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1 Preamble: Qualitative Picture Of Manifolds

The bulk of the planned first half of this independent study involves byldmathematical
descriptions of manifolds and developing and manipulating objects on themex&ample,
looking at the ideas of fields (scalar and vector) and calculus on manif@kfsre diving into
the mathematics, it is helpful to discuss relatively qualitatively (and brieflgtvehmanifold
is, as well as some of the ideas early on in the notes which are important intibegsient
considerations.

1.1 Manifolds

Manifolds are generalizations of some ideas that are already very famil@nve through 3D
Euclidean space can be paramaterised by a single variable “t” via x(t),z¢t)t) Similarly a
plane can be paramaterised by two variables “u, v” via x(u,v), y(u,v)zang).

Yy

Figure 1: A line can be paramaterised by a single variable “t™

These objects are considered to be locally very similar to 1D and 2D EuclipesresR
andR?) respectively. More specifically, we say that there is a continuoustamaee mapping
between the local curve and flat space. This is known as being homeuimoRor example,
we consider a curve to be straight (1D Euclidean) at infinitesimal scade2ffi

Y

Figure 2: We consider a tangent at some point p to match the curve plgrégdnfinitesimal
scales

So, a manifold is a space which is homeomorphic to s@&ftelocally, but may be different
from R™ globally (i.e. ambient space). We are able to describe the manifold usingf“sgt
local coordinates, however, if the manifold is not homeomorphR™aglobally then we have to
use several of these local ecoordinates between which, transitionbensisiooth (see example
below).



1.1.1 Example: The Unit Sphere

To illustrate the above, amongst other points, consider a unit spherew(thatinit radius)
embedded in 3D Euclidean spad@®?]. This is our manifold. We paramaterize our unit sphere
by (to take one example) use of polar coordin&gesd¢ via:

x = sin(#) cos(¢)
y = sin(0) sin(¢)
z = cos(0)

Figure 3: Demonstrating the unit sphere including the polar angles

We can invert these expressions to yield some local (paramaterised)raies:

6 = tan~ (V) 6 = tan~" (1)

z

Note, that we do not have to use polar coordinates (cf steregraplgction later). In the theory
of manifolds all coordinate systems are equally good, which is appropiiete isn physics we
expect the behaviour of a physical system to be independent of tindicates used.

Further note, that on this manifold no coordinate system may be used éarsyat once...

e At 0 = 7 considerp. At ¢ = 27 we have a discontinuity i from 27 to 0. In addition,
nearby (infinitesimally close) points have very different values. Itioatinuous. (since
0<¢<2m).

e If we were to letp > 0 then every point would correspond to an infinite number of values
2nm,n=1,2,...00).

e At the polesy is undefined!

We have spotted some flaws in our use of spherical polar coordinatesdnldethe whole of
our manifold. If we are to consider the local behaviour of the manifold vgeire that the
following conditions be met:

1. Nearby points on the manifold should have nearby coordinates on thildan
2. Each point on the manifold should have unique coordinates.

To resolve this problem (the study of the first sections of these notes)twelice 2 or more
coordinate systems which overlap, each covers part of the sphetmasobey the conditions:

1. Nearby points have nearby coordinateatiteast onecoordinate system.



Figure 4: Each chart; A, B, C, D maps part of the circle, however, note they over-
lap...

2. Each point has unique coordinates in each coordinate system thaihsdh
For example, consider the unit circle (easier to draw than sphere):
Due to this overlap, we also require that:

3. If two coordinate systems overlap, they must be related to each otheruifficestly
smooth way.

This final condition is important for retaining continuity over the manifold anblssguently
upholding the first two requirements (see later).

So, now that the idea of a manifold and some of its associated concepts thall Wwave to
investigate in these notes have been outlined we can move on to the mathematicsleatiea
picture of what will be going on.

2 Distances, Open Sets, Curves and Surfaces

2.1 Defining Space And Distances
2.1.1 Setting Up Space

We can formally declare the space that we are working in. An n-dimenstardidean space
would be written as:

En = {(y17y27 yn) ‘ Yi € R}

So, here we first declare the number of dimensions, the “set” (...). Theadyntiten means
“restricted by...”. We are finally told with the set membership symbthat each dimension of
this Euclidean space is an element of real space. So, to take some examples:

Er={y1 |y € R}

This represents a set of real numbers, also known as a “real line”. 8imila

Ey ={(y1,92) | (v1,y2) € R}
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This is the familiar cartesian plane of coordinatés.would be 3D Euclidean space and so on
forn=4,5...

2.1.2 Magnitude (or norm)

The magnitude of some vectgr= (y1, y2, ...y, ) from the origin is defined to be:

171 = Vyn? + y2? + ..y

This can be thought of as the distance from the origin. In a similar mannetista@ce between
two pointsy = (y1,v2, ...yn) Z = (21, 22, ...2,) iS then:

12— 7l = /(21 = 1)% + (21 — ¥2)* + (20 — Yn)?

This is all fairly straightforward.

2.2 Open Sets

A subset “U” of E,, (written asU C E,) is called “open” if, for every poing in U, all points of
E,, within some positive distance “r’ gf are also in U (the size of r can vary).

Intuitively, an open set is some region minus its boundary. If we include thedary we get a
closed set. A closed set goes right up to the edge of the boundarycéwlecof radius r can be

Open Set

Figure 5: At the edge of the open set we can find some circle of radius ctwiki still totally
contained in U.

drawn at every point and still be in U.

2.2.1 Open Ball

If @ € E,, then the open ball with centerand radius r is the set of all points i, whose
distance from a is less than r. An open ball is everything except the haiidaoy (as above).
An open ball is written as:

Bla,r)={Z € E, | | —d|| <r}

To reiterate, it is open if for ali’ we can travel a distance r in any direction and still b&iia, r)



2.2.2 Examples of Open Sets:
e [, is open (i.e. Euclidean real space has no boundaries)
e ¢ = {}, the empty set, is open

e Unions of sets are open. A union, denoteds the set of all distinct elements of the
collection.

¢ As extension of the above, open sets are actually unions of open aksUB,. Put
simply, an open set can be considered to have an open ball at each point.

2.2.3 Relatively Open Sets

Consider some manifold M which is a subset of some s-dimensional Eucligeaes;. A
relatively open set applies the same definition of an open set to itself witbaigsghe manifold
M. It is called relatively open because it is not necessarily open in the atrtbielidean space.
For example, if we consider s = 3 and M as some hemisphere with U as a liglapen set in
M:

Figure 6: A relatively open set U on M

Then, Uis not openin E3, since there are points arbitrarily close to UL that lie outside of
U. However, Uis openin M, since given any poinj in U, all points of M within a small enough
distance fromy are still in U.

For example, some relatively open set might contain every point on the &inih 100 miles
of London whilst containing no points above the surface of the Earth.

2.3 Parametric Paths and Surfaces in E3

These concepts are introduced in three dimensions first to aid conceptigaktanding.
First, a quick example of paramaterization. We can paramaterize the straighhilough a
point{p;} in E5 and parallel to the vectat by:

Yi = pi +a;t

2.3.1 Smooth Paths

A smooth pathin E3 is a set of three smooth (i.e. infinitely differentiable) real-valued functions
of a single variable “t":

Yi = yz(t) ’ i = (1, 2,3)

Where the curve has been paramaterised by t. By infinitely differentiablep@an that we can
differentiate the functions an infinite number of times and still get functionsadrigonometric



or exponential function is smooth.

If the vector of derivativeé% is nowhere zero, we have what we call a non-singular path. Such
a path never terminates. Our example of a straight line is not smooth, sinctakiitg the first
derivative we are left with a constant.

2.3.2 Smooth Surfaces

Continuing our restricted 3D analysis, a smooth surface immerséd iis a collection of 3
smooth real-valued functions of two paramaterizing variableand 22 (these upper indices
refer to local coordinatesiot the square of some value).

Yi = yi($17$2)

X'= constant

%= constant

Figure 7: A 2D surface in 3D space with local coordinates marked on

Note that if we holdz! contstant we get a smooth path (see figure 7) where different constants
yield different paths. Similarly, holding? constant gives another batch of paths which intersect
the first ones.

z! andz? are known asocal coordinates This smooth surface requires, by definition, that the

3 x 2 matrix whose;j*" entry is% (the Jacobian matrix) has rank 2. i.e. the 2 rows are linearly

independent. This is the requirement that the surface is never singular.

2.3.3 Further Examples of Paramaterization

1. Paramaterization of a plane through }, parallel to the independent vect(ﬁsﬁ is given
by:

yi = pi + aixt + bix? | (i = 1,2,3)
This is an extension of our consideration of a paramaterized line.
2. Paramaterization of the unit spheye®+v2%+y32 = 1, using spherical polar coordinates:
y1 = sin(x!) cos(x?), yo = sin(x!) sin(z?), y3 = cos(z?)

3. The Jacobian Matrix: The matrix of 1st order partial derivatives of ambient coordinates
with respect to local coordinates.



)
S

QU
<8
o

Y1 Y2

dy1  Oya
J = 1 1
ox2  0x2 Ox

|

For the unit sphere, by differentiating the equations in the previous examepiet:

J:[ cos(z!) cos(z2)  cos(z!)sin(z?) —Sin(xl)}

&

—sin(a!)sin(z?) sin(z!) cos(x?) 0

This Jacobian matrix is rank 2 everwhere exceptat= nx for which sin(nr) =
0, cos(nm) =1 and:

where the rank is now 1.

2.3.4 Paramaters As Local Coordinates

The parametric equations of a surface show us how to obtain a point onrtaeesance we
know two local coordinateézr!, 22). In other words, we have specified some function which
mapsF, to E3 (we write thisE, — E3). We can use our parametric equations tosget:> as
functions ofy;, (i = 1,2, 3). Continuing our example in spherical polars for a unit sphere, we
get:

! = cos™'(y3)

-1 Y1 >
, cos™ 1( %yl%yz?) yo >0
T 2m—cosT 1(——LA—) 4 <0
T — COS o Y2

This allows us to give each point anostof the sphere two local coordinates. We do, however,
have some issues with continuity in this example, sincg at 0, z? switches from 0 t@x.
Also at the polesz! = 0 andz? is not even defined.

We therefore add the restrictions on the portion of the sphere consiered v

O<zl<2m:0<z?<nm

These define an open subset “U” of the spere.
In conclusion our local#?) coordinates allow us to map some subset of the manifold to Eu-
clidean ;) space. We write thimapping as:

x:U — Eq
where:

X(y1,y2,93) = (' (y1, 92, ¥3), 22 (Y1, Y2, Y3))
is known as thehart

2.4 Charts

A chart of a surface is a series of functions which specify each of tbea lwoordinatesa(’)
as smooth (infinitely differentiable) functions of some point on the surfagerins of global
(ambient) coordinates. For an n dimensional surface it provides anmehndional map. This
is just like a geographic chart gives a 2D representation of our 3 dinreigitanet.

In general, we chart an entire manifold “M” by covering it with open setichviibecome the
domains of coordinate charts. (Domain is set of input values for whichetifin is defined).
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Surface of arbitrary
complexity as a
function of global
coordinates

A simpler chart as a
function of local
coordinates

Figure 8: A graphical representation of a chart describing a smoatiace.

3 Smooth Manifolds And Scalar Fields

3.1 Open Cover

An open cover is a generalization of the single subset of a unit spheara¢haoked at in the
previous section. Formally, an open cover of a manifbfldC F is a collection of open sets
{U,} in M, such that M is the union of these subsets.

M =U,U,
The open sets comprising the open cover will overlap.
3.2 n-Dimensional Smooth Manifolds and Change of Coordinatdransforma-
tions
M C E;is called an n-dimensional smooth manifold if we are given a collection:
{Uy; 2y, 224, ...2" )

(That is, a collection of the'” open subsets that are described in terms of local coordinates)
where:

e TheU, form an open cover of M.

e Each of theser”, is a smooth real valued function defined on the subset U in such a
manner that the chart:

z(u) = (xla,xza, xy)

mapsl, to E,, in a one to one corresspondence. Formally this is writtem ag], — F,

is one to one. In other words, each point on the subset corresponde fooint on the

n dimensional chart. Note that thesg are independent, thus their being smooth allows
for partial derivatives of all orders.

As before we have local charts on this manifold M. The collection of alltshacalled smooth
atlasof M. Note, that an open subset may also be referred to as a coordeigtdarhood.
Consider a situation where we have two local charts for our manifold M, whie denote

(U, z*) and(V, 7). If neither of these sets are empty at some point, we can write some function:

11



xt = 2'(27)
With inverse:
b = zF(h)

These functions are called change of coordinate transformationsralgnéwe are describing
a manifold using a number of charts, we can use these functions to movechetescriptions
of the same points in different charts. This allows us to begin considerdtibe overlapping
regions between charts. Note that the specified condition that neither oharts be null en-
sures that we only consider regions which both charts describe. Thasepts are represented
graphically in figure 9.

The Manifold E2
“M”

O o2
X X',|X%)

k4 (v

A Chart
Change of '
coordinates
A Chart
"

Figure 9: A graphical representation of the use of change of coorditr@nsformations in
relation to our charts and manifold. Note that it only applie the regions where
the charts overlap

One important inference from the introduction of these functions is thamiient space is
not essential. We can define a smooth manifold using a number of charts wathoreference
to global coordinates.

3.2.1 Some Examples of Manifold Paramaterisation

e Euclidean spacé, is an n-dimensional manifold with a single identity chart defined by:

Yi = l’i(yl, Y2, yn)

Here the left hand side refers to the global coordinate and the rightdidedjives the
value of the local coordinate (which is represented in terms of globadowies). In
words we could say that this equation tells us that a global space coordfreapmint is
equal to the local coordinate at that point.

e Generalised unit polar coordinates: Consider the manifold/ = S™ which is the unit
n-dimensional sphere:

12



M =S5"={(y1,Y2, s Yns Yn+1) € Ens1 | D yi? =1

With manifold local coordinategr!, 2, ..., ™). Where, to resolve the continuity issues
covered in section 2.3.4 we impose the conditions:

0< (zt,2%,..2") <7 and 0 < 2" < 27

Generalised polar coordinates for a unit sphere are then given by:

y1 = cos(z!

)
yo = sin(z!) cos(x?
x!) sin(
) 2

sin(a

We can apply this definition to non-unit spheres by multiplying eadby r.

Yn—1 = sin(
Yn = sin(z?

)
z?).. cos( n=1)
)-

.sin(2™ 1) cos(a™)

3.3 The Example of Stereographic Projection

For a 3D unit sphere, stereographic projection involves tracing a linethie north pole through
some point on the sphere and mapping the position on a 2D plane.

Figure 10: A representation of stereographic projection with an eXantyacing of a point

nm .

We now look again at the local coordinates of the unit sptigréout this time using stereo-
graphic projection. Let Q be the point (0, 0, 0,... 1) and P be the point (1,.0;1) (i.e. north
and south poles respectively). We can then define two charts as folldvig.ih1:

13



N

Figure 11: A demonstration of the use of two charts in stereographigeption.

That is, we have one chart due to tracing from the north pole and omedieato tracing
from the south pole. Note that at P or Q, stereographic projection failagpdint for the chart
which maps using that point. So,(i§1, y2, yn, yn+1) IS @ pointinS™, we get for our charts from
the north and south poles respectively:

1 _ % Pl Y1
T = 1_yn+17$ - 1+yn+1
n __ Yn o Yn
T = l_yn+1 ) Tm = 1+yn+1

As usual, we can invert these maps to solve for global coordinates in téfotabcoordinates
z*, z* as follows:

_ 2zt _ 2zt
=700 = 1452

_ 2z" _ 2z"
yn - 7’2;1‘1 ’ yn - 1_’_;2 )
_ re—1 _ 1-7
y’l’b-‘rl - 7“2-‘1-1 9 yn+1 - 1_;’_772

Here, the values? and#? are defined as:
7.2 _ szwz — ($1)2 + (1‘2)2 + (wn)Q
7

=Y 'z = (z')+ (z°)%.. + (2")°

We can then use these global and local coordinates to arrive at ascbbogordinate transfor-
mation between our two stereographic projection maps:

1 Y1

1 —yns1

27!

1472

1—72

1- 1+;2
271 (1 + 72)
(1+72)22
1

z

f2
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This is exaclty the same form far’, (i = 1,2, 3...n). Via the same methodology we can also
obtain the reverse transformation between maps, which is:

F=2
In summary, for the example of stereographic projection of a unit spheteawe just found:

e Local coordinates in terms of global coordinates for both maps (both tjeqgbions from
P and Q)

e Global coordinates in terms of local coordinates

e The transformations between the map given via projection from P and the iveapvig
projection from Q

3.4 Scalar Fields

A smooth scalar field on a smooth manifold “M” is simply a smooth, real valued mgpuyin
some scalar property of the manifold using a chart. This mapping is written as:

¢: M — Eq

That is, some function which is the scalar figldissociates to each point “m” on he surface of
“M” a unique scalar value)(m). This also applies to subsets of M, “U”, however if the scalar
field for U differs for that at M it is called #ocal scalar field

If ® is a scalar field on M and’ are local coordinates of a chagtthen we can express as a
smooth functiony (ok, so not the best notation) of these local coordinates. This is efcti
expressing a scalar field in terms of global coordinad®sand local coordinatessj. Similarly

to the considerations of 3.2, if we have a second charé will get a second function which,

for these scalar fields, must satigfy= ¢ at each point on the manifold. This is a consequence
of our requirement that there be no preferential coordinate systerasceall details have been
re-mapped onto the surface they should all agree.

3.4.1 Example: The local Scalar Field

The most obvious candidate for local scalar fields are the coordinatédosa themselves. If U

is a subset (also referred to as a coordinate neighborhood)add’} is a chart on U, then the
mapsz’ are themselvescalar fields

Sometimes we may wish to specify a scalar field purely in terms of its local para{ater
opposed to global); that is, by specifying various functigrisstead of some single functich

(as we do when we break a manifold up using a chart). However, weotfrst specify this
collection of ¢ any way we want, since they must collaborate to give a value to each point of
the manifold independently of local coordinates. That is, overlappind tmmadinate systems
must agree on values for the scalar field.

We can express this formally by considering a point P on our manif@le (/) with coordi-
natesz™ andz’ in the chartsx andX respectively. The transformation rule requires that these
local coordinates agree as to the value of the scalar field at thisyguomttransformation

$(a) = p(z")
P& (")) = ¢(a")

i.e. upon relation using the coordinate transformations we should find the sduoss Yor the
scalar field, o/ = z7(2").
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4 Tangent Vectors and the Tangent Space

In the previous section we looked at scalar fields on smooth manifolds. Wéoonkvat vectors
on smooth manifolds. In order to achieve this we first look at the idessof@th pathn M.

4.1 Smooth Paths

A smooth path on the smooth manifold “M” is a smooth map defined on an open segitiea
real line. Put simply it is a 1 dimensional map (a line) upon the manifold whichreme@me
portion of the real lin&R (or £4). Formally, it is the map:

r:J—M

where: J is some open interval of the real line, M represents the manifdld &rnthe vector
valued mapping function(t) = (y1(t), y2(t), ...ys(t)). Obviously, we require that the parama-
terisation of the line “t” be in Jt( J).

r is said to be a smooth line through a point on the surface M if #(t,) = m for some
t, € J. Thatis, if some point, along our paramaterised smooth path isat

We can specify a path in M which goes through m by its coordinates:

yi = yi(t)

Where the point m would be specified hy(t¢,). Furthermore, since the ambient and local coor-
dinates are functions of one another, we can also express a path in fetsriscal coordinates
via:

=2 (t)
4.1.1 Example: Path segment (“latitude curve”) through any fixed pmt “p” on the unit
sphere

Consider some point on the surface of a unit sphere of n+1 globatlic@des which we will
denote ap = (p1,p2.--Pn, Pnt1). This latitude curve path is then specified by:

A yn+ 1

Py1

Figure 12: Path segment through “p” on the unit sphere

y1 = p1 cos(t) — pasin(t)
Y2 = p1sin(t) + po cos(t)
Ys = D3

16



Yn+1 = Pn+1

This is a smooth path ofi" since the trigonometric functions have an infinite number of deriva-
tives.

4.2 Tangent Vectors

Formally, a tangent vector at a point “m” on a maninfold “M” in some r-dimeragi&uclidean
spacefn € M C E,)is a vectord in E, of the formd = ¢/(¢,) for a pathy = y(¢) in M
through m withy(t,) = m. Put more simply, it is a vector at some point along a path on the
manifold which passes through i,y (¢,).

Figure 13: A representation of a tangent vector for a path through atpeian M

4.2.1 Example: The Parabloid of Rotation
Let M be the surfacgs = 12 + 122, i.e. the parabloid of rotation, which is paramaterised by:
Y1 = xlayQ - 37273/3 = (.’131)2 + (.T2)2

This manifold is illustrated in Fig 14

AY,

Figure 14: The parabloid of rotation “M™

This correspondance between the local and global coordinaes implieg@achart where U =
M and extends over ait!, z2.

U=M:az' 2>

17



This is because we have two local coordinatks:? which paramaterize the manifold fully (see
the equations above).

To specify a tengent vector, we first need to specify a path in M which satisfy the equation
of the surface (otherwise it is not on M!). e.g if we choose:

y1 = tsin(t)

Y2 = tcos(t)

ys = t2sin?(t) + 1 cos?(t)
t2(sin?(t) 4 cos?(t))

This gives a spiralling path:

Figure 15: An illustration of the spiralling path of the parabloid otation M

Then, to obtain the tangent vector along the path we have to finthtigeent vector fieldsee
shortly) along the path by taking the derivatives:

dyy dys d
(%, %, %) = (t cos(t) + sin(t), cos(t) — tsin(t), 2t)
What we have here is the field of tangent vectors along the path. To thentgegent vector
we evaluate thiat some fixed point
Now, we already know that we can express global coordinates in tertosaifones. We can
therefore arrive at an expression for the path in terms of local coaten

r! =y = tsin(t)

2?2 = yo = tcos(t)
So we can get another form of the tangent vector in terms of the locatlioabes using the
same derivative of the line with respect to the paramaterization:

(4o 422y — (¢ cos(t) + sin(t), cos(t) — tsin(t))

To reiterate, this is also thought of as a tangent vector, but given in tertosab coordinates.
We will move on to look at the relationship between these two forms of tangetanghortly
later, in section 4.3.3.

18



4.3 Algebra of Tangent Vectors
4.3.1 Addition and Scalar Multiplication

When summing or performing scalar multiplication of tangent vectors, the regulkiject is
also a tangent vector. However, these operations are not necessaiiytforward actions of
summing or scalar multiplying paths on our manifold “M”. This is because we elgfiangent
vectors using using paths on “M”, so we have to ensure that the veesuiing from these
operationsalso produce paths in M

However, wecanadd paths by using some charts as follows:

We choose a charatm € M such that the chart hagm) = 0, i.e. the point m is the origin
in out chart(this is purely for convenience). Subsequently, the path&)) andz(g(t)) on
the chart give two paths through the origin in coordinate space. We magpadiwhese paths or

Local coordinate
chart #

Figure 16: Mapping paths passing through m on M to a chart with m as thggrori

scalar multiply them without leaving our local coordinate space. The chartarathen be used
to pass the results back to the manifold M. More formally, for addition of twosp@th), f(¢)
we would write:

ft) +g(t) =27 z(f (1) + 2(9(1)))

So the sum of the paths on the manifold is the inverse mapping of the sum ofthsequathe
chart. Also, for scalar multiplicaiton:

Af(t) =27 (Ax(f (1))

Again, the scalar multiple of the path is the inverse mapping of the scalar multiple aant.
All that we have found so far is the sum or scalar product of two patlisgel the tangent
vectors themselves we are requried to follow the same steps as in the exarpptaldbid of
rotation above. Namely, we have to take the derivates with respect to thpgrathater “t” to
get the vector field and evaluate this at a point (m) to get the tangent veeter tle.

I_l €T x
4 (F(t) + g(t)) = LU +alo(0)

and

™1 (\x
L) = %
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4.3.2 Tangent Space and Vector Space

If M is an n-dimensional manifold, anch € M (m is a point on M) then théangent space

at m is the setl,, of all tangent vectors at m. That is, if we run a large (infinite) number
of paths through m spanning all trajectories and represent the assd@ateEnt vectors an
collectively, we arrive at the tangent space.

4.3.3 Local and Global Descriptions of the Tangent Vector

Now we return to examine the fact that we have two ways of describing thelioates of a
tangent vector at a poimt. € M:

1. Writing the path ag; = y;(¢t) we get the “s” dimensional ambient coordinates of the
tangent vector:

d dys
¥ (to) = (G -8 )i=to

2. Using some local chaxtat m, we get the local coordinates of the tangent vector:
1 n
X,(to) = (%, ...%)t:to
This is all as was stated in the previous 2 sections, but how do we relatentiedescriptions

of the tangent vector? In general we relateﬁfﬁiaand thedd—y; via the chain rule.

dyl _ %Lxl + %an + ayl ox™

dt T 9z! ot 0xz2 Ot toxn Ot

and so on fon‘%, %‘3’.... Therefore, we can recover the ambient tangent vector coordimatas f
the local ones. In other words, the local vector coordinates completihedbe tangent vector.
As a generalization, if the tangent vector “V” has local coordinétésv?, ...v™) and ambient

coordinateguvy, ve, ...v5) then they are related by the formulae:

to get the local cooridnates from the ambient. Where, to clarify, th,ese”i}’; and they’ = dj; .
Note, that although we cannot sum or scalar multiply simplypihs to take the sums or scalar
multiples of tangent vectors, we are allowed to take the corresponding suhssalar multiples

of the coordinates. In other words:

(v +w)’ = v* + w
and

(M) = Aot
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This is what we would expect for vectors in ambient coordinates. Trsoreae can now do
this is that when working in local coordinates we are automatically contstrénie surface
of the manifold. So we dont have to worry about the resulting vectorseiohbing to paths in
M.

Note, from here on, Einstein’s summation convention will be used. Thagkstimmation over
repeated indices in expressions is implied. As an example, the right handf siterelations
between global and local tangent vectors can be rewritten:

=< Oy o 0yi o
ozk oxk
k=1

and

Since the k index is repeated.

4.4 Example, And Another Formulation Of The Tangent Vector

e Consider M =F,, (n dimensional Euclidean space). For such a spac%’gu& 1 and as
such, our relation between local and global vectors in section 4.3.3 yields:

Ay; , k k
Vg = vt =0

Therefore for Euclidean space tangent vectors are the same asfyfdiectors.

¢ In general, if we have a local coordinate system near some pointV/ then we can also
obtain a path in terms of global coordinate paramaterization via:

i t 4+ constant j =1
| constant j

Where the constants are chosen so that the local dth) corresponds ton € M.
Then, to view our global pati (¢) as a function of “t” we apply the parametric equations
yi = yi(a?).

The associated tangent vector at the pointtt, ®xpressed in a (to me, unusual) form
independent of global or local coordinates is:

a -
oxt

It has local coordinates:




Whered? is the Kronecker delta. This results occurs because local coordirmatetsie
independent of one another (as, for example our familiar x, y, z axds ¥ke can then
get the ambient cooridnates via the conversion found earlier:

Oy k__ Oyj ck _ Oyj
Vj = gk V" = gk 0 = i

This is again, why we generally refer to the tangent vect%assince it applies equally
to the global or local coordinates but is not inherently specified.

Note that everything in the previous consideration is evaluateg atd that the nature of the
path itself has now disappeared from the definition of the tangent vector!

Figure 17: Graphical representation of tangent vectors in our new idefinirrespective of
path taken

In this formulation, there is a linear one to one correspondance betwegentarectors atn
and the “normal” vectors of n dimensional Euclidean space. In othersytadgent spadeoks
like E,,.

1101
correspondence

Figure 18: There is a one to one correspondance between tangent vatties surface and
“normal” vectors in n dimensional Euclidean space.

4.5 Proof Of 1 to 1 Correspondance Between Tangent And “NormalVectors

Let 7}, be the set of tangent vectors at m (i.e. the tangent space) and defiedisuction “F”
which will map this7;,, onto n dimensional Euclidean space:

F:T, — FE,

This mapping will work by assigning to some typical tangent vector its n loaaidinates (as
we have done throughout).

We also define an inverse function “G” for mapping vectors in Euclideanespnto the tangent
plane:
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G:FE,—T,

This inverse is then:

G(v') = Xi:U B

i 0
U gz

These functions are represented graphically in figure 19.

Tangent space
atm

Figure 19: Demonstrating the functions F and G and their relation betwbe tangent plane
at m and the Euclidean plane.

Then, we look to verify that F and G are inverses as follows:

F(G(v')) = F(v'5%)

However, we have seen that locally for tangent vectors%@%lt: 6{ . Substituting this in gives,
for the j'th coordinate:

F(G)) = v'6] = v
Which is thej** coordinate of v. Conversely, for the inverse funtion:

G(F(w)) =uw' ,927:

We want to check the ambient coordinates of these results to see if theyeaantie, because
if two vectors have the same ambient coordinates then they are certainlynteeveator. We
already saw how to find the ambient coordinates of these sums in sectionsb,3applying the
same method:

i 0y;
G(F(w)); = w'5gt = w;

So “F” and its inverse “G” produce local and global tangent vectocuigisons respectively.
That is, there is one to one correspondence with no “baggage”.

5 Covariant And Contravariant Vector Fields
In the previous section we looked at the definiton of tangent vectorsgiiéstion which now

arises is; how can we relate the coordinates of a given tangent vectoeiohart, to those of
the same vector in another chart? Once again we use the chain rule:
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dz' _ dz' dal e sio o dE g
dxd — dxd dt » Orv" = da7 Y

That is, a tangent vector through € M is a collection of numbers’ = dd—“f for each chart at
m, where the quantities for on echart are related to those for anothedamrto:

i dzt
v_dxj

From this, we take the definition of a contravariant vector:

vI

5.1 Contravariant Vectors and Contravariant Vector Fields

A contravariant vector ai» € M is a collection of quantities which transform according to the
above expression. That is, a contravariant vectqussa tangent vector. Thus, by extension,
a contrvariant vector field “vV” on M associates with each chatt & collection of real-valued
coordinate function¥? of local coordinategz!, 2, ...2") such that evaluating™® at any point
gives a vector at that point.
The same applies to subsets of M (C M) only the vector field domain is restricted to that
subset.
So, the transformation rule for all contravariant vector fields is:

Vi= 4Ty
Where now// = V(2! 22,...2") andV? = Vi(z!, 22,...z"). Obviously this transformation
can only apply where charts overlap. Further note that this transformatiexersible (i.e. we
can performVV7 — V' and subsequently* — V7). Lastly, if, as was seen in the previous
section,V is a smooth contravariant vector field on M then:

_yio
V=V

5.1.1 Example

In section 3 we defined the vecto&: as each pointn € M having n vectors,2;, (i =
1,2,3...n) where thei'” vector is found by taking the derivative of the path at that point. E.g.
for the pathe’ (also local coord:?)

oxi _ ) t+ constant 1=

oz* constant i #j

Where the constants are chosen to force the path through m at somefvyadile paramaterisa-
tion z(¢,), hence:

(aii ) =6;
Are the coordinates of the vector in chart That is, in some chart we can force the tangent
vectors to be along local coordinate axes.
For these same coordinates in some other, general,xchegtthen:

oz __ 9zk az7
Oxt — Oz Ok
ozl __ 61@@
oxt — i Oxk

We define the local vector fielc{%)j gﬁj . This defines a local vector field on a domain U.

It is the constant field of unit vectors pointing in thedirection. Note thata% is a field not the
=" coordinate of the field.

So theagi vector field is a unit vector field along all coordinates. Itis a generalisafitme way
that we relate to contravariant vectors in different local coordinatesys Note that locally for
some specifi%‘?&i it has constant value (given that the local tangent space is Euclideasyér,

it will differ under the use of some other chattfor which gf # constant generally.
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Figure 20: The local vector field alondy; taken from M.

5.2 Patching Together Local Contavariant Vector Fields

The previous example was specifically fologal vector field. Now we look to extend this to
consider the entire manifold. In order to do this we have to set the vectoefiela to zero near
to the edge of its coordinate “patch” (remember that they overlap) so thaih),dgrough the
use of many charts we cover the entire manifold.

To achieve this, we draw a disc at x(m) (on the chart x) of radius “r’iedmpletely contained
within the contravariant space. The vector field spanning the whole of Meis th

(9 1

Discs “D”

Figure 21: Vector field discs on M.

0 _—p2
_ ) g€ R* w(p)e D
w(p) { 0 otherwise

Where R = %. That is, if w(p) is in the disc D about some point x(m) of its
contrvariant vector space then we use that local space to define tioe field there, otherwise
we say it is zero in that local space and move on trying others untila¥ed one that is local.
We can do this because as we leave the local coordinate syste@%th&nish (tend to zero).
Notice that x(m), the vector field, agrees Wg%; at that point and varies smoothly away from
that point.

5.3 Covariant Vector Fields

Now we look back at scalar fields on M. If a part of the scalar field hdsatg we can analyse
thegadient of the scalar field/hich is a locally defined vector fielgg. We transform between
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this vector field in different charts as follows:

0¢ _ 0¢ 9z)
dx1 — 927 9T

or we can set; = % andg¢; = gg. We can then define theovariant vector field C on M,
which associates with each charg collection of n smooth functions;(z!, 2, ...2") which
satisfies the covariant vector transformation rule:

~ v, Ol
Ci = C] ozt

Note that for contravariant objects the indices are upgér#nd for covariant objects the indices
are lower (;). | can see the reason for this being the position in the definition of the vefctor
the local coordinate term:

=g
Ci:@xi

Generally, as present, we assume scalar and vector fields to be smoottawéarlier that
geometrically, contravariant vectors are tangent to the manifold... geonfigiricavhat are
covariant vectors?

Firstly, a one form (or smooth cotangent vector field) on M (or some $ubise M) is a
function “F” that assigns to each smooth contravariant vector field V oroMJ) a smooth
scalar field F(V) which has the following properties:

FV+W)=FV)+FW)
FaV)=aF(V)

Where V and W are contravariant vector fields anid some scalar. We say that there is a one
to one correspondence between covariant vector fields on M (ordJyae forms on M (or U).
Therefore we can think of covariant vector fields as one forms.

In short a covariant vector field is a transformation of the contravafigdtonto the surface of
the manifold.

Figure 22

5.3.1 Proof that we can consider’; as a one fom

If we denote our set of one forms “F” on M (a single one form may notrmugh in a similar
way to our requiring a number of charts to describe a manifold). We cafi awmllection a
family. We can subsequently talk about a “family” of covariant vector fiétson M. Now,
we define some functio® which maps C onto F.
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o:C—-F
by
O(C;)(VI) = CpV*

Now thisC}, V¥ is in fact:

E_ 0% oz _ 9%
GV = B2k Ot ot

This quantity is some scalar value, which satisfies our description of a ameatoove.
The inverse function we then define@s

v:.F—C

by

(U(F))i = F(5)

To verfiy the validity of this transformation, we need to check if this is a smootiarént
vector field (i.e. are the local components smooth functions of local catedirand do they
transform correctly?). The smoothness comes from the factﬂ%%;t is a smooth scalar field
(as in our definition of covariant vector field) and hence a smooth funofitotal coordinates.
The transformation can be verified by trying for two charendx:

— o’ i)
T ot OxJ

This is exactly the same form as the transformation rule for covariant wegipr= gg ).
We can therefore think of C as one forms.

5.3.2 Example

Let ¢ be some scalar field. I1ts ambient gradievit) (which we know well) is:

_ 99 4 0% 0
v¢ - 6y1 + 8y2 + cee 8ys

This is neither covariant or contravariant (generally), since it is thdigna of the scalar field
upon the surface, rather than being a surface bound representhtiomtoavariant vectors.
However, we can use this to obtain a covariant vector field as follows:

Choose V as a contravariant vector field, then rate of changeatifng V is:

V.V¢
This action assigns to every contravariant vector field, the scalar field :
F(V)=V.V¢

which tells us how fasp is changing along V. The coodinates corresponding to the covariant
vector field are then:

F(%) = (3%).V¢

Bl om™ oy ros ., 06 , 06
_ Y1 Y2 J o v

- [8:5”‘ + ozt + "'Bxi]'[azﬂ + Oya + "'Bys]
_ 99

— Oz
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Which is what we first considered when looking at covariant vectordield
We can in fact, generalize the above.X1fis any smooth vector field of M, then the operation
V.3 results in a transformation from a smooth tangent field to a smooth scalar fiedcefore,

a one form on M with local coordinates is given by applying the linear fundtiotie charts
d .
oxt”

C;, =23

3 oxt

In the previous exampl& = V¢, but to reiterate, any smooth vector field will also do. Note
that this operation depends only on the tangential component of

If V is any tangent (contravariant) field, then we can refer to the gémedaequation given
above to obtain an associated covariant field. The coordinates of thisfeelibt the same as
those of V. To find them, we writ& = V"(aii) and use this in place af in the expression for
C; to give:

_ 8 yid _1id 0
C] - axj'v ozt 4 OzJ * Oxt

The dot product in the above expression is not necessarily orthb@@anot necessarily;;.
We thus define certain functions:

_ 0 0
9ij = 327027

ie.
Cj = giV*

Note that the upper and lower indices on the right hand side of the abpvession “cancel”
just leaving a lower index. We will move on to look at theggAs a final note, for anpair of
covariantor contravariant vector field, the following operations are permitted:

(V+W) =Vie Wi (aV) =aV’

These actions convert a set of vector fields into a vector space. Not@dh@annot expect to
obtain a vector field through addition of a covariant field and a contraniiedd.

6 Tensor Fields

We previously looked at vector fields on manifolds, nhow we move on to lodkeahotion
of tensors on smooth manifolds. At present (for simplicity) we will consideiirBensional
Euclidean spac&;. Consider two vector fields ofis, V = (V1, Vs, V3) andW = (Wy, Wy, W3).
The Tensor Poducof these vector fields consist of the nine quantities:

i iy ViWs
VoW oWy VoW
VsWy V3Wy V33

How do such quantities transform? We need to consider the thee ca$¢8/6f= contravariant,
V;W; = covariant and the mixed case. Therefore, let V and W represemtaganant vector
fields and C and D be covariant vector fields. We then get the followingilpitises for tans-
formation:

1. Two contravariant vector fields:
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—1 —q
ox' . 0x) __

_ 0w ow
oxk  Ozxm - 9xk grm

Viwi = vEwm

2. Covariant vector field and contravariant vector field:

‘_/ic_fj _ 0z’ oz™ vkC,,

Oxk 0z

3. Two covariant vector fields:

CiD; = G4 52 Ci. Dy
These product fields are known as tensors. (1) is type (2,0), (2)eqlyd) and (3) is type
(0, 2). In short the “type” is (no. of contravariant indices, no. ofartant indices). A tensor
field on an n-dimensional smooth manifold M, associates with each xteadollection ofn?
smooth functions which satisfy their appopriate transformation rules:
Transformation Rules:

1. Type (2, 0):

e

This is the transformation between contravariant rank 2 tensors.

2. Type(d, 1):
— 871’ Ox™
T} = 5u% 957 "

This is the transformation between mixed contravariant rank 1 and coteaia 1l ten-
sors.

3. Type (0, 2):

= _ OzF o™
TU 0z OmI 1;

This is the transformation between covariant rank 2 tensors.

A tensor field of the type (1, 0) is just a contravariant vector field, similatgnagor field of type
(0, 1) is a covariant vector field. A type (0, 0) is simply a scalar field. Nadéwle can add and
scalar multiply tensor fields in a similar way to vector fields, for example, if A armdeBboth
type (1, 2) tensors, then their sum is given by:

(A+ B)g, = Ag, + By,

As an example, the Kronecker delta is actually a Tensor
i [ 1=
=10 i7]

itis a type (1, 1) tensor, where:

5j oz’

i Oxd
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where, as a reminder, thé andz’ are thei'” /" local coordinates. This transforms according
to:

_ 9z' dzk dx™

- 8$k oxr™ Oz

oz ¢k dx™

Oxk “m 9zJ

By comparison with the transformation rules above we see that this is a teglsooffiype (1,
1). Note that sincé’ = ¢} andd} = &}, therefored’ is asymmetridensor. So, given some

point “p” on the manifold and a chaxtat p, then this tensor assign$ quantitieséj- which is

the identity matrix% that is independent of the chart we chose.

Interpreting this object: In section 4, we saw that covariant vector fields convert contravarian
vector fields into scalars, we shall see that a type (1, 1) tensor comestimvariant fields to
other contravariant fields. This particular tenélbdoes very little, if we put in a specific vector
field V, and you obtain the same vector field as was input as the result.éfl’tﬂsan identiy
transformation.

We can make new tensor fields out of existing tensors in various waysxaonple:

Mi NE
b e
M, Ni

|| M.s.l

The upper product results in a type (3, 4) tensor, while the lower resutsyipe (1, 2) tensor
since the j, k indices cancel. As an example, consider the transformatieanfoulgype (1, 1)
and (2, 0) tensors and take the product of them:

7 OF' Ox™ ik
T’J' — Ozk 0zI Tm

And

Fij _ Oz 0% rpkm
T — Ozk 8x7nT

0z' 9x™ 90z O k
oxk 0x3 Oxk Oxzm ™™

i\ 2
- e
xr

TIT
7

And we recover the contravariant tensor transformation rule (i.ehavea contravariant ten-
sor). _

If X is some contravariant vector field, then the functi% do not define a tensor. To verify,
check the transformation rule:

Xt _ 9. k ozt
oxi Oz (X azk)

Then, we can rewrite this as:

oz _ 9zh 9 <Xk89zi>

0zd — 8z dzl Oxk

And differentiate by parts
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u=X* v = 9%

Oxk
ou __ 9XFk v _ 0%z
oxh = 9xh  Ozh T Oxhozk

Xt _ 9Xk ozt dzh k_ 9%z
0xd — dzh OxF 0z +X oz ozF

This transformation gives some extra term on the right hand side which \d@aatetrans-
formation rules.
Generally, if we are given a smooth local functigg with the property that for every pair of
contravariant vector fieldX* andY7, the smooth functiong,;; X'Y” determine a scalar field,
then theg;; determine a smooth tensor field of type (0, 2).

6.1 Proof of the above statement

If §;;XV7 = gn. X"Y*. .eqn(1), then we require, sincg,, = that:

8a:h 8:(:k

gij y] = Gij XhYk e gf eqn(2)

We then equate the right hand sides of both (1) and (2) to obtain:

gthhYk = Gij gzh gﬁi (3)

If we can find a way to remove th€”Y* then we would arrive at the covariant transformation
rule. If we think back to section 4, where we discussed how a covar&dtdan be applied to
an entire manifold, we saw that evaluating at the point), then we would get:

N e
Ghk = Gij = Gk ek

At m. In addition, we can follow the section 4 example further by saying:
A 1 i=~h . 1 j=k
g = J =
X*(m) {Oi#h’y(m) {Oj#k‘

Finally, substituting these into equation (3) gives the type (0, 2) covariasbtdansformation
rule:

Ik = Yij g;h gﬁ
6.2 The Metric Tensor
We had defined a set of quantitigs by:
a0

9ij = 347" 0

Now, if X* andY" are any contravariant fields on M, th¥n Y is scalar, and:

x.y:Xz

Oy = g XY

Thisg;; is atype (0, 2) tensor. We call this tensor thetric tensoinherited from the embedding
of Min E;
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7 Riemannian Manifolds

7.1 The Inner Product

The inner product is a generalization of the familiar dot product. In vesgtace it multiplies
vectors together to form scalars.

A smooth inner produain a manifold M is a smooth function, >, which associates with each
pair of contravariant vector fields X, Y a scalarX, Y >, which has the following properties:

e Symmetry:< z,y >=< y,z >
e Bilinearity: < az,by >=ab < z,y >
e Non Degeneracy: ik x,y >= 0 for all y then x=0

Such an object is known as a symmetric bilinear form. A manifold endowed withcth
inner product is known as Riemannian manifoldThus, ifx is a chart and p is some point in
the domain ok then:

o 9
oz’ dxI

<y >=a2iyl < >

Where< z,y > is the scalar fieldy?, ¢/ are contravariant vectors ard a‘; , % > is a smooth

inner product which we write ag;. Theseg;; are the type(0,2) fundamental or metric tensors
of a Riemannian manifold.

7.1.1 Examples:
o If M = E,,, we already saw thaf; = ¢;;

e The Minkwoski metric:

gij =G =
2

(oNeNell
OoOoOr o
Or OO

[eNeoNe]

—C

Where c is the speed of light. We call this manifdliat Minkowski spacé/*. In Minkowski
space the length of vectors is different to that of Euclidean space. mgthles determined by
the metric...

In 3D Euclidean space:

d(z,y) = [()n — 21)* + (y2 — 22)* + (y3 — 23)?] 2

Whereas in Minkowski 4-space:

d(z,y) = [(y1 — 21)? + (y2 — 22)* + (y3 — 23)* — A(ya — 74)] 2

There are therefore some major differences between Euclidean andwakikspace. In Eu-
clidean space, the set of all points a distanf®m a point inEj3 is just a sphere of radius In
Minkowski space, the set of all points a distancieom a point inM* is a hyperbolic surface.
There is also an interesting differencerat 0 where in Euclidean space we get a point and in
M* we get a cone. This cone is called a light cone.
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Euclidean light
cone

/

Minkowski Y1
hyperbola

Figure 23: Euclidean light cone and minkowski hyperbola schematic.

We can use the inner product to find the metric of a manifold. For example,igleto find
the metric for our usual example, a sphere of radius r and local cotedinia= 6 andz? = ¢.
In order to obtain the metric we need to find the inner product of the basu'srs%%, 3%2 in
the ambient spacg;.

Oy*
Ozt

j**ambient coordinate-

Where, for our sphere:

y1 = rsin(z!) cos(z?)
yo = rsin(z!) sin(z?)

y3 = rcos(x!)

So, finding our collection of ambient coordinatdé}, %22 %us

88331 = (r cos(xl)cos(x2),rcos(a:1)sin(ac2), —r sin(a:l))
8(3:2 = (—r sin(a:l) sin(:cQ), rsin(aﬁl) COS(xQ)v 0))

Now, remembering thdt<, >) is an extension of the dot product, we analyse..
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g11 =< %a 8;1 >

g1 =r% < (cos( 1Y cos(x?), cos(z )sm( 2), —sin(z!)), (cos(zt) cos(z?), cos(x!) sin(x?), — sin(x!)) >
= r? [cos?(z!)(cos? ( %) + sin®(z?)) + sin?(z")]
= r? [cos?(2!) + sin?(z1)]

= 7'2
g22 =< %7 % >
=72 < (—sin(z!) sin(z?), sin(z!) cos(x?),0), (- sin(z') sin(x?), sin(x!) cos(x?), 0) >
= r? [sin®(2') sin?(2?) + sin?(z!) cos? (2?)]
= r? [sin?(z!)(sin? (2?) + cos?(z?))]
= r2sin?(x!)

g12 = 921 <31’a2 >
=12 < (cos(z!) cos(z?), cos(x!) sin(x?), — sin(z!)), (— sin(x!) sin(x?), sin(z') cos(z?), 0) >
= 1% [— cos(z!) cos(z?) sin(z!) sin(2?) + cos(z!) sin(z?) sin(z!) cos(z?) + 0]

L r2 0
9= 0 r2sin?(z!)

7.2 Diagonalizing The Metric

If we let G be the matrix ofy;; in a local coordinate system, evaluated at some poioh
a Riemannian manifold. From our rules, the scalar field resulting from an jmogluct is
symmetric. It then follows, from study of matrices in other modules, that theai® invertible
matrix P;; = Pj;:

+1 O 0 0
0O £1 O 0
0 0 =+1

0 0 =1

PGPT =

Where PT is the transpose of P. The sequengd (+1, +1,+1) is called the signature of the
metric at p.

e EuclideanEs signature: (1, 1, 1)
e Minkowski M* signature: (1, 1, 1, -1)
We can now define change of coordinates via:
b= Pijzij

thena L and so:

P

gij = axz 9L Gab 3; = PiagabLjp
Pz'agab(P ) (PGPT)U

with, at the point p:

+1 0O O
0 +1
9ij = 0
+1
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ozx?

.. for the metric, the unit base vectars= are orthogonal; that is:
< e, e >= j:éij

Note that in our initial conditions we stated that the smooth inner product isegengérate, i.e.
if <,y >= 0forallythen x = 0. This is equivalent to requiring that e (¢;;) # 0. That
is, we don't want any singularities (the determinant gives an area eclssome points, we
don’t want this to be zero!).
7.3 The Square Norm
If X is a contravariant vector field of M, then tlsgjuare nornof X is given by:

| X |?P=< X, X >= g;; X" XJ

If | X ||?<,>,= 0 we call X timelike, spacelike and null respectively. If X is not spacelike,
then we can define:

X = VI X 7 = (9:; X*X7)" /2

Given that< X, X > is a scalar field|| X || is also a scalar field.

7.4 Arc length
A path C on a manifold which is paramaterisedras z(t) is non-null if:

| L |1?= gi; B %2 £ 0

in which case it is always timelike or spaceline. If C is a non null path in M, therl&fine its
length as follows...
Break the path into segments S, each of which lie in some coordinate neigbbaxhd define
the length of S by:

i 11
Lia,b) = [} [£gy % 2] /2t

where thet is chosen as +1 for spacelike and -1 for timelike curves. Equivalently:

L(a,b) = [\ G 12dt = [} || G | dt

In differential form, we are defining therc-lengthas:

ds? = :l:gijdxid:rj

This definition is independent of the chart chosen since the resultamt igaduscalar.

8 Covariant Differentiation

When considering a parallel vector field on a manifold, we check if it isljedutay following
a path and taking the derivative of the vector field iwth respect to the péeaset path t. In
rectilinear coordinates we should get zero, however this may not be $ledrcaurvilinear co-
ordinates, where the vector field may change direction as we move alongrttegl coordinate
axis. i.e. if X7 is a field, we check for parallelism by takirfgs™ along the path’ = z(t)...
however, there are some issues...
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Figure 24: A parallel field on a sphere.

Geometric Issue: If we consider a parallel field on a sphere, The field is circulating and
therefore non-constarﬁ% = 0, which does not result in parallelism! (However, the projection
of % parallel to the manifoldloesvanish - see later).

X

Algebraic Issue: SinceX’ = X X", we get by the product rule:

dXxJ 92XJ  dxk + dX7 dxh
dt

dt — 9XFoxXh dXP dt

This shows that if the second derivative does not varﬁgﬁ,does not transform a vector field.
We therefore cannot check for parallelism.

The projection of% along M will be called acovariant derivativeof X w.r.t t and is written
DX
Tt e

8.1 Working Towards The Covariant Derivative

8.1.1 Projection Onto The Tangent Space

For a manifold embedded in s-dimensional Euclidean space with a metsiconsequence (of
the embedding), a vector V ifi; has a projectiomV to a local vectofT;,, with coordinates:

o P
i __ ik
(mV) =g (V'iaxk) 1)
Whereg is the matrix inverse of;; andg;; = 521 52 as before. | am going to take this as a

given for now.

8.1.2 Christoffel Symbols

The partial derivatives of the metric in terms of its ambient coordinates aimg the product
rule:

o) _ 0 Oys Oys
9P 9ar = 527 | 924 Bz
_ 0%ys Oys + 0%ys  Oys
— OxPOxd Ox" Ox”0xP Oxd

We write this using “comma notation”:

Gaqrp = Ys,pqYs,r T Ys,rpYs,q
Now, by cycling through the indices g, r and p (permuting them) we get 3tiemqsan total:
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Ygrp = Ys,pgYs,r T Ys,rpYs,q
grp,q - yS,quS,p —"_ ys,pqys,r
Ipg,r = YsrpYs,g + Ys,qr¥s,p
We can then solve fay; ,,,ys, by adding the first two equations and subtracting the first.

Gqryp + Grp,g = 2ys,pqys,r + YsrpYs,g + Ys,qr¥s,p
gqr,p + grp,q - gpq,r = 2ys,pqys,r+ /{/s,rpys,q"i‘ /ys,qrys,p_ /ys,rpys,q_ /{/s,qrys,p

We then make the following definition of the Christoffel symbol by rearrag@im v ,qys.»:
e Christoffel Symbol Of The First Kind:

[pQ7 7’] = 1/2[gq7”,p + 9rpq — gpq,r]
e Christoffel Symbol Of The Second Kind:

{pQ} =g [p% T] = %gzr [gqr,p + Grpq — gpq,r]
These quantities amot tensors, instead they transform as follows:

e Transformation law for first kind:

. g0z 9z 0F) | - 9z 0m)
Wk, 1] = [ris 315,m 507 Gar + 913 5amoaF Gat

e Transformation law for second kind:
b L5 oer oar 0at | our o2t
=" Azt Ozl OxF + Ozt dzhdzk
We can now use this to work towards an expression for the covariamatieg. By its definition

as the projection of the derivative of the vector field onto the manifold, we get:
DX dX

e T Ta
Which, via equation 1, has local coordinates:
DX _ _ir (g‘ o) )
= dt " 97

The bracekted term is evaluated using global coordindgﬁshas global coordinates given by:

ax _ d p 0Ys
dt — dt X oxP
_ dXP Oys p O%ys dal
= S oo + X oupont dr

Then, substituting this into the bracket, we get:

dX  0Oys __ dXP dys Oys + XP 0%ys  Oys 9z

dt T 9xT T T dt OxP Oz 0xPJxd Ox™ Ot
dXP

= g Gpr T Xp[anr]ddL:
So, putting this back into our expression for covariant derivative:
B =g (5 o)
. xr
= 9" (3 9pr + XP[pa, 7%

We get

DX' _ 5idXP ¢\ dzt
= Opa X {pq}%
DX _ dX' i\ dzd
it = WJFX”{W}%
This is the expression for theovariant derivative For a general Riemannian manifold, it is a

contravariant vector. This allows us, for a field of vectors of condtamgth, to check if it is
parallel by asking%- = 07
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8.2 The Covariant Partial Derivative

If we re-write the expression for covariant derivative as:

DX' _ 0X'da? ‘ pdz?
dt — oot dr T P4 X

o 1 7
= |55+ {m) ]
The quantity in brackets is thus responsible for the conversion of ther\/%;qtee Dd—)fi. Itis a
type (1,1) tensor which we call th¢”* covariant partial derivative ak™...

e Covariant partial derivative of X*:

xi, =95 + {pa} x*

We now see where the name “covariant derivative” comes from, sinceaveriant partial
derivative is always using the covariant index! Similarly, for globalrdatates we get

e Covariant partial derivative of Y,
Yolg = % - {plq} Yy
9 The Riemann Curvature Tensor
For a vector fieldX’, we showed in the previous section that a parallel vector field of constant

length M must satisfy”¥ = 0 for any path in M. The vector fiel&” is parallel along a curve
if it satisifes:

DXJ __ dXxJ J yidzh _
= o TLUpX =0

j _
For some specified curve. Here we are writing the Christoffel syr{bh)% asI’,

Figure 25: A parallel vector field along a curve C on some manifold M.
If X7 is parallel along the curve, which has paramaterization with domain [a,b]@ne-c
sponding pointg: and3 on M, then, since:
dXJ | yridah
20 - 1), X'ty S0
we can integrate to obtain

XI(B) = XI(a) — [PT), X" 0

If X7(c) is any vector at the point € M and if the curve C is any path from to 3 in M,
then theparallel transportof X7 («) along C is the vectoX”(3) given by the solution to equn
| with initial conditions given byX /().
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X X
Figure 26: Parallel transport on the surface of a sphere from a stavéntpr.

9.1 Working Towards The Curvature Tensor

First, we ask under what conditions parallel transport is independéme path taken? If this is

the case theé’% = 0 and so equation | can be used to create a parallel vector field of constant
length on M (see previous section on covariant derivative).

We investigate this by taking some fixed vectore= X7 (a) and parallel transporting it round a
small rectangle, where we call the first two coordinates of the start point:

zl(a) =7, 2%(a) = s

We then choosés andér to be so small that the following paths are written within the coordi-
nate neighborhood in question:

7'(a) 1#£1,2

Cr:ai(t)y=< r+téir i=1
s 1 =2
7'(a) i#1,2
Co:2/(t)=< r+dr i=1
s+tds  1=2
z'(a) i#1,2
Cs:ai(t)=¢ r+(1—-t)or i=1
5+ 0s i=2
7'(a) i#1,2
Cy:2i(t) =S r i=1

s+(l—t)ds =2

These paths are shown in figure 27 Now, if we parallel transgé(t:) along C, we must have
via equation Il

XI(b) = X7(a) — fy T}, X' Sdt
Where we translate the vector from the origintp= 1. This is thus:
XI(b) = X (a) — [} TS, X drdt

The integrand terrﬁng" varies as a function of the paramaterizing variatde C;. However,
if the path is a small one, the integral is approximately equal to the value of tlygantbat the
midpoint of the path segment...
X (b) = XY (a) — T, X' (middleO f Cy)dr
~ X (a) — (T, X" (a) + 0.552 (T, X*)or)or
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Figure 27: Path segments which form a small rectangle for the study mallehtransport.

Where the partial derivative is evaluated at the pairimilarly:

X(e) = X7 (b) — fo F” Xi§sdt
~ X7(b) — (Fg X’(mzddleOsz))(Ss '
~ XI(b) — (T X (a) + 52 (T,)0r + 0.5525 (T7,X*)é5)ds
Where, again, all partial derivatives are evaluated at point a. Congjrwith the rest of the
path...
Xi(d) = X(c fo F] Xigrdt
~ X]( ) (Fle’(mzddleOng))érdt
~ XI(c) — (F{ Xi(a)+0. 5 (F{1X1)6r+ 3o 2(1“{1XZ)65)6
And the vector arrives back at the point a according to:
X*(a) = XI(d) + [ T, X dsdt
~ XI(d) + (F{QXi(middleOfC4))5r
~ X9(d) + (T, X" (a) + 0552 (T, X")ds)ds
WhereX*/(a) is the new vector at the poiat We can then arrive at the total change in vector:

X*(a) — X/ (a) = 0X7 = (52 (T4 X7) — 52 (ThLX7))ords

Now, analyze partial derivatives using the product rule:
5X7 (XZ 1“31 +lea s X1 — Xz Fj F{w 1 XHrds ... (1)
Next, given a chain rule formula:

DXJ J dah
dt th dt

Since RHS must equal zero, this implies ttiéih = 0 for all p and k. Since théig—: are
non-zero, this means that:

X7 o
+TI7, =0

Ozl
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so that

9XJ _ J v
ozh — _FihX

We now sub these into Il to obtain:
0X7 ~ (X120, T) — T T, XP — X' 0,10, + TLTE XP)ords

Where everything in the brackets is evaluated at a. Now change dummysrniditst and 3rd
terms to obtain:

0X7 = (T), —THTL, — T, + TLI% ) XPords
This formula has the form:
0XJ =~ R;lszér(ss

Where the quantity‘%f;12 is known as theurvature tensar

, , ora  ore
a i Ta _ T Ta be __ bd
Ryq = (Tl — Thal e + 520 — 524

With R}, = — R}, i.e. itis asymmetric with respect to the last two covariant indices.
The condition that parallel transport be independent of path is that thatate tensor vanishes.
A mamifold with zero curvature is calleftht.

9.2 Ricci And Einstein Tensors
TheRicci tensoris written as

Ry = Rlabi = ginajbi
Where we can raise the indices of any tensor, thus giving:

Rab — gaigbjRij

TheEinstein tensoris written as:
Gab — Rab o %gabR
Where R is theRicci scalarand is given by:
R = gabRab = gabQCdRabcd

These quantities will be used in upcoming sections.

10 The Stress and Relativistic Stress-Energy Tensors

10.1 The Classical Stress Tensor

The classical stress tensor measures internal forces that parts oftamedhert on other parts

of itself (even in equilibrium forces are exherted). For example a stdé@ment separating
components in a body, these components will be exherting a force on otteathrough the
surface elemenhA S, which in equilibrium cancel. More formally, we define a surface element
vector with magnitude\S and direction? perpendicular to the surface elemenf = ASh.
Associated with this surface element is a vector representing the foresteatby the fluid
behind the surface element (i.e. the fluid on the opposite sif to

The force per unit area (i.e. pressure) is given by:
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AS

Figure 28: The components used in constructing the stress tensor

—

T(f) = limas—o 35

T is a function ofn, however if we do not consider a unit vector, we can equally define
of some arbitrary vector via T(f?‘) and multiply the RHS byv|. Therefore, for generaf
perpendicular ta\S:

— N . A - N

T(n) = limas—o T?M
T operates on vector fields to give new vector field and we call istiess tensor-or example,
the a-component of stress on the b-interfacB¥s

10.2 The Relativistic Stress-Energy Tensor

We now look to generalize the stress tensor to 4-dimensional space. \&&ectoovork the 4D
manifold with the (1,1,1,-1) signature, i.e. Minkowski space. Note that in tteofehis section
time is redifined such that ¢ = 1 (i.e. it is the time for light to travel “one spatial un80, we
begin with our definition of the stress-tensor:

e AF
T(n) = AS
for a surface element. Firstly, we get rid of unit vectors since they damotar in Minkowski
space.
T(AAS) = AF

the above is the total force across the surface element. Now multiply both lsidagime
coordinate £*) increment:

T(AAS)Az* = AF Azt = Ap
Where p is the 3-momentum. This works well in 3 dimensions. In other words:
T(AAV) = AForT(AV) = Ap

WhereV is the volume in Euclidean 4-space. However, the generalization to 4 dimsrision
tougher...

We can replace the 3-momentum by the 4-momenﬁjeasily enough. We then fix the RHS by
noting thatnASAz* is 3D quantity (e.gAS — 2!, 22, &t — z*) we then re-write these as:

(AV)Z = eijklAa:jAa:kAxl
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which gives
T(AV) = AP
Wheree; ;1 is the Levi-Civita tensor, which comprises the determinant of the set ofngecto
eijri = det(D; DDy, Dy)
whereD is the matrix of%. However, in order for this equation to be accurate we require that
AV be very small (in terms of coordinates) and we therefore re-write in diftél form:
T(h3AV) = limy_o P(h)

and

T(AV) = limy o 20
This converts a covariant vectarV to a contravariant vector field, it is the relativistic stress-
energy tensor. The stress-energy tensor in a comoving frame of sotivdega a perfect fluid
(that is no viscosity or heat conduction) is:

p OO0 O
o poo
=100 p o

00 0 p

wherep is the total energy density (or the energy per unit volume) along the time arisaw
then use the fact that the particle’s 4-velocity in its own frame s (0001) or:

000 O
b_ | 0 0 00
000 O
000 1

and the metric tensor for Minkowski space:

100 0
o 10 o0
9710 0 1 0

0 0 0 -1

to get:
T = (p+ p)u'u’ + pg*

This is the stress-energy tensor for a perfect fluid (no viscosity drdoealuction) as measured
in a comoving frame.
Finally, since energy and momentum are conservec we get:

v T=0,(v-TY =T =0

This is Einstein’s conservation law.
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11 The Einstein Field Equations

I am well aware of Newtonian gravity, with gravitational potential
F=v9¢ 0)
and Poisson’s equation:
V26 =4mpG (1)

wherep is density and7 is the graviational constant.
We look to find the relativistic version of Poisson’s equation.

e Firststep: Generalize mass density to energy density, i.e. use stress-energyitietesa
T instead ofp.

e Second step:What aboutp? ¢ affects the trajectory of particles, however we also saw
in PHYMA432 that the metric is what determines the trajectory of particles (gexje
thus we generalizé asg. Now the idea of a gravitational “force@qs is replaced by a
geometric construct.

e Third Step: Modify the operator; to some, as yet unknown 2nd order differential oper-
ator A. We can therefore generate equation (1) to:

Ag** = T+

where k is some constant. In a comoving frafxeis a linear combination gjb, gfb and

¢ and must be symmetric (sin@eis). We have already seen such objects in the form of
Ricci tensorskR?, ¢®’ R as well as the metric tensgf®. We therefore select a candidate
solution:

R® 4 ig®R + Ag®b = kT (Il)
We now apply the conservation IaW;b = 0 giving:
R+ g™ R), =0 ()

sincegﬁf = 0.
Then, since Einstein tensor in section 9.2 was:

(Rab _ 1/2gabR) — Gab
and

Gfbb =0=(R"®—-1/2g""R), (b)
(a) - (b) then gives:

(R™ + pg™ R — R™ +1/2¢°°R) |, = 0
(1 +1/2)g" Ry, = 0
= (u+1/2)Ry;, =0

which implies that generally = —1/2. Therefore equation (II) becomes:
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Gab 4 Agab — /{,‘Tab

Finally given that we require that these equations reduce to Newton'sienecessarily require
thatk = 87

Gab + Agab — 87TTab

These are Einstein’s field equations. The constaistthe cosmological constant. Originally it
was setA = 0 but its actual value is not certain at present. Have now reached thevgtege
further application of this equation is covered in PHYM432.
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