PHY3145 Radiation Processes - Revision

1. Radiative transfer

Equation of radiative transfer I_{ν} =

(function of j_{ν} and α_{ν})

Kirchoff's Law

$$j_{\nu} / \alpha_{\nu} =$$

Planck function

$$B_{\nu}(\nu,T) =$$

2. Acceleration and radiation

Larmor's formula for total power in terms of acceleration (eg. Bremsstrahlung, gyrotron)

$$dW/dt =$$

Power per unit solid angle (eg. Thomson scattering)

$$dW/dt d\Omega =$$

Power per unit frequency (in terms of F.T. of acceleration)

$$dW / dt d\omega =$$

3. Special relativity

 $Lorentz\,\gamma$

Lorentz transform of 4-vector (ax, ay, az, at)

$$a_x' =$$

4-vectors for space-time, velocity, massive particle momentum, photon momentum

I	orantz	transform	of F ar	nd R	fial	de
1	JOI EIITZ	u ansioi iii	OI E ai	iu b	пе	lus

 $E_{x}' = B_{x}' =$

 $E_{y}' = B_{y}' =$

 $E_{z}' = B_{z}' =$

Lorentz force

 $d/dt(\Upsilon mv) =$

Proper time t' = (time in lab. frame)

4. Scattering

Scattering overview – fill in the conditions on frequency and velocity for these scattering treatments

Thomson scattering	Compton scattering
Inverse Compton	

5. Radiation processes

Give a brief description of the following radiation processes

Apparent superluminal motion

Bremsstrahlung

Gyrotron

Synchrotron

Thomson scattering

Compton scattering

Inverse Compton scattering

Sunyaev-Zeldovich effect