

PHY3145 Topics in Theoretical Physics

Astrophysical Radiation Processes

Textbooks

Main texts

- Rybicki & Lightman *Radiative Processes in Astrophysics* (Wiley-Interscience) unsurpassed introduction to basics, rigorous analysis, in places going further than Longair. CGS units. UL 523.01 RYB
- Longair *High Energy Astrophysics*, Vols. I and II (Cambridge University Press) covers high energy processes only, chatty style. SI units. UL 523.01 LON

Supporting texts

- Griffiths, *Introduction to Electrodynamics* (Prentice Hall) basic introduction to relativistic electrodynamics UL 537 GRI
- Feynman, Leighton, Sands *Lectures on Physics*, vol. II (Addison-Wesley) imaginative introduction to relativistic motion of charged particles UL 530 FEY/X
- Spitzer *Physical processes in the Interstellar Medium* (Wiley Classics) old-fashioned but a classic. Physics library. CGS units.

Radiation Processes Summary

- **Bremsstrahlung**: radiation from unbound charges accelerated by Coulomb interactions
- Gyrotron/Cyclotron/Synchrotron: radiation from charges accelerated in a magnetic field.
 - Gyrotron: non-relativistic
 - Cyclotron: mildly relativistic
 - Synchrotron: fully relativistic
- Thomson/Compton/Inverse Compton: scattering of radiation from charges
 - Thomson: classical scattering, non-relativistic, low-energy photons
 - Compton: high-energy photon scattering with wavelength shift due to loss of momentum
 - Inverse Compton: photons gain energy due to upscattering from hot electrons

Radio galaxies Quasars

← Radio jet from galaxy 0313-192

Red: VLA 20cm

White: HST optical

Image: Keel, Ledlow & Owen (2006 AJ 132 2233) / STSci, NRAO/AUI/NSF, NASA; Spectra: Scheuer & Williams 1968 ARAA

- Course objectives

 Explain the mechanisms behind important astrophysical radiation processes
 - Bremsstrahlung
 - Gyrotron/cyclotron/synchrotron
 - Thomson scattering/Compton scattering/Inverse Compton
- Relate emission and absorption through the equation of radiative transfer (Sect. 1)
- Calculate the power emitted by accelerated charges in a range of situations (Sect. 2)
- Show how relativistic velocities affect the radiation seen by an observer (Sect. 3 & 4)
- Understand how your toolkit of basic physics can be applied in steps to tackle complex, research-level problems (Sect. 5).

If an equation is in a coloured box, you should be able to reproduce it in the exam!

Course structure

- 1. Radiation basics. Radiative transfer.
- **2.** Accelerated charges produce radiation. Larmor formula. Acceleration in electric and magnetic fields non-relativistic bremsstrahlung and gyrotron radiation.
- **3. Relativistic modifications I.** Doppler shift and photon momentum. Thomson, Compton and inverse Compton scattering.
- **4. Relativisitic modifications II**. Emission and arrival times. Superluminal motion and relativistic beaming. Gyrotron, cyclotron and synchrotron beaming. Acceleration in particle rest frame.
- 5. Bremsstrahlung and synchrotron spectra.

1. Radiation basics

- a) Measures of radiation
- b) Equation of radiative transfer

Example: thermal dust emission

c) Kirchoff's law for thermal emission

Example: Einstein coefficients

Measures of radiation

Luminosity

L W

Total power emitted in all directions

Intensity

 $I \text{ W m}^{-2} \text{ sterad}^{-1}$ $I_v \text{ W m}^{-2} \text{ Hz}^{-1} \text{ sterad}^{-1}$

Power per unit area in a particular direction per unit frequency (specific intensity)

Flux

 $F \text{ W m}^{-2}$ $F_{v} \text{ W m}^{-2} \text{ Hz}^{-1}$

Power per unit area per unit frequency (specific flux)

For a source emitting isotropically

$$F = \frac{L}{4\pi r^2}$$

Emission and absorption coefficients

Absorption coefficient

Emission coefficient

 j_{ν}

W m⁻³ Hz⁻¹ sterad⁻¹

Measures of radiation

Quantity	Symbol	Unit
Energy	W	J
Power	P	\mathbf{W}
or Luminosity	L	
Power per unit solid angle	$rac{dW}{dtd\Omega}$	W sterad-1
Intensity or surface brightness	I	W m ⁻² sterad ⁻¹
Specific intensity eg. black-body intensity	$egin{array}{c} I_{v} \ B_{v} \end{array}$	W m ⁻² Hz ⁻¹ sterad ⁻¹
Flux	F or S F_v	$W m^{-2}$ $W m^{-2} Hz^{-1}$
Emission coefficient	j_{v}	W m ⁻³ Hz ⁻¹ sterad ⁻¹
Absorption coefficient	α_v	m ⁻¹ Hz ⁻¹

Radiative transfer

Macroscopic description of the interaction of radiation with matter.

 $1^{\rm st}$ order differential equation. Multiply by $e^{\alpha_{\nu}s}$ and integrate.

$$I_{\nu} = I_0 e^{-\alpha_{\nu} S} + \frac{j\nu}{\alpha \nu} (1 - e^{-\alpha_{\nu} S})$$

SEE LECTURES FOR DERIVATION

Radiative transfer continued...

Limiting cases:

Optically thick
$$\tau > 1$$
, $e^{-\tau}$ small

$$I_{\nu} \simeq S_{\nu}$$

Optically thin
$$\tau \ll 1$$
, $e^{-\tau} \sim 1 - \tau$

$$I_{\nu} = I_0(1 - \tau_{\nu}) + S_{\nu}\tau_{\nu}$$

Kirchoff's law for thermal emission

For thermal radiation from an emitter in equilibrium at temperature T **Kirchoff's law** relates emissivity j_v and absorption coeff. α_v via Planck black-body function:

$$\frac{j_{\nu}}{\alpha_{\nu}} = B_{\nu}(T)$$

where

$$B_{\nu}(T,\nu)=rac{2h
u^3}{c^2}rac{1}{(e^{rac{h
u}{kT}}-1)}$$
 is the Planck function

So for a thermal emitter the equation of radiative transfer becomes

$$I_{\nu} = I_0 e^{-\tau_{\nu}} + B_{\nu} (1 - e^{-\tau_{\nu}})$$