PHY 3145 Topics in Theoretical Physics Astrophysical radiation processes - Dr J. Hatchell

Special Relativity - summary

1 Lorentz transform (LT)

With 4-vectors formulated as (a_x, a_y, a_z, a_t) (see below) and frame S' moving at velocity v in the x-direction with respect to frame S,

From observer's/lab frame S to moving frame S'

$$a'_{x} = \gamma(a_{x} - \beta a_{t})$$

$$a'_{y} = a_{y}$$

$$a'_{z} = a_{z}$$

$$a'_{t} = \gamma(a_{t} - \beta a_{x})$$

where $\beta = v/c$ and

$$\gamma = \frac{1}{\sqrt{(1 - v^2/c^2)}}.$$

We will often use the reverse transformation to relate quantities in a particle's rest frame S' to the lab or observer's frame S, in which the particle moves at velocity v in the x-direction.

From moving frame S' to observer's frame S:

$$a_x = \gamma(a'_x + \beta a'_t)$$

$$a_y = a'_y$$

$$a_z = a'_z$$

$$a_t = \gamma(a'_t + \beta a'_x)$$

2 Transformation of E and B

From lab/observer's frame to moving frame. In reverse, the velocity switches sign.

Magnetic fieldElectric field
$$B'_x = B_x$$
 $E'_x = E_x$ $B'_y = \gamma(B_y + \frac{v}{c^2}E_z)$ $E'_y = \gamma(E_y - vB_z)$ $B'_z = \gamma(B_z - \frac{v}{c^2}E_y)$ $E'_z = \gamma(E_z + vB_y)$

3 4-vectors

space-time $\mathbf{X} = (x, y, z, ct) = (\mathbf{x}, ct)$ 4-velocity $\mathbf{U} = \frac{d\mathbf{X}}{d\tau} = (\gamma_u \mathbf{u}, \gamma_u c)$

4-momentum	\mathbf{P} =	$m_0 \mathbf{U} = (\gamma_u m \mathbf{u}, \gamma_u m_0 c) = (\mathbf{p}, \gamma_u m c)$
for photon	\mathbf{K} =	$({f k},\omega/{f c})$
4-acceleration	\mathbf{A} =	$\frac{d\mathbf{U}}{d\tau} = (\gamma_u^2 \mathbf{a} + \gamma_u \frac{d\gamma_u}{dt} \mathbf{u}, c\gamma_u \frac{d\gamma_u}{dt}) = (\gamma^2 \mathbf{a} + \frac{\gamma^4}{c^2} (\mathbf{a} \cdot \mathbf{v}) \mathbf{v}, \frac{\gamma^4}{c} \mathbf{a} \cdot \mathbf{v})$
4-force	\mathbf{F} =	$m_0 \mathbf{A} \text{ or } \frac{d\mathbf{P}}{d\tau} = \gamma_u \frac{d}{dt} (\mathbf{p}, \gamma_u m_0 c) = (\gamma_u \mathbf{f}, \frac{\gamma_u}{c} \mathbf{f} \cdot \mathbf{u})$

where m_0 is the rest mass and τ is the proper time (time in the rest frame of the particle). For these quantities will try to use capital letters to differentiate 4-vectors **A** from 3-vectors **a**.

If **A** and **B** are 4-vectors then $\mathbf{A} \cdot \mathbf{B}$ is **invariant** under the Lorentz transform. Therefore $\mathbf{A} \cdot \mathbf{A}$ (also known as the <u>norm</u>) is Lorentz invariant.