European Interferometry Initiative

Stefan Kraus University of Exeter President EII Science Council

EII Bureau: Paulo Garcia, Olivier Chesneau, Jean-Philippe Berger also thanks to: Guy Perrin, John Monnier

VLTI Community Days 2014 January 16, Grenoble

The European Interferometry Initiative

Open association of institutes and laboratories willing to collaborate on the exploitation and development of long baseline interferometry in optical/infrared astronomy.

EII is *the* place where interferometry in Europe is discussed and organised on trans-national level

EII & ESO: EII should act <u>aside ESO</u> for scientific vision (trigger ESO's scientific thoughts, e.g. 2005 workshop on 2nd-gen.) and act <u>together with ESO</u> to organize the community (VLTI Community Meetings, interact with the STC panel and with the VLTI Programme Scientist)

Lobbying with funding agencies and decision makers

A strong lobbying activity for interferometry in Europe is still necessary:

- We are in the E-ELT era
- ALMA is very strong and strongly supported
- Next big projects are the SKA, LSST ... no large optical interferometer!
- VLTI still needs strong support and strong vision (with a consistent plan-roadmap for the future)

EII - Governing bodies

Bureau:

President Vice-President Secretary VLTI Project Scientist Stefan Kraus Olivier Chesneau Paulo Garcia Jean-Philippe Berger

Science Council:

President Austria Belgium Czech Republic ESA FSO France Germany Hungary Italy Israel Netherlands Poland Portugal Spain Switzerland United Kingdom

Stefan Kraus Josef Hron Jean Surdej Pavel Koubsky Malcolm Fridlund Jean-Philippe Berger Alain Chelli Thomas Henning Laszlo Mosoni Sebastiano Ligori Frez Ribak Walter Jaffe Andrzej Niedzielski Paulo Garcia Carlos Eiroa Didier Queloz David Buscher

OPTICON FP7 workpackages

The EII coordinates the activities of FP6 and FP7.

Workpackage Number	Description
WP1	Towards Adaptive Optics for the European Extremely Large Telescope
WP2	Fast Detectors and Cameras
WP3	Astrophotonics
WP4	Image reconstruction in optical interferometry
WP5	Development of Active Freeform Mirrors (AFMs)
WP6	Novel Dispersive and Holographic Optical Elements for Astronomy
WP7	Transnational Access
WP8	Management
WP9	Innovation
WP10	European Extremely Large Telescope Science
WP11	Time Domain Astronomy
WP12	Medium Sized Telescope Integration
WP13	Enhancing community skills - Integrating Communities
WP14	The European Interferometry Initiative

OPTICON FP7 workpackages

Active working groups / Joint Research Activities:

- "Interferometric Image Reconstruction" JRA (2013-2016, chair: Eric Thiebaut)
- "Future of Interferometry in Europe" WG (2013-2016, chair: Jean Surdej)

Completed:

- "AGNs and the Galactic Center" (FP7-1, 2009-2012)
 → 2011 Lisbon workshop
- "Circumstellar disks and planets" (FP7-1, 2009-2012)
 → 2010 Kiel workshop & AARA article
- "Science cases for a 2nd generation facility" (FP7-1, 2009-2012)
 → 2010 JENAM session
- "Integrating interferometry into mainstream astronomy" JRA (FP6)
 Epscibility studies for 2nd concretion VITI instruments
 - → Feasibility studies for 2nd generation VLTI instruments
 - ➔ Offline data reduction: Model-fitting (LITpro) + image reconstruction
- Radiative transfer (FP6)
- Interferometry and astroseismology (FP6)

Fizeau exchange grants

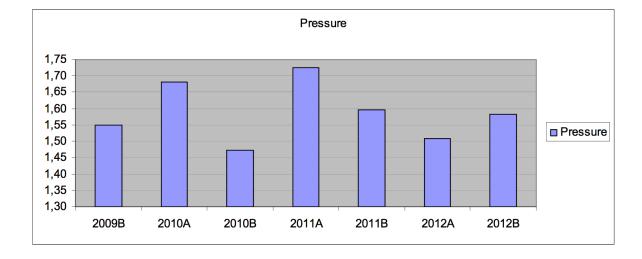
Goals:

- Strengthen nascent collaborations
- **Spread** interferometric knowledge across Europe
- **Enhance** the active participation of new countries in VLTI

Methods:

- Fund short research/technical/training exchange visits (1 week 1 month)
- Priority to young researchers and "knowledge poor" institutes
- Competitive calls twice a year (March and September)

Selection from an independent project office (chair: Josef Hron)


Fizeau exchange grants

Publicity: Announced at OLBIN and through posters

Around 80 grants awarded between 2009-2012

Pressure stable around 1.6

Next call in March

VLTI schools

- 2006 "Observation and Data Reduction with the VLTI", Goutelas
- 2007 "Circumstellar disks and planets at very high angular resolution", Porto
- 2007 "AGNs at the highest angular resolution", Torun
- 2008 "Astrometry and Imaging with the VLTI", Keszthely
- 2010 "High spatial resolution in astronomy", Porquerolles Island
- 2013 "High angular resolution for stellar astrophysics", Barcelonnette
- next: Cologne (likely 2015)

Images: F. Millour

Coordination

GRAVITY and MATISSE are coming and require full attention in order to make them a success!

At the same time, start planning for the time after GRAVITY and MATISSE:

→ Future VLTI instruments:

Community feedback now could guide upcoming VLTI infrastructure decisions; Future VLTI instrument proposals will compete with UT instrument proposals

→ Long-term scientific vision:

helps to justify further technological developments in OIR interferometry.

Future of Interferometry in Europe

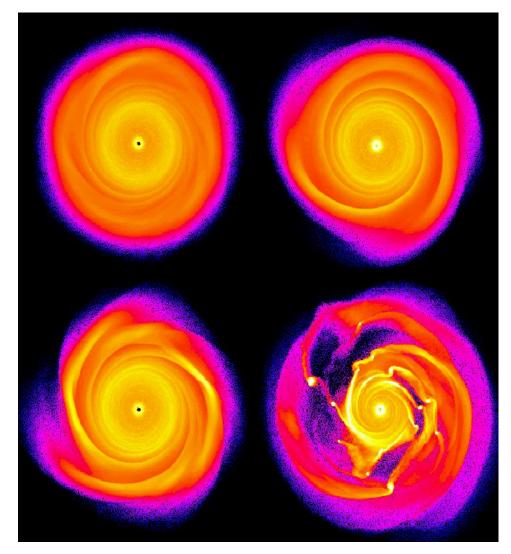
EII working groups:

Circumstellar disks and planets (2009-2012) AGNs and the Galactic Center (2009-2012) Science cases for a 2nd generation facility (2009-2012) Future of Interferometry in Europe (since 2013)

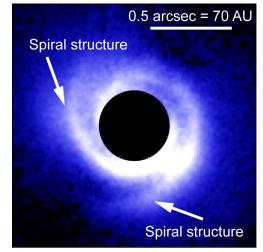
Dedicated workshops on the Future of Interferometry:

2004: Workshop "Science cases for next generation OIR interferometric facilities", Liege

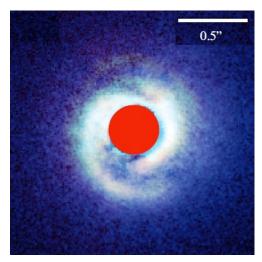
2005: Workshop "Technology Roadmap for Future Interferometric Facilities", Liege

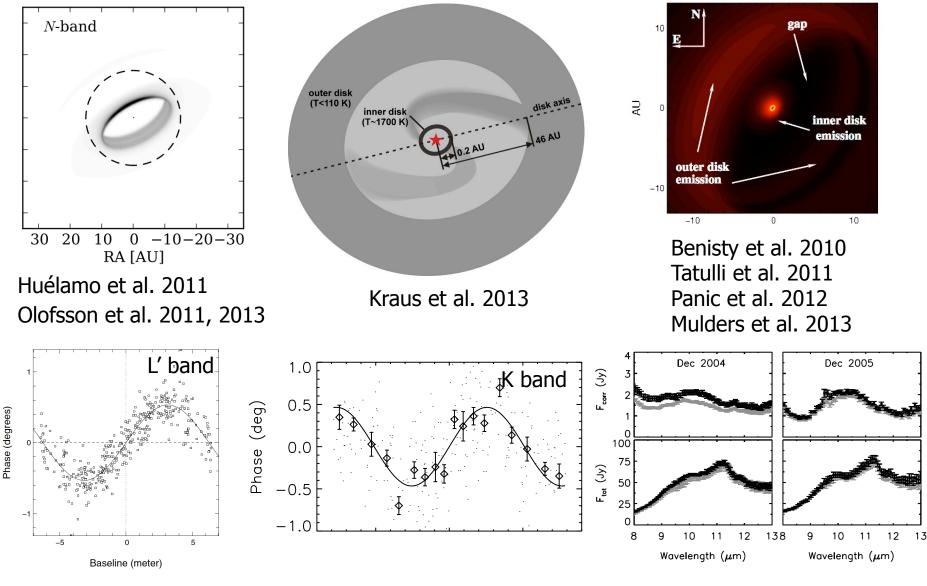

2010: JENAM session "Science Cases for OIR Interferometers – Present and Future", Lisbon

2013: EWASS session "Science with present & future interferometric instruments", Turku


2013: Workshop "Improving the performances of current optical interferometers & future designs", OHP

Similar efforts in the US (Interferometry Forum) and in national communities


Planet formation is a highly complex & dynamical process

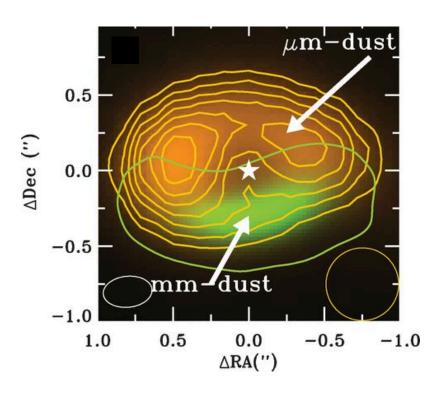

Quinn et al. 2002

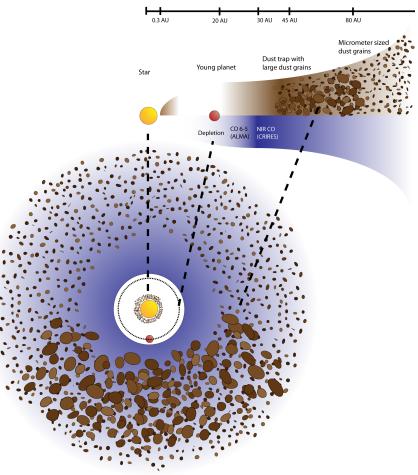
SAO206462, Dong et al. 2012

MWC758, Grady et al. 2013

Emission from outer disk? Companion signature?

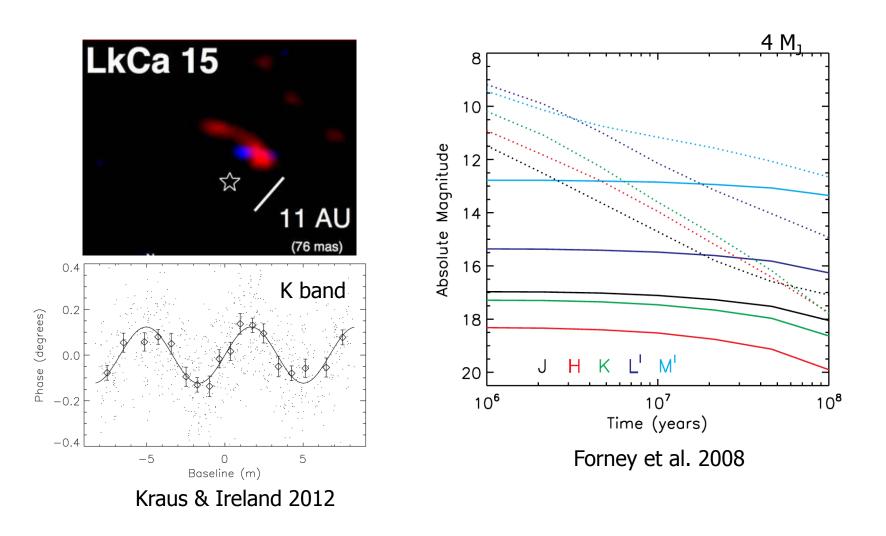
➔ Disk asymmetry

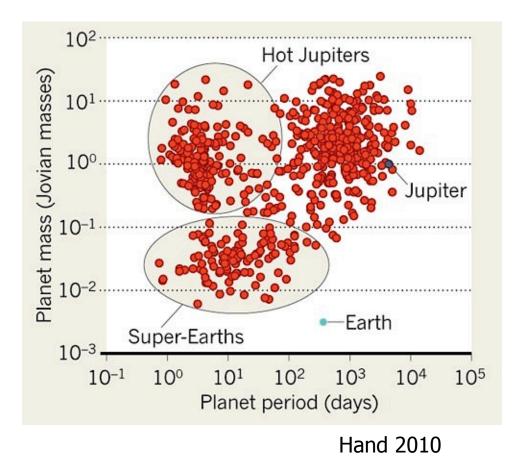

➔ Temporal changes


Trace small dust grains & detect gradients in dust mineralogy

 \rightarrow early stages of grain growth and gap opening

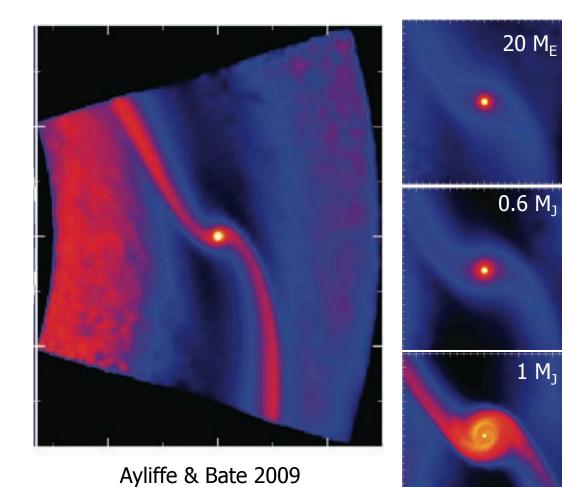
Determine distribution of ices & water

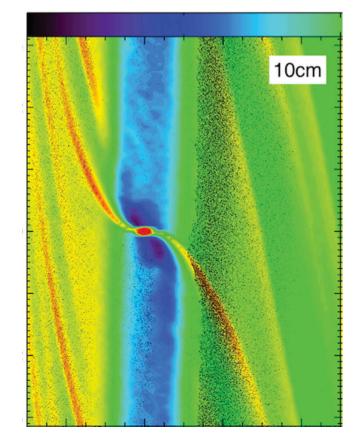

➔ link to habitability


van der Marel et al. 2013

Detect young, accreting protoplanets

Detect young, accreting protoplanets


- → constraints on **planetary migration**
- → link to **exoplanet statistics**



Key questions:

- (1) What determines the architecture of planetary systems?
- (2) Did the planets form where we observe them, or did they migrate due to planet-disk interaction?

Study the protoplanetary accretion disk

Ayliffe et al. 2012

- Science case appears well suited to gather support from the wider astronomical community (see ASTRONET roadmap & US decadal review!)
- **Strong existing momentum** in the field (in particular due to ALMA)
- **Complementary aspects** to ALMA:
 - ➔ higher resolution allows probing terrestrial planet-forming zone, which is dominated by other mechanisms (dust sublimation, gas-disk truncation, magnetospheric accretion, ...)
 - → NIR/MIR probes complementary opacity regimes, grain sizes, and line tracers
- The sensitivity requirements have already been demonstrated
- We benefit from exciting new technology developments on the horizon (MIR fibers, detectors, heterodyne beam combination with coherent laser combs, ...)

Strategy:

Build support in the science community & interferometry community, start lobbying with decision makers (e.g. ASTRONET, ESO) and prepare for upcoming funding opportunities (OPTICON, decadal review)

Tentative international "Kick-off committee" with balanced representation from EU, US, Australia, and IAU C54 has been formed

- → Define Scientific Advisory Committee to develop and prioritize key achievable science cases
- → Define Technical Advisory Committee to develop a technology roadmap, taking new technical developments into account
- → Set up Project Steering Committee

A dedicated session at SPIE (Montreal, June 2014) has been proposed.

PFI will certainly also revolutionize other science areas

Sign up for PFI Mailing list and state your level of interest: www.planetformationimager.org