periods less than a few years. The main calculation also shows a slight tendency for high-mass binaries to have aligned rotation axes, but it is
not statistically significant (see the main text).

axes for wider systems. For higher-order multiple systems, how-
ever, non-coplanar systems were found to exist for both wide and
close orbits. Hale found no evidence to support a difference depen-
dent on spectral type, eccentricity or age. In terms of circumstel-
lar discs, there is evidence for misaligned discs from observations
of misaligned jets from protostellar objects Davis, Mundt & Eis-
loeffel (1994), inferred jet precession (Eisloffel et al. 1996; Davis
et al. 1997), and direct observations Koresko (1998); Stapelfeldt
et al. (1998). However, these are not statistically useful samples.
Finally, Monin, Menard & Duchene (1998), Donar, Jensen & Math-
ieu (1999), Jensen et al. (2004), Wolf, Stecklum & Henning (2001),
and Monin, Ménard & Peretto (2006) used polarimetry to study the
relative disc alignment in T Tauri wide binary and multiple sys-
tems. They all found a preference for disc alignment for binaries.
However, Jensen et al. (2004) also found that the wide components
of triples and quadruples appear to have random orientations.

For the main calculation (either at the end or at t = 1.038tff )
we find no significant dependence of the relative orientation of the
two sink particle spins on mass ratio, semi-major axis, period, or
eccentricity. The relative orientations appear to be random. We do
not explicitly consider the relative orientation of the sink particle
spins and the orbital plane since if the sink particle spins are un-
correlated with each other, then by definition they cannot (both) be
closely correlated with the orbital axis. The mean relative orien-
tation angle for the 146 binaries (including those that are compo-
nents of triple and quadruple systems) is 88◦ ± 3◦ at the end of
the main calculation and 79◦ ± 7◦ at t = 1.038tff (37 binaries).
For the re-run calculation, with smaller accretion radii and orbital
periods, the mean angle is 73◦±7◦ (43 binaries) and there is a hint
that short-period binaries (periods less than a few years) may have
preferentially aligned spins but it is not statistically significant (see
Figure 26). For all of the calculations there is also a hint that the
most massive binaries have preferentially aligned spins, but only
for the re-run calculation is the reduction in the mean relative angle

statistically significant. In this case, the mean angle for most mas-
sive quartile of binaries (11 out of 43, having total binary masses
greater than ≈ 0.6 M�) is 38◦ ± 12◦ which differs from a random
value of 90◦ by more than 4σ, while the mean angle for the other
three quartiles are each within 0.5σ of 90◦ (see the left panel of
Figure 26). Within the competitive accretion paradigm, the reason
that the most massive binaries tend to have aligned rotation axes is
presumably that they have both accreted a lot of gas from a com-
mon reservoir in order to become massive binaries and that any ini-
tial variation in their rotation axes has been decreased by the long
period of accretion. The components of less massive binaries, on
the other hand, still largely retain their initial (randomly orientated)
rotation axes. Unfortunately, the observational surveys mentioned
above are somewhat ambiguous on whether or not there is a depen-
dence of alignment of the stellar rotation axes on the total binary
mass.

4 CONCLUSIONS

We have presented results from the largest hydrodynamical simula-
tion of star cluster formation to date that resolves the opacity limit
for fragmentation. It also resolves protoplanetary discs (radii > 10
AU) and binaries with separations as small as 1 AU. The calcula-
tion produced 1254 stars and brown dwarfs. This large number of
objects allows detailed comparison of the statistical properties of
the stars, brown dwarfs and multiple systems with the results of
observational surveys. We also re-ran part of the simulation with
smaller sink particles and no gravitational softening between sink
particle allowing discs with radii > 1 AU to be resolved and bina-
ries as close as 0.02 AU to test the dependence of the results on the
sink particle approximation. Our conclusions are as follows.

(i) The calculations produce an IMF with a similar form to the
observed IMF, including a Salpeter-type slope at the high-mass end,
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but they over-produce brown dwarfs. The brown dwarf to star ratio
is 3:2 from the main calculation, whereas observationally it is es-
timated to be more like 1:3. This does not appear to be a result of
using sink particles. Rather it is likely due to the absence of radia-
tive feedback and/or magnetic fields in the calculations.

(ii) As in previous, smaller calculations, the IMF originates
from competition between accretion and ejection which terminates
the accretion and sets an object’s final mass. Stars and brown
dwarfs form the same way, with similar accretion rates from the
molecular cloud, but stars accrete for longer than brown dwarfs
before undergoing the dynamical interactions that terminate their
accretion.

(iii) We examine the dependence of binarity, velocity dispersion
and the IMF on the distance from the centre of the resulting stellar
cluster. We find that the binarity and velocity dispersion is constant
throughout the bulk of the cluster, but beyond 3 half-mass radii (the
outer 20% of the stellar mass) the binarity decreases and the veloc-
ity dispersion increases because these objects have been ejected.
We find that stars have a slightly higher velocity dispersion than
VLM objects, and binaries have a significantly lower velocity dis-
persion than single objects. Contrary to the expectations of com-
petitive accretion, we find no evidence of mass segregation. This
may be because the stellar cluster was formed from the merger of
5 sub-clusters shortly before the calculation was stopped.

(iv) We examine the potential effect of dynamical interactions
on protoplanetary disc sizes. We find that the typical truncation ra-
dius decreases with increasing stellar mass (i.e. more massive stars
have had closer encounters). It is difficult to directly associate the
closest encounter with the radii of protostellar discs because many
stars accrete new discs after suffering a close encounter. This is
particularly true for the more massive stars. However, for VLM
objects, dynamical encounters usually occur soon after their for-
mation and terminate their accretion so their truncation radii may
more closely reflect their disc radii. Under this assumption we find
that at least 10% of VLM objects should have disc radii > 40 AU.
In lower density star-forming environments this fraction may be
expected to be larger. More massive stars that undergo close en-
counters and do not subsequently accrete new discs may be the
progenitors of WTTS with very young ages (∼< 1 Myr).

(v) We find that multiplicity strongly increases with primary
mass. The results from the main calculation are in good agreement
with the observed multiplicities of G, K, and M dwarfs. For VLM
objects with primary masses 0.03− 0.10 M� the multiplicity frac-
tion is 0.10 ± 0.03 which is lower than observations by a factor
of two. However, when smaller accretion radii are used the VLM
multiplicity is rises to 0.19±0.05, in good agreement with observa-
tions. Therefore, we conclude that hydrodynamical simulations are
able to match the observed multiplicities if the resolution is ade-
quate. We also predict that the multiplicity continues to drop below
30 Jupiter masses. We expect a multiplicity no more than ≈ 7%
for objects with masses 10-30 Jupiter masses, and less than 3% for
primaries of less than 10 Jupiter masses.

(vi) We find very low frequencies of VLM companions to stars
and we find that the frequency does not depend strongly on primary
mass. However, the median star-VLM separation strongly increases
as primary mass increases from less than 10 AU for 0.1− 0.2 M�
primaries to ∼ 50 AU for masses ≈ 0.4 M� and > 100 AU for
solar-type stars.

(vii) We examine the separation distributions of binaries, triples
and quadruples. We find that the median separation decreases with
decreasing primary mass with stellar systems having a median sep-
aration of ≈ 26 AU and VLM systems ≈ 10 AU. This trend is

in agreement with observed systems, but is not as strong. At small
separations the distributions are dependent on the sink particle pa-
rameters. Better agreement is obtained with smaller sink particle
accretion radii and gravitational softening.

(viii) The mass ratio distribution of M-dwarf binaries is roughly
flat and consistent with observations. VLM systems have a strong
preference for equal masses, but not as strong as appears to be the
case for observed systems. However, for K and G-type primaries
the calculations underproduce unequal mass systems. We find that
closer binaries tend to have a higher proportion of equal mass com-
ponents in broad agreement with observed trends. We also find rea-
sonable agreement with observations on the mass ratios of triples
and quadruples, but with relatively large uncertainties from both
the simulation and observations.

(ix) We find that the separations and mass ratios of VLM bina-
ries evolve during their formation from wide systems with unequal
masses towards close, equal mass systems.

(x) The main calculation produces a strong excess of short-
period highly eccentric binaries. However, when smaller sink par-
ticle accretion radii and gravitational softening is used this ex-
cess disappears leaving a reasonable eccentricity distribution with
a mean eccentricity that is in agreement with observations. We
also find a weak link between mass ratio and eccentricity such that
‘twins’ have lower eccentricities, as is observed.

(xi) We investigate the relative orientation of the orbital planes
of triple systems. We obtain a mean orientation angle of 〈Φ〉 =
65◦ ± 6◦ from the main calculation in excellent agreement with
the observed value. Thus, triples have a small tendency for or-
bital alignment. The distribution of orientation angles is also in
agreement with observations. There is an absence of relative an-
gles greater than ≈ 140◦ in the simulated triples.

(xii) Finally, we study the relation orientations of sink particle
angular momentum vectors in binaries(analogous to the rotation
axes of stars and their inner discs). We find no significant tendency
towards alignment. However, there is weak evidence that the most
massive binaries and/or the shorter period systems may have a ten-
dency for alignment. Observations suggest that shorter period bina-
ries have a tendency towards alignment.

Overall, the hydrodynamical star cluster formation simula-
tions display good agreement with a wide range of the observed
statistical properties of stellar systems. There are only two of areas
of poor agreement: the over production of brown dwarfs relative to
stars, and the lack of unequal-mass K and G-dwarf binaries. The
former of these is likely due to the absence of radiative feedback
and/or magnetic fields in the simulations, but the reason for the lat-
ter is unclear.

Finally, we note that from this point forward, numerical sim-
ulations of star formation should be capable of producing precise
predictions for the statistical properties stars. The precision of ob-
servational surveys will soon become the limiting factor in com-
paring the results of numerical simulations with observations. The
results of large observational surveys of stellar properties will be
needed in the near future.
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