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ABSTRACT
We investigate the dependence of stellar properties on the opacity limit for fragmentation
which is set by the metallicity of a molecular cloud. We compare the results from two large-
scale hydrodynamical simulations of star cluster formation that resolve the fragmentation
process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm.
The initial conditions of the two calculations are identical, but in the new simulation the onset
of the opacity limit occurs at a lower gas density, and this is expected to increase the minimum
mass of a brown dwarf by a factor of three (to ≈ 9 Jupiter masses).

We find that the lowest mass object is a factor of three higher in the low-metallicity
calculation, as expected. However, apart from this shift of the low-mass cut-off, the initial
mass functions (IMFs) produced by the two calculations are indistinguishable. In particular,
the median (characteristic) mass is unchanged. These results add support to the accretion-
ejection model proposed by Bate & Bonnell for the origin of the IMF, which predicts that the
characteristic mass should vary in proportion to the mean thermal Jeans mass in the cloud.
They also indicate that the form of the IMF above the low-mass cut-off should not display a
strong metallicity dependence, assuming that the cooling is dominated by dust and that the
overall mean thermal Jeans mass of a molecular cloud does not depend on its metallicity.
However, if the mean thermal Jeans mass of a molecular cloud is set by the thermal behaviour
of gas during the formation of the cloud, this should lead to an indirect dependence of the
characteristic mass of the IMF on metallicity because of the link between the characteristic
mass and the mean thermal Jeans mass of the cloud.

Key words: accretion, accretion discs – binaries: general – hydrodynamics – metallicity –
stars: formation – stars: low-mass, brown dwarfs – stars: luminosity function, mass function.

1 INTRODUCTION

Understanding the origin of the stellar initial mass function (IMF)
is one of the fundamental goals of a complete theory of star forma-
tion. One of the primary characteristics of the IMF is its character-
istic mass. Why is the typical stellar mass a few tenths of a solar
mass? One possibility is that the characteristic mass originates from
the typical Jeans mass in the progenitor molecular cloud. This may
be the thermal Jeans mass (Larson 1992, 2005), a magnetic critical
mass, or a turbulent Jeans mass (Silk 1995). A Jeans mass origin for
the characteristic stellar mass has been backed up by early hydrody-
namical calculations of the fragmentation of clumpy and turbulent
molecular clouds in which it was found that the mean mass of the
protostars was similar to the mean initial Jeans mass in the cloud
(Klessen, Burkert & Bate 1998; Klessen & Burkert 2000, 2001;
Klessen 2001). Another possibility is that the characteristic mass is
due to the opacity limit for fragmentation, which sets a lower limit
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to the mass of a ‘star’ and all other objects accrete to final masses
greater than this minimum mass (Hoyle 1953).

Over the past few years, we have performed large-scale hydro-
dynamical calculations of the collapse and fragmentation of turbu-
lent molecular clouds to investigate the origins of stellar properties.
The calculations resolve down to the opacity limit for fragmenta-
tion and, thus, capture the formation of all stars and brown dwarfs.
Results from the first two calculations have already been published
(Bate, Bonnell & Bromm 2002a, 2002b, 2003; Bate & Bonnell
2005). These calculations followed the fragmentation of turbulent
50-M� clouds with mean initial thermal Jeans masses of 1 M�and
1/3 M�. Here, we report the results of a third calculation, identical
to the first, except that the opacity limit for fragmentation set in at a
gas density nine times lower, resulting in a minimum mass that was
three times greater than in the first calculation (≈ 9 Jupiter masses
instead of 3 Jupiter masses for the first two calculations).

Together, these three calculations enable us to examine the de-
pendence of stellar properties on the mean thermal Jeans mass and
the opacity limit for fragmentation, at last answering the question
of which mass scale determines the characteristic mass of the IMF.
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2 M. R. Bate

We find that the opacity limit for fragmentation does not signif-
icantly influence the characteristic mass or the form of the IMF,
except that it sets the value of the low-mass cut-off.

The paper is structured as follows. Section 2 briefly describes
the numerical method and the initial conditions for the calculations.
The results are discussed in Section 3. In Section 4, we discuss the
implications of the results for the origin of the IMF. Our conclu-
sions are given in Section 5.

2 COMPUTATIONAL METHOD

The calculations presented here were performed using a three-
dimensional, smoothed particle hydrodynamics (SPH) code. The
SPH code is based on a version originally developed by Benz (Benz
1990; Benz et al. 1990). The smoothing lengths of particles are
variable in time and space, subject to the constraint that the number
of neighbours for each particle must remain approximately constant
at Nneigh = 50. The SPH equations are integrated using a second-
order Runge-Kutta-Fehlberg integrator with individual time steps
for each particle (Bate, Bonnell, & Price 1995). Gravitational forces
between particles and a particle’s nearest neighbours are calculated
using a binary tree. We use the standard form of artificial viscos-
ity (Monaghan & Gingold 1983; Monaghan 1992) with strength
parameters αv = 1 and βv = 2. Further details can be found in
Bate et al. (1995). The code has been parallelised by M. Bate using
OpenMP.

2.1 Equation of state

To model the thermal behaviour of the gas without performing ra-
diative transfer, we use a barotropic equation of state for the thermal
pressure of the gas p = Kρη, where K is a measure of the entropy
of the gas. The value of the effective polytropic exponent η, varies
with density as

η =

{

1, ρ ≤ ρcrit,

7/5, ρ > ρcrit.
(1)

We take the mean molecular weight of the gas to be µ = 2.46. The
value of K is defined such that when the gas is isothermal K = c2s ,
with the sound speed cs = 1.84 × 104 cm s−1 at 10 K, and the
pressure is continuous when the value of η changes.

In this paper, three different calculations are discussed. The
value of the critical density above which the gas becomes non-
isothermal is set to ρcrit = 10−13 g cm−3 in the first two calculations.
This equation of state has been chosen to match closely the rela-
tionship between temperature and density during the spherically-
symmetric collapse of molecular cloud cores with solar metallicity
as calculated with frequency-dependent radiative transfer (see Bate
et al. 2003 for further details). In the third calculation (which is the
main focus of this paper), we set the critical density to be a factor
of nine lower at ρcrit = 1.1 × 10−14 g cm−3. This is meant to mimic
the thermal behaviour of molecular gas that has a lower metallicity.

The heating of the molecular gas that begins at the critical
density inhibits fragmentation at higher densities. This effect is
known as the opacity limit for fragmentation (Low & Lynden-Bell
1976; Rees 1976; Silk 1977a, 1977b). It results in the formation
of distinct pressure-supported fragments within collapsing gas be-
cause the temperature increases quickly enough with density that
the Jeans mass increases, and the high density region that was col-
lapsing becomes Jeans stable. It stops collapsing and can only con-
tract as it accretes mass. The value of the initial mass of a fragment

presumably also gives the minimum mass for a brown dwarf, since
any subsequent accretion will only increase a fragment’s mass. This
minimum mass depends on the value of the critical density and is
approximately equal to the Jeans mass at that density and tempera-
ture. Since the critical density is a factor of nine lower in the third
calculation, the minimum mass is expected to be a factor of three
higher than in the other two calculations. The lowest mass object
produced by Calculations 1 and 2 was ≈ 3 Jupiter masses (MJ).
Thus, the lowest mass object in the third calculation is expected to
be ≈ 9 MJ.

Physically, the heating of the gas that results in a minimum
mass is due to the inability of the gas to radiate away energy as
quickly as energy is being deposited into it during the collapse (Ma-
sunaga & Inutsuka 1999). The gas cooling depends on its metallic-
ity, Z, and Low & Lynden-Bell (1976) found that the minimum
mass scales weakly with metallicity as Z−1/7. They assumed that
the conditions in the minimum mass fragment were given by a bal-
ance between radiative cooling and compressional work done on
the collapsing gas as the fragment became optically thick. Since
radiative cooling is proportional to κT 4 where κ is the opacity
and T is the temperature, then a lower metallicity (and hence a
lower opacity) results in the fragment having a greater tempera-
ture. By balancing the radiative cooling and compressional heating
when the fragment becomes optically thick, Low & Lynden-Bell
show that the fragment’s temperature scales as T ∝ κ−4/7. How-
ever, for the fragment to be optically thick and marginally Jeans
unstable requires κρλJ/2 = 1, where the Jeans unstable wave-
length λJ = 2π

√

RgT/(4πGρµ), Rg is the gas constant, G is the
gravitational constant, and µ is the mean molecular weight (i.e.,
κ2T/ρ = a constant). Therefore, using the above scaling of temper-
ature with opacity, the density of the fragment ρ ∝ κ−10/7. Thus,
both the temperature and density of the fragment are higher for
lower metallicity gas. The weak dependence of the fragment’s mass
on metallicity is due to a near cancellation of the two scalings of
temperature and density on opacity since the Jeans mass is propor-
tional to T 3/2ρ−1/2 ∝ κ−1/7. Note that Masunaga & Inutsuka (1999)
question Low & Lynden-Bell’s assumption that the fragment is al-
ways optically thick when cooling balances heating. However, if
the minimum mass does scale as Z−1/7, then Calculation 3 corre-
sponds to a metallicity of around 5 × 10−4 of the solar value (i.e.,
log(Z/Z�) = −3.3).

2.2 Sink particles

As the pressure-supported fragments accrete, their central den-
sity increases, and it becomes computationally impractical to fol-
low their internal evolution because of the short dynamical time-
scales involved. Therefore, when the central density of a pressure-
supported fragment exceeds ρs = 100ρcrit, we insert a sink particle
into the calculation (Bate et al. 1995).

In all the calculations discussed in this paper, a sink particle is
formed by replacing the SPH gas particles contained within racc = 5
AU of the densest gas particle in a pressure-supported fragment by
a point mass with the same mass and momentum. Any gas that later
falls within this radius is accreted by the point mass if it is bound
and its specific angular momentum is less than that required to form
a circular orbit at radius racc from the sink particle. Thus, gaseous
discs around sink particles can only be resolved if they have radii

∼> 10 AU. Sink particles interact with the gas only via gravity and
accretion.

Since all sink particles are created from pressure-supported
fragments, their initial masses are several MJ, as given by the opac-
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The dependence of the IMF on metallicity 3

Calculation Initial Initial Jeans Mach Heating No. Stars No. Brown Mass of Stars & Mean Median
Gas Mass Radius Mass No. Density Formed Dwarfs Brown Dwarfs Mass Mass

M� pc M� g cm−3 M� M� M�

1 50.0 0.188 1 6.4 10−13 ≥23 ≤27 5.89 0.1178 0.070
2 50.0 0.090 1/3 9.2 10−13 ≥19 ≤60 7.92 0.1003 0.023
3 50.0 0.188 1 6.4 1.1 × 10−14 ≥16 ≤18 6.88 0.2024 0.054

Table 1. The initial conditions for calculations 1 (BBB2003), 2 (BB2005) and 3 (this paper) and the statistical properties of the stars and brown dwarfs formed.
The initial conditions for Calculation 3 were identical to those of Calculation 1. The only difference was the density at which gas heating began which was
a factor of 9 lower in Calculation 3 than in Calculation 1. Calculation 2 differed from Calculation 1 in that the initial cloud had a smaller radius making the
mean thermal Jeans mass a factor of 3 lower. In each case, the initial turbulent velocity fields where identical and were scaled so that for each cloud the initial
kinetic energy equalled the magnitude of the gravitational potential energy. All calculations were run for 1.40 initial cloud free-fall times. Brown dwarfs are
defined as having final masses less than 0.075 M�. The numbers of stars (brown dwarfs) are lower (upper) limits because some of the brown dwarfs were still
accreting when the calculations were stopped.

ity limit for fragmentation. Subsequently, they may accrete large
amounts of material to become higher-mass brown dwarfs (∼< 75
MJ) or stars (∼> 75 MJ), but all the stars and brown dwarfs begin as
these low-mass pressure-supported fragments.

The gravitational acceleration between two sink particles is
Newtonian for r ≥ 4 AU, but is softened within this radius using
spline softening (Benz 1990). The maximum acceleration occurs
at a distance of ≈ 1 AU; therefore, this is the minimum separation
that a binary can have even if, in reality, the binary’s orbit would
have been hardened. Sink particles are not permitted to merge in
this calculation.

The benefits and potential problems associated with introduc-
ing sink particles are discussed in more detail by Bate et al. (2003).

2.3 Initial conditions

We report on the results from three calculations. Together, these
three calculations test the dependence of the statistical properties of
star formation (such as the IMF) on the mean thermal Jeans mass in
the initial clouds and the opacity limit for fragmentation (or metal-
licity of the gas). Results from Calculation 1 were presented in Bate
et al. (2002a, 2002b, 2003), while Bate & Bonnell (2005) compared
the results from Calculations 1 and 2. Henceforth, we will refer to
the latter two of these papers as BBB2003 and BB2005.

The initial conditions and results from all three calculations
are summarised in Table 1. Each calculation models star forma-
tion in a 50-M� molecular cloud which is set up as a uniform-
density spherical cloud with an imposed supersonic ‘turbulent’ ve-
locity field that is allowed to decay as the calculation evolves (see
BBB2003 and BB2005 for further details).

Calculations 1 and 3 were identical except for the value of
ρcrit at which the gas departed from isothermality. In fact, the initial
stages of Calculation 3 were not even calculated – Calculation 3
was simply started from the last dump file that was made before
Calculation 1 reached 10−14 g cm−3.

The differences between the initial conditions for Calcula-
tions 1 and 2 were discussed in detail by BB2005. Essentially the
clouds were identical except for radii of the initial clouds which
differed such that the molecular cloud in Calculation 2 was nine
times denser than that of Calculation 1 and, hence, the initial mean
thermal Jeans mass was three times lower in Calculation 2 (see Ta-
ble 1). Another slight difference was that, in order that the kinetic
energy in the turbulence balanced the gravitational potential energy
of each of the clouds, the initial Mach number of the ‘turbulence’
in Calculation 2 was slightly higher than that in Calculations 1 and
3 (see Table 1).

Finally, we note that the free-fall times of the clouds in Calcu-
lations 1 and 3 were tff = 6.0 × 1012 s or 1.90 × 105 years, while in
Calculation 2 tff = 2.0 × 1012 s or 6.34 × 104 years.

2.4 Resolution

The local Jeans mass must be resolved throughout the calculations
to model fragmentation correctly (Bate & Burkert 1997; Truelove
et al. 1997; Whitworth 1998; Boss et al. 2000; Nelson 2005). This
requires ∼> 1.5Nneigh SPH particles per Jeans mass; Nneigh is insuffi-
cient (Bate et al. 2003). The minimum Jeans mass in Calculations 1
and 2 occurs at the maximum density during the isothermal phase
of the collapse, ρcrit = 10−13 g cm−3, and is ≈ 0.0011 M� (1.1
MJ). Thus, we used 3.5 × 106 particles to model the 50-M� clouds.
For Calculation 3, the minimum Jeans mass is a factor of 3 greater
because of the decrease in the value of ρcrit, but because the calcu-
lation is restarted from an early dump file of Calculation 1 it still
uses 3.5×106 particles. Thus, in Calculation 3, a local Jeans mass is
always resolved by at least 3 × 1.1 × 1.5Nneigh ≈ 250 SPH particles

The calculations required approximately 95000, 50000, and
75000 CPU hours, respectively, on the SGI Origin 3800 of the
United Kingdom Astrophysical Fluids Facility (UKAFF).

3 COMPARISON OF RESULTS

The results of Calculations 1 and 2 were published in BBB2003
and BB2005. In these papers, the global evolution of the clouds, the
star formation efficiencies and timescales, the forms of the stellar
initial mass functions, the formation mechanisms of brown dwarfs
and close binaries, the multiplicities and velocity dispersions of the
objects, and the properties of their circumstellar discs we exam-
ined in detail. In this paper, we present the results of Calculation
3 in an identical manner to the past calculations through the fig-
ures and tables, but in the text we concentrate on how the results
differ from the other two calculations. In particular, we concentrate
on understanding the roles of the opacity limit for fragmentation
(i.e., metallicity) and the mean thermal Jeans mass in the progeni-
tor molecular cloud in determining the statistical properties of the
stars and brown dwarfs.

3.1 Evolution of the clouds

As stated in Section 2.3, the initial conditions and evolution of Cal-
culations 1 and 3 are identical up to the point that the gas first
exceeds the density at which it departs from isothermality, ρcrit,
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4 M. R. Bate

Core Initial Gas Initial Final No. Stars No. Brown Mass of Stars and Star Formation
Mass Size Gas Mass Formed Dwarfs Formed Brown Dwarfs Efficiency
M� pc M� M� %

1 3.04 (0.79) 0.06 × 0.04 × 0.03 2.83 (1.21) ≥10 ≤17 6.00 68 (83)
2 0.89 (0.22) (0.02 × 0.01 × 0.01) 1.06 (0.30) 3 0 0.41 29 (58)
3 1.12 (0.33) (0.02 × 0.01 × 0.01) 1.09 (0.30) 3 1 0.46 30 (61)

Cloud 50.0 0.38 × 0.38 × 0.38 43.1 ≥16 ≤18 6.88 14

Table 2. The properties of the three dense cores that form during Calculation 3 and those of the cloud as a whole. The gas masses and sizes of the cores are
calculated from gas with n(H2) > 1 × 106 cm−3 and n(H2) > 1 × 107 cm−3 (the latter values are given in parentheses). The initial gas mass is calculated just
before star formation begins in that core (i.e. different times for each core). Brown dwarfs have final masses less than 0.075 M�. The star formation efficiency
is taken to be the total mass of the stars and brown dwarfs that formed in a core divided by the sum of this mass and the mass in gas in that core at the end of
the calculation. As with Calculation 1, the star formation efficiency is high locally, but low globally. The numbers of stars (brown dwarfs) are lower (upper)
limits because fourteen of the brown dwarfs were still accreting when the calculation was stopped.

Figure 1. The global evolution of the cloud during Calculation 3 for comparison with Figure 2 of BBB2003 for Calculation 1. Images are only shown at times
t = 1.10−1.40tff because Calculation 3 was started from the t = 1.028tff dump file of Calculation 1, while the molecular gas was still isothermal. The evolution
prior to this time can be seen in Figure 2 of BBB2003. The last three panels all show the cloud at the end of the simulation (t = 1.40tff ), but they are from
three different angles (along the x, y, and z-axes). As in Calculation 1, by the end of Calculation 3, three dense cores have formed stars (one main dense core,
and two smaller cores visible at the left-hand side of the bottom-left panel). Many of the stars and brown dwarfs that formed in the main dense core have been
ejected from the cloud through dynamical interactions. Each panel is 0.4 pc (82400 AU) across. Time is given in units of the initial free-fall time of 1.90× 105

yr. The panels show the logarithm of column density, N, through the cloud, with the scale covering −1.7 < log N < 1.5 with N measured in g cm−2. This
column density scale is chosen to allow direct comparison with Calculation 1.

and, thus, Calculation 3 is simply started from a dump file of Cal-
culation 1 that was made at t = 1.028tff . For a detailed discus-
sion of the earlier evolution of the cloud the reader is referred to
BBB2003. Briefly, however, due to the initial velocity dispersion
the cloud quickly develops shocks, simultaneously losing kinetic
energy and developing overdensities in regions with converging
gas flows. When gravity dominates in an overdense region, grav-
itational collapse occurs and star formation begins.

The clouds modelled in Calculations 1 and 3 each form three
dense star-forming cores with essentially identical locations and
masses (compare Table 2 with Table 1 of BBB2003 and Figure 1
with Figure 2 of BBB2003). Because of the extra thermal support
in Calculation 3, star formation (i.e., the replacing of collapsed gas
with sink particles) occurs slightly later in each of the three dense
cores than in Calculation 1. The three dense cores begin forming
stars at t = 1.038tff , t = 1.298tff , and t = 1.320tff , respectively.
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The dependence of the IMF on metallicity 5

Figure 2. The star formation in the first (main) dense core of Calculation 3. The first objects form a binary at t = 1.038tff . Large gaseous filaments collapse
to form single objects and multiple systems. These objects fall together to form a small group. In Calculation 1, the equivalent group quickly dissolved due to
dynamical interactions. However, in Calculation 3 only one object is ejected quickly – the rest settle into a wide group of objects. and, simultaneously, there is
a quiet period (t = 1.16 − 1.24tff ) in the star formation while more gas falls into the core. At t ≈ 1.26, a new burst of star formation begins in the filamentary
gas and in a large disc around a close binary. The sequence is continued in Figure 3. Each panel is 0.025 pc (5150 AU) across. Time is given in units of the
initial free-fall time of 1.90 × 105 years. The panels show the logarithm of column density, N, through the cloud, with the scale covering −0.5 < log N < 2.5
with N measured in g cm−2.
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6 M. R. Bate

Figure 3. The star formation in the first (main) dense core, continued from Figure 2. The second burst of star formation again produces a small group of
objects. This group has essentially dissolved by the time the calculation is stopped. Note the system at the top-right of the lower panels – this sytstem is the
220-AU quadruple system (1,2),(6,8) consisting of two close binaries each surrounded by a circumbinary disc (see also Tables 3 and 4). The system at the
bottom-right of the lower panels is the quadruple system (3,(5,22),17) which contains a circumstellar disc around object 3 and a circumbinary disc around the
39-AU binary (5,22). Each panel is 0.025 pc (5150 AU) across. Time is given in units of the initial free-fall time of 1.90 × 105 years. The panels show the
logarithm of column density, N, through the cloud, with the scale covering −0.5 < log N < 2.5 with N measured in g cm−2.

In each case, these times are approximately 0.002tff later than the
corresponding times in Calculation 1.

All three calculations were stopped at t = 1.40tff to allow di-
rect comparison of the results. Star formation would continue in
each cloud if the calculations were followed further. Calculation
3 produced 16 stars and 16 brown dwarfs. Two additional objects
had substellar masses but were still accreting. Both of these formed
shortly before the calculation was stopped and, therefore, it is im-
possible to tell whether or not they would become stars.

3.2 The star-formation process in the dense cores

Snapshots of the process of star formation in Calculation 3 are
shown in Figures 2 and 3 for Core 1 and in Figure 4 for Cores 2
and 3. As with the earlier calculations, a true appreciation of how
dynamic and chaotic the star-formation process is can only be ob-
tained by studying an animation of the simulation. The reader is en-
couraged to download an animation comparing Calculations 1 and
3 from http://www.astro.ex.ac.uk/people/mbate/Research/Cluster.

As in Calculation 1, the star formation in the dense cores pro-
ceeds via gravitational collapse to produce filamentary structures
that fragment (e.g. Bastien 1983; Bastien et al. 1991; Inutsuka &
Miyama 1992) to form a combination of single objects and multiple
systems (Figures 2, 3 and 4). In Calculation 1, many of the multi-
ple systems result from the fragmentation of massive circumstellar
discs (e.g. Bonnell 1994; Bonnell & Bate 1994; Whitworth et al.

1995; Burkert, Bate & Bodenheimer 1997; Hennebelle et al. 2004).
This is still the case in Calculation 3 but there is less disc frag-
mentation than in Calculation 1 because the change in the equation
of state results in a given disc being hotter and, thus, more stable
against fragmentation. A particularly good example of the effect
of the change in the equation of state is the evolution of the cir-
cumbinary disc that forms around the first two objects (seen in the
upper-right of the first four panels in Figure 2 and the equivalent
figure of BBB2003). In Calculation 1, this disc fragments to form
two stars and a brown dwarf in the interval t = 1.06− 1.08tff , but in
Calculation 3 the disc does not fragment.

In the most massive core, in both Calculations 1 and 3, the
objects fall together into the gravitational potential well of the core
to form a small stellar cluster (Figure 2, t = 1.12 − 1.14tff). At this
point, Calculation 3’s cluster contains 10 objects (three fewer than
in Calculation 1). From this point on, the clusters begin ejecting
objects in dynamical interactions. We note that clusters containing
more objects appear to be the most efficient at ejecting objects (i.e.,
they eject the largest number objects in the same fraction of a free-
fall time). At t = 1.26, Calculation 3 had produced 14 objects but
ejected only five of these, whereas Calculation 1 had produced 20
and ejected 15 of these. Calculation 2 had produced 45 objects in
Core 1 and ejected ≈ 20 of these at the same time and more than
half of the objects shortly afterwards.

Another interesting point that is graphically illustrated by
comparing the evolutions of the main dense cores of Calculations 1
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The dependence of the IMF on metallicity 7

Figure 4. The star formation in the second and third dense cores. The first object in core 2 forms at t = 1.298tff , followed quickly by the first object in core 3
at t = 1.320tff . Both objects are subsequently surrounded by massive circumstellar discs that each fragment to form two triple stellar systems. Just before the
a fourth object forms from a filament in core 3 that has the mass of a brown dwarf but is still accreting rapidly when the calculation is stopped. Each panel is
0.025 pc (5150 AU) across. Time is given in units of the initial free-fall time of 1.90 × 105 yr. The panels show the logarithm of column density, N, through
the cloud, with the scale covering −0.5 < log N < 2.5 with N measured in g cm−2.

and 3 is the chaotic nature of star formation. Even a small change in
the physics (in this case, a slight change to the equation of state) re-
sults in parallel evolutions that diverge with time. This can be seen
by comparing Figures 2 and 3 with Figures 3 and 4 of BBB2003
(see also the animation). Up until t = 1.20tff , the spatial distribu-
tions of star formation within the main dense cores are very similar.
However, after this point they become very different, largely due to
the break up of a multiple system in Calculation 1 that does not
have a counterpart in Calculation 3.

Cores 2 and 3 each produce 3 stars during Calculation 3. Each
of these begins with a single star surrounded by a massive disc
that fragments to form a triple system. Core 3 also forms a fourth
object in a nearby filament, just before the calculation is stopped
(see also Figure 6 of BBB2003 for the counterpart of this filament).
Again, although disc fragmentation occurs in Calculation 3, it is
less prolific than in Calculation 1 in which cores 2 and 3 produced
7 and 5 objects, respectively.

3.3 Star formation timescale and efficiency

The timescale on which star formation occurs is the dynamical
one in all three calculations, consistent both with observational and
other theoretical arguments (Pringle 1989; Elmegreen 2000a; Hart-
mann, Ballesteros-Paredes & Bergin 2001), whether or not mag-
netic fields are present (MacLow et al. 1998;Ostriker et al. 2001;
Li et al. 2004). We note that Calculation 3 converts slightly more
gas into stars in the same amount of time as Calculation 1 (6.88

versus 5.89 M�). Because the calculations are essentially identical
on large-scales, this difference probably indicates that accretion is
more efficient in clusters containing fewer objects (the gas is less
stirred up).

In all calculations, the local star-formation efficiency is high
within each of the dense cores (see Table 2 for Calculation 3). This
high star-formation efficiency is responsible for the bursts of star
formation seen in all three calculations (see Figure 5 for Calcula-
tion 3, where there is a burst of star formation in the main dense
core from t = 1.03 − 1.13tff , followed by a pause, and a second
burst during t = 1.23 − 1.34tff). Gas is rapidly converted into stars
in the most massive dense cores and depleted to such an extent that
star formation pauses. Fresh gas must fall into the gravitational po-
tential wells of the small clusters before new bursts of star forma-
tion can ensue. Although the local star-formation efficiency is high
in the dense cores, most of the gas in both calculations is in low-
density regions where no star formation occurs. Thus, the overall
star formation efficiencies are low (∼ 10%) for all calculations. Al-
though none of the calculation have been followed until star forma-
tion ceases, in all calculations a large fraction of the gas has drifted
off to large distances by the end of the calculations due to the initial
velocity dispersion and pressure gradients and is not gravitationally
unstable. Thus, the global star formation efficiencies are unlikely
to exceed a few tens of percent. Furthermore, although none of our
calculations form high-mass stars, feedback from jets, outflows and
heating of the gas (none of which are included) would nevertheless
be expected to reduce the star formation efficiency further.
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8 M. R. Bate

Figure 5. Time of formation and mass of each star and brown dwarf at the
end of the calculation. The colour of each line identifies the dense core in
which the object formed: first (blue), second (green), or third (red) core.
Objects that are still accreting significantly at the end of the calculation a
represented with arrows. The horizontal dashed line marks the star/brown
dwarf boundary. Time is measured from the beginning of the calculation in
terms of the free-fall time of the initial cloud (top) or years (bottom). This
figure may be compared with the equivalent figures for Calculations 1 and
2 contained in BBB2003 and BB2005, respectively.

As discussed in BBB2003, observations show that star for-
mation efficiencies vary widely across star-forming regions. Some
parts of star-forming clouds contain no newly formed objects while
in other parts, notably clusters and groups, the local efficiency can
reach 50% or more. Overall, such a pattern results in low global star
formation efficiencies, typically 10-30% (Wilking & Lada 1983;
Lada 1992).

3.4 Stellar velocity dispersion

Dynamical interactions between cluster members eject stars and
brown dwarfs in all three calculations. In both Calculations 1 and
2, BBB2003 and BB2005 found that the final velocity dispersion
of the stars and brown dwarfs is independent both of stellar mass
and binarity. While the lack of dependence on mass was reported
from past N-body simulations of the breakup of small-N clusters
with N > 3 (Sterzik & Durisen 1998) and SPH calculations of
N = 5 clusters embedded in gas (Delgado-Donate, Clarke & Bate
2003), these calculations found that binaries should have a smaller
velocity dispersion than single objects due to the recoil velocities
of binaries being lower, keeping them within the stellar groups.

The velocities of the stars and brown dwarfs relative to the
centre of mass of all the objects are given in Figure 6 for Calcula-
tion 3. The rms velocity dispersion is 3.7 km s−1 in three dimen-
sions or 2.1 km s−1 in one dimension (using the centre-of-mass
velocity for binaries closer than 10 AU). This is intermediate be-
tween the velocity dispersions of Calculations 1 and 2, which had
three-dimensional velocity dispersions of 2.1 and 4.3 km s−1, re-
spectively.

The three-dimensional velocity dispersions of brown dwarfs,
stars, and binaries (semi-major axes < 100 AU) are 4.4, 2.8, and

Figure 6. The velocities of each star and brown dwarf relative to the centre-
of-mass velocity of the stellar system. For binaries with semi-major axes
< 100 AU), the centre-of-mass velocity of the binary is given, and the two
stars are connected by dotted lines and plotted as squares rather than circles.
The root mean square velocity dispersion for the association (counting each
binary once) is 3.7 km/s (3-D) or 2.1 km/s (1-D). As in Calculations 1 and
2, there is no significant dependence of the velocity dispersion on mass.
However, up to the end of the new calculation, no binaries were ejected so
the velocity dispersion of the binaries is low at only 1.2 km/s (3-D). The
vertical dashed line marks the star/brown dwarf boundary.

1.2 km s−1, respectively. The difference between the velocity dis-
persions of the stars and brown dwarfs is not significant since the
high brown dwarf velocity dispersion is based purely on a single
brown dwarf that was ejected with a velocity of 14 km s−1 (remov-
ing this object from the sample gives a brown dwarf velocity disper-
sion of 2.8 km s−1, exactly the same as that of the stars). However,
the difference between singles and binaries does appear to be sig-
nificant. This different result is due to the fact that in Calculations
1 and 2, both single and binary stars were ejected so that their ve-
locity dispersions were indistinguishable whereas, in Calculation
3, all of the binaries are in fact members of triple or high-order
systems (see Table 3) and none were ejected before the calculation
was stopped resulting in them having a low velocity dispersion.
This implies that the lack of dependence of the velocity dispersion
on multiplicity that was found in Calculations 1 and 2 is brought
about by the fact that most objects in those calculations formed
in clusters of N >∼ 20 objects so that both single objects and mul-
tiple systems were ejected. Small multiple systems are efficient at
ejecting single objects, but without the larger clusters of objects
that formed in Calculations 1 and 2 it is difficult to eject a multiple
system. This matches well with the results of Delgado-Donate et al.
(2004) who performed simulations of star formation in small turbu-
lent clouds and found while the velocity dispersions of singles and
binaries were indistinguishable, higher-order multiples had signif-
icantly lower velocity dispersions. The implications for observed
star-forming regions are clear. In low-density star-forming regions
such as Taurus and Chameleon that form only very small groups
of stars, multiple systems may have a lower velocity dispersion
than single objects, whereas in richer star-forming regions such
as ρ Ophiuchus and Orion there may be no distinction between
the velocity dispersions of single and multiple systems. Note also
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Figure 8. The initial mass functions produced by Calculations 1 and 3. Calculation 3 (righthand panel) is identical to Calculation 1 (lefthand panel), except
that the collapsing gas begins heating at a lower density, resulting in a greater minimum brown dwarf mass. The single shaded regions show all of the objects,
the double shaded regions show only those objects that have finished accreting. The mass resolution of the simulations is 0.0011 M� (i.e. 1.1 MJ), but no
objects have masses lower than 4.9 MJ in Calculation 1 and 9.7 MJ in Calculation 3 due to the opacity limit for fragmentation. We also plot fits to the observed
IMF from Miller & Scalo (1979) (dashed line), Kroupa (2001) (solid broken line), and Chabrier (2003) (solid curve). The Salpeter (1955) slope (solid straight
line) is equal to that of Kroupa (2001) for M > 0.5 M�. The vertical dashed line marks the star/brown dwarf boundary.

Figure 7. The cummulative initial mass functions produced by Calculations
1 (solid line) and 3 (dotted line). A Kolmogorov-Smirnov test on the two
distributions shows that there is a 45% probability that they are drawn from
the same underlying IMF (i.e., statistically, they are indistinguishable). The
vertical dashed line marks the star/brown dwarf boundary.

that Goodwin, Whitworth & Ward-Thompson (2004) argue that the
mass function in Taurus may different to other star-forming regions
due to the fact that it only contains low-mass cores.

Observationally, in agreement with the calculations presented
here, there is no evidence for brown dwarfs having a significantly
higher velocity dispersion than stars (something that was suggested
as a possible signature that brown dwarfs form as ejected stellar
embryos by Reipurth & Clarke 2001). In fact, studies of the radial
velocities of stars and brown dwarfs in the Chamaeleon I dark cloud
find that brown dwarfs have a marginally lower velocity dispersion
than the T Tauri stars (Joergens & Guenther 2001; Joergens 2003;
Joergens 2005).

3.5 Initial mass function

A summary of the mass distributions of the stars and brown dwarfs
formed in the three calculations is given in Table 1. From Calcu-
lations 1 and 2, BB2005 found that decreasing the mean thermal
Jeans mass of the progenitor cloud by a factor of three resulted in
a corresponding decrease in the median (characteristic) mass by a
factor of almost exactly a factor of three. Thus, they concluded that
the characteristic stellar mass is set by the mean thermal Jeans mass
in molecular clouds. However, the opacity limit for fragmentation
was the same in both these calculations, leaving open the question
of its role in the origin of the IMF. We show in this section that
changing the opacity limit for fragmentation only alters the value
of the minimum mass cut-off and does not alter the rest of the IMF
significantly.

Calculations 1 and 3 can be used to investigate the dependence
of the IMF on the opacity limit for fragmentation since they are
identical except for the minimum mass for fragmentation. As de-
scribed in Section 2.1, the minimum mass in Calculation 3 is a
factor of three greater that that in Calculation 1 (roughly 9 MJ as
opposed to 3 MJ). The IMFs from the two calculations are given
in Figure 8. Both calculations form roughly equal numbers of stars
and brown dwarfs, indicating that changing the minimum object
mass by a factor of three has little affect on the IMF (as opposed to
Calculation 2 whose IMF was biased in favour of brown dwarfs).
In Calculation 1, 50 objects were formed with a mean object mass
of 0.118 M� and a median mass of 0.070 M�. In Calculation 3, 34
objects were formed in the same time with a mean mass of 0.202
M� and a median mass of 0.054 M�. As we have already discussed,
heating of the gas at lower densities inhibits fragmentation, which
is consistent with the fact that fewer objects are formed and their
mean mass is greater. However, with such small numbers of ob-
jects, it is important to inquire whether any difference in the IMFs
is statisitically significant. In Figure 7, we give the cummulative
IMFs. A Kolmogorov-Smirnov test on the two distributions shows
that there is a 45% probability that they are drawn from the same
underlying IMF (i.e., statistically, they are indistinguishable). By
contrast, BB2005 found that the IMFs from Calculations 1 and 2
had only a 1.9% probability of being drawn from the same under-
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Figure 9. The time-averaged accretion rates of the objects formed in the cal-
culation versus their final masses. The accretion rates are calculated as the
final mass of an object divided by the time between their formation and the
termination of their accretion or the end of the calculation. The horizontal
solid line gives the arithmetic mean of the accretion rates: 1.9×10−5 M�/yr.
The accretion rates are given in M�/tff on the left-hand axes and M�/yr on
the right-hand axes. The vertical dashed line marks the star/brown dwarf
boundary.

Figure 10. The time between the formation of each object and the termina-
tion of its accretion or the end of the calculation versus its final mass. As
for the calculations in BB2005, there is a clear linear correlation between
the time an object spends accreting and its final mass. The solid line gives
the curve that the objects would lie on if each object accreted at the mean of
the time-averaged accretion rates. The accretion times are given in units of
the tff on the left-hand axes and years on the right-hand axes. The vertical
dashed line marks the star/brown dwarf boundary.

lying IMF. Since the Kolmogorov-Smirnov test is most sensitive to
differences in the median mass of two distributions, we conclude
that the characteristic (median) mass of the IMF is quite insensitive
to the value of the minimum mass which is imposed by the opacity
limit for fragmentation.

Although there is no statistically significant difference in the
characteristic mass from Calculations 1 and 3, the minimum object
mass does increase as expected due to the change in the opacity
limit for fragmentation. The lowest mass objects formed in Cal-
culations 1 and 2 were 4.9 MJ and 2.9 MJ, respectively. Thus, we
assume the minimum mass for their equation of state is ≈ 3 MJ.
Calculation 3 should then have a minimum object mass of ≈ 9 MJ.
Indeed, the lowest mass brown dwarf formed has a mass of 9.7 MJ.

Figure 11. For each object that has stopped accreting, we plot the time be-
tween the formation of the object and its ejection from a multiple system
versus the time between its formation and the termination of its accretion.
As for the calculations in BB2005, these times are correlated, showing that
the termination of accretion on to an object is usually associated with dy-
namical ejection of the object.

We note that the lowest mass objects in all three calculations were
ejected before the end of the calculations and none of them are still
accreting. The mimimum resolvable mass in the calculations is 1.1
MJ (see Section 2.4).

In Figure 8, we compare the IMFs from Calculations 1 and 3
with parameterizations of the observed Galactic IMF by Miller &
Scalo (1979), Kroupa (2001), and Chabrier (2003). Calculation 1
is in good agreement with Chabrier’s single star IMF (solid curve),
although we cannot yet test the form of the high-mass end of the
IMF (masses >∼ 1 M�) with calculations that simultaneously resolve
down to the opacity limit for fragmentation. It is difficult to com-
pare Calculation 3 with the parameterized IMFs due to the small
number of objects formed but, within the large uncertainties, it too
is consistent with the observed IMF.

BB2005 investigated in detail the origin of the IMF from Cal-
culations 1 and 2. Since all objects in the calculations begin as
opacity limited fragments at the minimum mass and then accrete
to their final masses, low-mass objects could originate from objects
with low accretion rates or from objects with a typical accretion
rate whose accretion is terminated shortly after they form (e.g., by
ejection in a dynamical interaction with other objects).

Following BB2005, in Figure 9, we plot the time-averaged ac-
cretion rates of all the objects in Calculation 3 as a function of their
final masses. A time-averaged accretion rate is defined as the mass
of an object at the end of the calculation divided by the time over
which it accreted that mass. The accretion time is measured from
the formation of an object (i.e., the insertion of a sink particle) to the
last time at which its accretion rate drops below 10−7 M�/yr, or the
end of the calculation (which ever occurs first). We also define an
ejection time, which is the time between the formation of an object
and last time the magnitude of its acceleration drops below 2000
km/s/Myr (or the end of the calculation). The acceleration criterion
is based on the fact that once an object is ejected from a stellar
cluster through a dynamical encounter, its acceleration will drop to
a low value. The specific value of the acceleration was chosen by
comparing animations and graphs of acceleration versus time for
individual objects. As with Calculations 1 and 2, the time-averaged
accretion rates of the objects have a significant dispersion. How-
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Object Numbers M1 M2 q a e Comments
M� M�

6,8 0.75 0.59 0.79 1.0* 0.54*
1,2 0.69 0.65 0.94 5.1* 0.77*
24,28 0.19 0.11 0.55 5.8 0.22
31,32 0.13 0.09 0.72 24 0.33
5,22 0.57 0.16 0.28 39 0.54

(24,28),29 (0.30) 0.16 0.55 40 0.22
(31,32),23 (0.22) 0.19 0.85 186 0.27 System 1; In Core 2
3,(5,22) 0.90 (0.72) 0.81 599 0.13

(1,2),(6,8) (1.35) (1.34) 1.00 217 0.37 System 2; In Core 1
(3,(5,22)),17 (1.62) 0.034 0.021 787 0.81 BD companion; System 3; In Core 1
((24,28),29),34 (0.46) 0.013 0.029 1794 0.85 BD companion (accreting); System 4; In Core 3

Table 3. The properties of the 4 multiple systems with semi-major axes less than 2000 AU formed in Calculation 3 (see also Figure 11). One of these systems
is a triple while the other three are quadruple systems. The structure of each system is described using a binary hierarchy. For each ‘binary’ we give the masses
of the primary M1 and secondary M2, the mass ratio q = M2/M1, the semi-major axis a, and the eccentricity e. The combined masses of multiple systems are
given in parentheses. Orbital quantities marked with asterisks are unreliable because these close binaries have periastron distances less than the gravitational
softening length. When the calculation is stopped, all four systems are unstable and/or are still accreting, so their final states are unknown. In the comments,
BD companion refers to a wide brown dwarf companion to the tighter triple systems.

ever, there is no systematic trend for the lower-mass objects to have
lower time-averaged accretion rates.

In Figure 10 we plot the time between the formation of an
object and the termination of its accretion (or the end of the calcu-
lation) versus the final mass of the object. Those points with arrows
denote those objects that are still accreting significantly at the end
of the calculation. Accreting objects would move towards the upper
right of the diagrams if the calculations were extended. Again, as
with Calculations 1 and 2, it is clear that the lower the final mass
of the object, the earlier its accretion was terminated. This is the
origin of the mass distribution of the objects.

To check that the termination of the accretion is caused by the
ejection of objects during dynamical interactions, in Figure 11, we
plot the time between the formation of an object and its ejection
from a stellar group versus the time between the formation of an
object and the termination of its accretion. In this figure, we only
plot those objects that have stopped accreting and reached their fi-
nal masses by the end of the calculations. As in Calculations 1 and
2, the ejection and accretion times are closely correlated, showing
that the termination of accretion on to an object is usually associ-
ated with dynamical ejection of the object. These results confirm
the speculation of Reipurth & Clarke (2001) and the conclusions
of Bate et al. (2002a) and BB2005 that brown dwarfs are ‘failed
stars’. They fall short of reaching stellar masses because they are
cut off from their source of accretion prematurely due to ejection in
dynamical interactions.

3.6 Multiple systems

In all three calculations, the dominant formation mechanism for bi-
nary and multiple systems was fragmentation, either of gaseous fil-
aments (e.g. Bastein 1983; Bastien et al. 1991; Inutsuka & Miyama
1992) or of massive circumstellar discs (e.g. Bonnell 1994; Bate
& Bonnell 1994; Whitworth et al. 1995; Burkert, Bate & Boden-
heimer 1997; Hennebelle et al. 2004). Star-disc encounters played
an important role in truncating discs (Section 3.7), and in dissipat-
ing kinetic energy (c.f. Larson 2002), but they did not play a sig-
nificant role in forming binary and multiple systems from unbound
objects (c.f. Clarke & Pringle 1991a). Only two star-disc encoun-

ters resulted in the formation of multiple systems in Calculation 1,
while in Calculation 2 there was no obvious example of a multiple
system being formed via a star-disc encounter.

In Calculation 3, there are three occurences of star-disc en-
counters resulting in the formation of multiple systems. Given that
there are only four multiple systems at the end of the calculation
(which contain 5 binaries), star-disc encounters seem to play a
greater role in Calculation 3. As in Section 3.4, which discussed
velocity dispersion, we can attribute the greater importance of star-
disc interactions in creating multiple systems to the smaller sizes
of the stellar groups in Calculation 3. As pointed out by Clarke &
Pringle (1991), star-disc encounters in larger−N clusters are less
likely to result in capture because the virial speeds in the clusters
will be higher and discs are more likely to be dispersed by high-
velocity encounters prior to undergoing potential star-disc captures.

3.6.1 Multiplicity

When Calculation 3 was stopped, there were 19 single objects, 1
triple, and 3 quadruple systems (taking any objects with semi-major
axes greater than 2000 AU to be essentially unbound). The proper-
ties of the 4 multiple systems are displayed in Table 3 and in Figure
12. Two of these systems originated in the main dense core, and one
each in Cores 2 and 3. Within these systems there are five binaries
(i.e., none have been ejected). The two multiple systems in Core 1
and four of the ejected brown dwarfs are still very weakly bound
to each other, but are all at large distances from each other. The
two multiple systems in Cores 2 and 3 are also marginally bound to
each other.

Calculation 3 produces a high companion star fraction

CS F =
B + 2T + 3Q + ...

S + B + T + Q + ...
(2)

of 11/23 = 48 percent, where S is the number of single stars, B is
the number of binaries, T is the number of triples, etc. Alternately,
the number of companions divided by the total number of objects is
11/34 = 32 percent. These percentages are similar to those of Cal-
culation 1. Although the systems with more than two components
will continue to evolve and some will probably eject more mem-
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Figure 12. Mass ratios versus semi-major axes of the binary, triple and
quadruple systems that exist at the end of the calculation (see also Table
3). Binaries are plotted with circles, triples with triangles and quadruple
systems with squares. This figure should be compared with Figure 12 of
BBB2003 and Figure 11 of BB2005 for the equivalent results from the other
calculations. Calculation 1 produced no wide binaries (separations > 10
AU) and no binaries with mass ratios M2/M1 <∼ 0.3. Calculation 2 produced
five wide binaries and three binaries with mass ratios M2/M1 < 0.2. This
calculation produces wide binaries (separations > 10 AU), but the lowest
mass ratio is M2/M1 = 0.28.

bers, it is plausible that the final companion star frequency will be
high, as required by observations of star-forming regions (Ghez,
Neugebauer & Matthews 1993; Leinert et al. 1993; Richichi et al.
1994; Simon et al. 1995; Ghez et al. 1997; Duchêne 1999).

As with Calculations 1 and 2, Calculation 3 produces a realis-
tic frequency of close binaries (separations < 10 AU) even though
no two objects form closer than 13 AU from each other due to the
opacity limit for fragmentation (see Bate et al. 2002b for a full dis-
cussion). Thus, although the change in the equation of state of the
gas inhibits fragmentation more in Calculation 3 than in Calcula-
tion 1, this does not seem to affect the ability of close binaries to
form. Even if all wider systems break up, the resulting frequency
of close binaries would be 3/31 ≈ 10 percent. The corresponding
values from Calculations 1 and 2 were 16 percent and 7 percent,
respectively. The observed value is ≈ 20 percent (Duquennoy &
Mayor 1991). However, Duquennoy & Mayor were not sensitive to
brown dwarfs. If only stars are considered, the frequency of close
binaries becomes 3/13 ≈ 23 percent (for Calculations 1 and 2 the
corresponding frequencies were similar at 5/18 ≈ 28 percent and
4/15 ≈ 27 percent, respectively). As in Calculations 1 and 2, there
is a preference for close binaries to have equal masses (all three
have mass ratios of M2/M1 > 0.5), and the frequency of close bi-
naries is higher for more massive primaries – 6 of the 16 stars are
members of close binaries, while no brown dwarfs are in close bi-
naries. These preferences result from the formation mechanisms of
close systems as discussed by Bate et al. (2002b).

3.6.2 Brown-dwarf companions to stars and brown dwarfs

Together, Calculations 1 and 2 produced 6 binaries consisting only
of very-low-mass (VLM) stars (M < 0.09 M�) or brown dwarfs
out of ≈ 80 VLM or brown dwarf systems, implying a frequency
of binary brown dwarfs of ∼ 8 percent. Calculation 3 is consistent
with this frequency in that it produced no VLM binaries from ≈ 18
VLM objects. Together, the three calculations give an overall VLM
binary frequency of ≈ 6 percent. For star-brown dwarf binary sys-
tems, the frequencies are also very low. Calculation 1 one produced
one binary system consisting of a star (0.13 M�) and a brown dwarf
(0.04 M�). The system had a separation of 7 AU and was part of an
unstable septuple system. Both objects were still accreting. Calcu-
lations 2 and 3 did not produce any such star/brown dwarf binary
systems. The reasons for these low frequencies are discussed by
BB2005.

The observed frequency of very-low-mass and brown dwarf
binaries is ≈ 15 percent (Reid et al. 2001; Close et al. 2002, 2003;
Bouy et al. 2003; Burgasser et al. 2003; Gizis et al. 2003; Martı́n
et al. 2003; Siegler et al. 2005). Note, however, that the frequency
of binary brown dwarfs as wide companions to stars may be higher
(Burgasser, Kirkpatrick & Lowrance 2005). The vast majority of
binary brown dwarfs have separations less than 20 AU (Close et al.
2003; Siegler et al. 2005), but there is at least one binary brown
dwarf system with a separation greater than 200 AU (Luhman
2004a). Thus, the calculations correctly favour the production of
close binary brown dwarfs, but they under-produce binary brown
dwarfs by roughly a factor of two. This difficulty may be associated
with our resolution limits – we are unable to resolve circumstel-
lar discs at radii <∼ 10 AU, and gravitational interactions between
stars/brown dwarfs are softened at separations less than 4 AU. The
rarity of brown dwarfs orbiting stars is consistent both with the so
called brown dwarf desert discovered through Doppler searches for
planets orbiting solar-type stars (Marcy & Butler 2000) and from
imaging surveys for wide systems (Gizis et al. 2001).

Finally, many of the multiple systems in all of our calculations
have wide brown dwarf companions. Although they are still dy-
namically evolving when the calculations are stopped, we note that
the small-scale turbulent star-formation simulations of Delgado-
Donate et al. (2004), which were evolved until the systems reached
dynamical stability, also predict that many close stellar binary sys-
tems should have wide brown dwarf companions.

3.7 Protoplanetary discs

The calculations resolve gaseous discs with radii >∼ 10 AU around
the young stars and brown dwarfs. Discs with typical radii of ∼ 50
AU form around many of the objects due to the infall of gas with
high specific angular momentum. However, in all calculations discs
are severely truncated in subsequent dynamical interactions, leav-
ing most of them too small to form analogues of our solar system
(see BBB2003). The six resolved discs at the end of Calculation 3
are listed in Table 4, and in Figure 13 we plot the closest encounter
distance for each object during the calculation as a function of its
final mass. All but two stars have had encounters closer than 10 AU.
None of the brown dwarfs or ejected stars have resolved discs and
the stars with resolved discs are all members of multiple systems.
Although they have had very close encounters, subsequent infalling
gas has build up circumbinary and circumtriple discs around them.
This is a feature of all three calculations.
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Disc Radius Encircled Objects Comments
AU

300 (31,32),23 Circumtriple disc (Figure 2, t = 1.40tff , right)
130 (24,28),29 Circumtriple disc (Figure 4, t = 1.40tff )
120 5,22 Circumbinary disc, forms triple system with 3
110 3 Forms triple system with 5,22 (Figure 2, t = 1.40tff , left)
70 6,8 Circumbinary disc, forms quadruple system with 1,2
60 1,2 Circumbinary disc, forms quadruple system with 6,8

Table 4. The discs that exist around objects when the calculation is stopped. Discs with radii ∼< 10 AU are not resolved. Unlike Calculation 1, in Calculation 3
no objects are ejected with resolved discs. This table should be compared with Tables 4 of BBB2003 and BB2005 for the equivalent results from Calculations
1 and 2, respectively.

Figure 13. The closest encounter distance of each star or brown dwarf dur-
ing the calculation versus the object’s final mass. This figure should be
compared with Figure 14 of BBB2003 and Figure 12 of BB2005 for the
equivalent results from Calculations 1 and 2. Objects that are still accret-
ing significantly at the end of the calculation are denoted with arrows in-
dicating that they are still evolving and that their masses are lower limits.
Objects that have resolved discs at the end of the simulation are circled.
Discs smaller than ≈ 10 AU (horizontal dotted line) cannot be resolved by
the simulation. Objects that have had close encounters may still have re-
solved discs due to subsequent accretion from the cloud. Note that there are
only 6 resolved discs at the end of the simulation, but many surround bi-
nary and higher-order multiple systems (hence the 13 circles in the figure).
Binaries (semi-major axes < 100 AU) are plotted with the two components
connected by dotted lines and squares are used as opposed to circles. Com-
ponents of triple systems whose orbits have semi-major axes 10 < a < 100
AU are denoted by triangles. All of the binaries are surrounded by resolved
discs. Encounter distances less than 4 AU are upper limits since the point
mass potential is softened within this radius. The vertical dashed line marks
the star/brown dwarf boundary. The two brown dwarfs in the top left corner
of the figure that are still accreting formed shortly before the calculation
was stopped are thus still evolving rapidly. They may not end up as brown
dwarfs. There are no brown dwarfs that have resolved discs and have fin-
ished accreting.

4 DISCUSSION

4.1 The accretion/ejection model for the IMF

BB2005 argued that the IMFs produced by Calculations 1 and 2
originated from a combination of accretion and dynamical ejec-
tions which terminate the accretion. As shown in Section 3.5, their
conclusions are supported by Calculation 3. They proposed a very

simple model for the origin of the IMF and found that it reproduced
the IMFs obtained from the first two calculations very well. Here
we show that the model also produces an acceptable fit to the IMF
from Calculation 3.

The simple accretion/ejection model for the IMF produced by
a star-forming molecular cloud is as follows.

• We assume all objects begin with masses set by the opacity
limit for fragmentation (3 MJ for Calculations 1 and 2 and 9 MJ

for Calculation 3) and then accrete at a fixed rate Ṁ until they are
ejected.
• We assume the accretion rates of individual objects are drawn

from a log-normal distribution with a mean accretion rate (in log-

space) given by log10(Ṁ) = log10(Ṁ) and a dispersion of σ dex (i.e.

log10(Ṁ) = log10(Ṁ) +σG, where G is a random Gaussian deviate
with zero mean and unity variance).
• The ejection of protostars from an N-body system is a stochas-

tic process that can be described in terms of the half-life of the pro-
cess. We assume that there is a single parameter, τeject, that is the
characteristic timescale between the formation of an object and its
ejection from the cloud. The probability of an individual object be-
ing ejected is then exp(−t/τeject) where t is the time elapsed since
its formation.

Calculation 3 supports this model in that Figure 9 shows there is no
correlation between an object’s time-averaged accretion rate and its
final mass, while Figure 10 shows a strong correlation between the
time an object spends accreting and its final mass and Figure 11
shows that accretion is usually terminated by gravitational interac-
tions with other objects leading to dynamical ejection.

Assuming that the cloud forms a large number of objects, N,
and that the time it evolves for is much greater than the character-
istic ejection time, T � τeject, then a semi-analytic formula can be
derived for the form of the IMF (BB2005) and there are essentially
only three free parameters in the model. These are the mean accre-

tion rate times the ejection timescale, M = Ṁτeject, the dispersion in
the time-averaged accretion rates, σ, and the minimum mass pro-
vided by the opacity limit for fragmentation, Mmin. If M >> Mmin,
M is the characteristic mass of an object.

4.1.1 Reproduction of the hydrodynamical IMF

The hydrodynamical calculations are not followed until all the stars
and brown dwarfs have finished accreting (i.e., the IMF is not fully
formed). It is not the case that T � τeject. This must be taken
into account when calculating simple accretion/ejection models for
comparison with the IMFs from the hydrodynamical calculations.
To do this, we evolved the simple models over the same periods
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Figure 14. The initial mass functions produced by Calculation 3 (his-
togram) and its fit using the simple accretion/ejection IMF model (thick
solid line). Statistically, the hydrodynamical and the model IMFs are in-
distinguishable. Also shown are the Salpeter slope (solid straight line), and
the Miller & Scalo (1979) (dashed line), Kroupa (2001) (solid broken line)
and Chabrier (2003) mass functions. The vertical dashed line is the stellar-
substellar boundary.

Model Mmin Ṁ σ τeject T
M� M�/yr Dex. yr yr

1 0.003 6.17 × 10−6 0.33 3.2 × 104 6.91 × 104

2 0.003 7.18 × 10−6 0.50 9.3 × 103 3.67 × 104

3 0.009 1.00 × 10−5 0.41 2.5 × 104 6.91 × 104

Table 5. The parameters of the simple accretion/ejection IMF models that
should reproduce the IMFs from the three hydrodynamical calculations
(Figure 14). There are essentially three parameters in the models, the mean

accretion rate times the characteristic timescale for ejection (Ṁτeject), the
dispersion in the accretion rates σ, and the minimum mass set by the opac-
ity limit for fragmentation Mmin. The time period over which the simula-
tions are run, T , has a small effect on the form of the IMF. For example, the
peak in the model IMF (Figure 14) at very low masses is because one object
formed shortly before the calculation was stopped and therefore this object
does not usually manage to accrete much mass in the model.

of time, T , that the hydrodynamical simulations took to form their
stars and brown dwarfs and take the times of formation of each
of the objects directly from the hydrodynamical simulations (i.e.,
from Figure 5 for Calculation 3).

We generated a model IMF for comparison with the IMF from
Calculation 3. The model IMF is the average of 30000 random real-
isations of the simple accretion/ejection model, keeping the values
of the input parameters fixed. The parameter values are given in Ta-
ble 5. It is important to note that these parameters were not varied
in order to obtain good fits to the hydrodynamical IMF. Rather, the
values of the parameters were taken directly from the hydrodynam-
ical simulation. There is no freedom to vary the parameters in order

to obtain a better fit. The mean accretion rate of the objects,Ṁ, and
the dispersion in the accretion rates, σ, were set equal to the mean
(in log-space) of the time-averaged accretion rates and their disper-
sion from Figure 9. The characteristic ejection times, τeject, were set
so that the mean numbers of objects ejected from the 30000 random
realisations matched the number of objects ejected during each of
the hydrodynamical calculations (19 for Calculation 3).

Figure 14 shows that the simple accretion/ejection model
matches the hydrodynamical IMF reasonably well. A Kolmogorov-
Smirnov test gives a 6.6 percent probability that the hydrodynami-
cal IMF could have been drawn from the model IMF (i.e., they are
consistent with each other). For Calculations 1 and 2, the hydrody-
namical IMFs have 92 and 27 percent probabilities of being drawn
from the simple accretion/ejection model IMFs, respectively (see
BB2005).

4.2 The dependence of the IMF on temperature

Since the three hydrodynamical calculations discussed in this pa-
per are very time consuming, they have been carefully designed to
enable the origins of the statistical properties of stars to be inves-
tigated in the most possible detail. Comparison of Calculations 1
and 2 allowed BB2005 to investigate the dependence of star forma-
tion on the mean density ρ̄ of the molecular cloud and, therefore,
the mean thermal Jeans mass which scales as 1/

√
ρ̄. Comparison

of Calculations 1 and 3 allows the role of the opacity limit for frag-
mentation to be investigated. However, it is also possible to com-
pare Calculations 2 with Calculations 1 and 3 to investigate the
dependence of star formation on the temperature of a molecular
cloud and, thus, test further BB2005’s assertion that the character-
istic stellar mass depends primarily on the mean thermal Jeans mass
of a star-forming molecular cloud.

Purely isothermal models of the collapse of molecular clouds
are often said to be scale-free in that they can be rescaled arbitrarily
to different model clouds with different masses or radii. In these
cases, only dimensionless quantities such as the ratio of thermal to
gravitational potential energies remain fixed.

The calculations discussed in this paper have a characteris-
tic density introduced through the change in the equation of state
that occurs at the critical density ρcrit. However, they can still be
rescaled. Calculation 2 differed to Calculation 1 in that its density
was greater by a factor of nine, decreasing the mean thermal Jeans
mass from 1 M� in Calculation 1 to 1/3 M�. This was achieved by
decreasing the radius by a factor of 91/3 ≈ 2.08. The only other dif-
ference was that, because the initial ‘turbulence’ was normalised so
that the kinetic energy equaled the magnitude of the gravitational
potential energy while the initial temperature was kept at 10 K, the
Mach number was larger in Calculation 2 by a factor of 91/6 ≈ 1.44.

We can also inquire what the star formation would be like if
Calculation 2 was re-run, but with a greater initial cloud temper-
ature. In particular, if we increased the temperature by a factor of
32/3 = 2.08, this would give the same initial mean thermal Jeans
mass of 1 M� as that in Calculations 1 and 3. Thus, rescaling the
results of Calculations 1 and 3 by reducing all distances by a factor
2.08 gives the same evolution as running Calculation 2 with an ini-
tial temperature of 20.8 K instead of 10 K. The initial densities, ve-
locities, and free-fall times of the clouds are the same as they were
in Calculation 2. But now the results give the properties of stars
formed in hotter clouds with critical densities of ρcrit = 9.0 × 10−13

and 1.0 × 10−13 for Calculations 1 and 3, respectively. The only
slight difference between these rescaled versions of Calculations
1 and 3 and performing entirely new calculations of hotter clouds
with these critical densities is that Calculations 1, 2, and 3 all used
sink particles to model the stars and brown dwarfs with accretion
radii of 5 AU and gravitational softening of dynamical interactions
within 4 AU. The rescaled versions of Calculations 1 and 3 have
sink particle radii and gravitational softening 2.08 times smaller
than these values. However, the whole assumption of using sink
particles is that the results are not sensitive to their introduction.
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Certainly, it is assumed that the results do not change dramatically
by varying accretion radii by factors of two.

With this one caveat, we can use the rescaled results to in-
vestigate the dependence of star formation on the temperature of
a molecular cloud. Changing the distance scale of Calculations 1
and 3 does not alter the mass scaling. Thus, the IMFs of Calcula-
tions 1 and 3 do not change due to the rescaling. BB2005 showed
that the characteristic (median) mass of Calculation 2 is a factor of
3.04 smaller than that of Calculation 1, following almost exactly
the change in the mean thermal Jeans mass. Thus, the characteris-
tic (median) mass of the rescaled Calculation 1 (which models a
cloud identical to that of Calculation 2 except that its temperature
is 2.08 times hotter) also follows the increase in the mean thermal
Jeans mass of the cloud due to the increase in the temperature T
(the Jeans mass scales as T 3/2). Furthermore, since the IMFs of
Calculations 1 and 3 are indistinguishable (Section 8), the opacity
limit for fragmentation which is modelled by the critical density at
which the equation of state changes also plays no significant role in
determining the IMF in the hotter high-density clouds represented
by the rescaled versions of Calculations 1 and 3.

In summary, the characteristic (median) mass of the IMF is
set by the mean thermal Jeans mass in the progenitor cloud (de-
termined by the density and temperature), and not by the opacity
limit for fragmentation (determined by metallicity). The question
then arises as to what sets the mean thermal Jeans mass in a molec-
ular cloud. Larson (2005) has argued that this is set by a change in
the thermal behaviour of the gas forming molecular clouds when
the cooling switches from being dominated by line cooling to dust
cooling. This has been backed up by hydrodynamical simulations
that study how the characteristic mass of fragments depends on the
equation of state at low densities (Jappsen et al. 2005). Therefore,
it is important to note that although metallicity may not affect the
IMF above the low-mass cut-off through its effect on the opacity
limit for fragmentation, it may still have an affect on the charac-
teristic mass of the IMF if it alters the cooling during molecular
cloud formation and, hence, the mean thermal Jeans mass of the
molecular cloud.

5 CONCLUSIONS

We have presented results from the third hydrodynamical calcula-
tion to follow the collapse of a turbulent molecular cloud to form
a stellar cluster while resolving fragmentation down to the opacity
limit. We compare the results with those obtained from the calcu-
lations published by Bate et al. (2002a,2002b,2003) and Bate &
Bonnell (2005). The new calculation is identical to that of Bate et
al. (2003), except for the density above which the opacity limit in-
hibits fragmentation. It can also be rescaled to model a cloud that
is identical to that of Bate & Bonnell (2005) except that the initial
gas has a temperature of 20.8 K instead of 10 K.

We find that although the minimum mass of a brown dwarf
increases when the opacity limit for fragmentation sets in at a lower
gas density (i.e., a lower metallicity), the form of the IMF above
the minimum cut-off mass is independent of the opacity limit for
fragmentation.

Rather than being set by the opacity limit for fragmentation,
Bate & Bonnell (2005) showed that the characteristic (median)
mass of the IMF varies linearly with the mean thermal Jeans mass
in the molecular cloud. They did this by running two calculations
with different densities. However, the mean thermal Jeans mass is
a function of both density and temperature. Here we also confirm

that the characteristic mass of the IMF varies linearly with the mean
thermal Jeans mass by comparing two clouds with the same initial
densities, but with different initial temperatures.

Finally, the new calculation discussed in this paper displays
several differences from the earlier calculations. Because collaps-
ing gas begins to heat at a lower density, the degree of fragmenta-
tion is reduced and the stellar groups contain fewer objects. This
has two main effects. First, the velocity dispersion of multiple stars
is lower than that of single objects because it is difficult to eject
binaries from small−N groups (Section 3.4). Second, star-disc in-
teractions play a greater role in forming binary and multiple sys-
tems than in the earlier calculations because the velocity disper-
sions of the objects in smaller groups tend to be lower and discs
undergo fewer dispersive encounters (Section 3.6). We also note
that Goodwin et al. (2004) found that the somewhat peculiar IMF
of Taurus (with a peak at ≈ 0.8 M� IMF and few low-mass objects;
Briceño et al. 2002; Luhman 2004b) may result from the molecu-
lar cloud being composed of a collection of low-mass cores with
similar masses. Together, these results imply that in a region like
Taurus, which contains only low-mass cores forming small groups
of stars, the IMF may be abnormal, multiple systems may have a
smaller velocity dispersion than singles, and star-disc encounters
may be more important for forming multiple systems than in larger
star clusters, which might help explain why binaries seem abnor-
mally abundant in Taurus (Leinert et al. 2003; Ghez et al. 2003;
Duchêne 1999).
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