Spatially resolved observations of inner disc structure

Stefan Kraus

ESO Garching 2018 October 16

Outline

- 1. The need for high-angular resolution observations
- 2. Disk structure at/inside the dust sublimation radius
- Multi-wavelength studies to constrain
 ...global disk parameters
 ...dust composition
 ...disk gaps
- 4. Temporal variability
- 5. Gas kinematics in spectral lines
- 6. Multiplicity & disk structure in multiple systems
- 7. Conclusions

Exciting structures in intermediate/outer disk

Resolving the "inner disk" environment

Resolving the "inner disk" environment

Interferometry breaks the resolution barrier imposed by diffraction (λ /D) and the atmosphere

ALMA: 400-1300 µm

Resolving the "inner disk" environment

Beam sizes at 140 pc Mars **ALMA 400** µm

0.002"

VLTI Interferometry

CHARA interferometry

The need for high angular resolution

Spatially resolved observations essential in order to address:

(1) Parameter ambiguities

Diff. parameter combinations reproduce data equally well

Typical models require 18+ parameters + dust composition assumptions Whitney et al. 2003

(2) Complexity!

Models depend on simplifying assumptions

Stellar multiplicity, planet formation, gravitational instabilities, ... Piétu et al. 2005 **Protoplanetary disk structure at/inside dust sublimation region**

Interferometric observables

Interferometric observables:

Visibility Closure Phase (CP) Differential Phase (DP)

- \rightarrow measures object extension (in 1st order)
- → measures deviations from point-symmetry
- → measures photocenter displacements in spectral lines

Size-luminosity relation

→ Pionieering studies in early 2000's did not constrain the emission geometry, but assumed a geometry and investigated how the size scaled with the stellar luminosity

Millan-Gabet 2001, 2007 PPV; Monnier et al. 2002, 2005 also: Akeson et al. 2000; Eisner et al. 2003, 2004

Size-luminosity relation

Millan-Gabet 2001, 2007 PPV; Monnier et al. 2002, 2005 also: Akeson et al. 2000; Eisner et al. 2003, 2004 Conclusions from modelling PIONIER LP data on 27 Herbig stars (Lazareff et al. 2017):

- Ring shaped geometries preferred, but very wide (40%)
- Fraction of reprocessed light suggests z/h=0.2 at sublimation rim
- Dust temperature 1800K
- For few objects, azimuthal modulation (preferentially along minor axis) improves the fit

→ Consistent with emission from curved dust sublimation rim

images in Kraus et al. 2010, Renard et al. 2010, Benisty et al. 2011

Need of long baselines

Tannirkulam et al. 2008

Beyond the puffed-up rim paradigm

New models are able to reproduce the SED without conventional puffed-up inner rim → Need to be tested with interferometry

Size-luminosity relation

"Oversized" T Tauri stars

"Undersized" Herbig Be stars

Idea: Gas emits free-free emission and/or shield dust rim, allowing dust to exist closer in

Challenge: Expected molecular line emission not observed (Benisty et al. 2009)

(Muzerolle et al. 2004, Monnier et al. 2005, Kraus et al. 2009)

Highly refractory dust grains

Idea: Highly refractory dust species (Graphite, Iron, ...) can exist inwards of Silicate rim, resulting in complex, multi-layered rim structure

Challenge: Requires T_{subl}=2100...2300 K

(Benisty et al. 2009, Kama et al. 2009, McClure et al. 2013) Multi-wavelength studies: Disk gaps and dust composition

Constraints on disk flaring

also: Preibisch et al. 2005, Schegerer et al. 2009; Ragland et al. 2012

Dust mineralogy

outer disk (r > 2 AU) inner disk (r < 2 AU) 0.8 0.2 0.4 0.1 Normalized flux $F_{\rm in}$ / ($F_{\rm in}$ + $F_{\rm out}$)_{max} HD 163296 Normalized flux Fout HD 163296 0.80 0.2 0.4 0.1 Π n HD 144432 HD 144432 0 +0.8 F_{out})max 0.2 0.4 0.1 Ι HD 142527 HD 142527 \circ 12 12 8 10 8 10 λ (µm) λ (μ m) amorphous crystaline Silicate Olivine van Boekel et al. 2004, also: Varga et al. 2018

Mid-Infrared interferometry allows to separate the flux contributions from different spatial scales.

→ Spectra from inner and outer disk regions differ significantly!

Dust mineralogy

Dust in the inner disks is highly crystallized and consists of larger grains than dust in outer disk regions.

→ Evidence for radial differences in dust mineralogy (grain growth)

van Boekel et al. 2004, also: Varga et al. 2018

Dust mineralogy

Using different baseline lengths allows one to probe dust mineralogy as function of radius → separate crystalline and amorphous silicate contributions

Schegerer et al. 2008 also: Ratzka et al. 2007,

Gaps and disk evolution

Evidence for quantum-heated particles

baseline $[M\lambda]$

Systematic search for gaps

Some of scatter in MIR size-L diagram could be due to disk sub-structure, such as gaps

Herbig stars:

Size-color diagram suggests that Meeus Group I sources might be more likely to exhibit such sub-structure than Group II sources

also: Schegerer et al. 2013, Chen et al. 2012, 2016

Linking continuum geometry + molecular gas tracers

HD101412, [OI] line Fedele et al. 2008

also: Chen et al. 2010; DIANA project

Prospect: MATISSE imaging

 New 4T beam combiner

 L/M band:
 R=30, 500, 950, 5000

 N-band:
 R=30, 220

Covers important new line tracers, e.g. fundamental CO

Simulated image (10 µm)

Reconstructed image

Protoplanet (1 M_J) around T Tauri star

Fortney et al. 2008 Wolf & D'Angelo 2005

Temporal variability

Evidence for variability in the inner disk environment

SAO206462, SPHERE (J-band) Stolker et al. 2017

also: Benisty et al. 2017, 2018, Pinilla et al. 2018

UX Ori / Dipper stars: Disk inclination constraints

Most scenarios predict near-edge viewing geometry:

- Orbiting dust clouds
- Scale height variations near dust rim
- Dusty disk winds
- Disk warps induced by companions/planets

Interferometry provides inclination estimates for inner disk:

CO Ori:	~30°
CQ Tau:	~30–50°
V1026 Sco:	~50°
UX Ori:	~60 - 70°
VV Ser:	~70°
KK Oph:	~70°

Kreplin et al. 2016

Eisner et al. 2004, Pontoppidan et al. 2007, Chapillon et al. 2008, Vural et al. 2014, Kreplin et al. 2013, 2016, Davies et al. 2018

Changing inner disk structures

Keplerian period (140pc, 2 M_{sun}) @3mas (VLTI): **2 month** @1mas (CHARA): **14 days**

> ➔ Tough requirement on scheduling, challenging for reconfigurable arrays

> > also: Jamialahmadi et al. 2018 Chen et al. 2018

Prospects for imaging moving inner disk structures

CHARA array: 6 one-meter telescopes, forming baselines up to 330m

MIRC-X: New 6T near-infrared imager that aims to image protoplanetary discs with 0.001" resolution

Gas kinematics in spectral lines

Accretion/ejection in YSOs

Bry: Does it trace accretion or outflow?

No tight correlation has been found, but general trends:

Compact Bry-emitting region in most low-L sources (T Tauri, most Herbig Ae)

→ consistent with magnetospheric accretion

Extended Br γ -emitting (R_{Br γ} \approx R_{sub}) in some medium/high-L sources

→ wind contributions

also: Tatulli et al. 2007, Kraus et al. 2008, Eisner et al. 2009,2010

Brγ: Does it trace accretion or outflow?

→ There is no unique Bry emission-mechanism in YSOs

Bry: Magneto-centrifugally driven disk wind models

also: Weigelt et al. 2011, Grinin et al. 2012, Caratti o Garatti et al. 2015, 2016, Garcia-Lopez et al. 2015

Bry: Velocity-resolved imaging

Hone et al. 2017

Gas kinematics studies: $H\alpha$, Pfund, CO

Multiplicity and disk structure in multiple system

Detecting companions

GRAVITY: 22 companions around 16 OB-type stars in Orion

Smith et al. 2005, Biller et al. 2012, GRAVITY-collab./Karl et al. 2018 also: Monnier et al. 2008, Ireland+Kraus 2008, Ratzka et al. 2009, Wang et al. 2012, Berger et al. 2010, Kraus+Ireland 2012, Kraus et al. 2012, many more...

Characterizing disks & accretion processes in PMS binaries

Increase in $\mbox{H}\pmb{\alpha}$ EW and emitting radius near periastron passage

→ Companion might trigger enhanced mass-loss in disk wind or stellar wind

also: Garcia et al. 2013, LeBouquin et al. 2014

Disk (mis)alignment information provides insights on dynamical history of system

- Tidal forces work towards realigning disks w.r.t. orbital plane on precession timescale (< 200,000 yrs for circumprimary disk)
 - → Tidal realignment is still ongoing
- Estimate individual accretion rates: $\frac{\dot{M}_B}{\dot{M}_A} = 1.6$ Secondary interrupts accretion stream, channeling material onto circumsecondary disk (e.g. Whitworth et al. 1995)

Conclusions

Interferometry can resolve large sample of T Tauri, Herbig Ae/Be stars and mYSOs in the NIR (\sim 60 w/PIONIER) and MIR (\sim 100 w/MIDI)

Primary limitation for many VLTI studies: Baseline coverage + few apertures
 → CHARA, NPOI, MROI → plan for VLTI expansion & next-generation facility

• Rim geometry:

Consistent with curved rim, but best-studied objects hint at material closer in

• **Multi-wavelength interferometry:** Fantastic tool to characterise dust properties and to study global disk structure

Multi-epoch observations:

Prospect to link inner+outer disk and to study origin of variability in YSO

• Interferometry in spectral lines:

Constrain mass transport and gas kinematics in outflow-launching region