

Relativistic modifications II. Emission and arrival times. Superluminal motion and relativistic beaming. Gyrotron, cyclotron and synchrotron beaming. Acceleration in particle rest frame. Bremsstrahlung and synchrotron spectra.

Thomson cross section $\hbar \omega \ll m_e c^2$ $v \ll c$ Aims: Differential and total scattering cross-section for Thomson scattering Method: Differential scattering cross-section is defined as		
Differential cross-section = (power scattered into solid angle) (incident power per unit area) Total scattering cross-section given by integral over solid angle.		
Results (derivation Differential Thomson cross section Thomson cross-section	in lectures): $ \frac{d\sigma}{d\Omega} = \frac{r_e^2}{2}(1 + \cos^2 \alpha) $ $ \sigma = \frac{8\pi}{3}r_e^2 $	using the classical electron radius $r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2}$