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ABSTRACT

We investigate the migration rates of high-mass protoplanets embedded in accretion discs via two and
three-dimensional hydrodynamical simulations. The simulations follow the planet’s radial motion and
employ a nested-grid code that allows for high resolution close to the planet. We concentrate on the
possible role of the coorbital torques in affecting migration rates. We analyse two cases: (a) a Jupiter-mass
planet in a low-mass disc and (b) a Saturn-mass planet in a high-mass disc. The gap in case (a) is much
cleaner than in case (b). Planet migration in case (b) is much more susceptible to coorbital torques than in
case (a). We find that the coorbital torques in both cases do not depend sensitively on whether the planet
is allowed to migrate through the disc or is held on a fixed orbit. We also examine the dependence of the
planet’s migration rate on the numerical resolution near the planet. For case (a), numerical convergence
is relatively easy to obtain, even when including torques arising from deep within the planet’s Hill sphere,
since the gas mass contained within the Hill sphere is much less than the planet’s mass. The migration rate
in this case is numerically on order of the Type II migration rate and much smaller than the Type I rate,
if the disc has 0.01 solar-masses inside 26AU. Torques from within the Hill sphere provide a substantial
opposing contribution to the migration rate. In case (b), the gas mass within the Hill sphere is larger
than the planet’s mass and convergence is more difficult to obtain. Torques arising from within the Hill
sphere are strong, but nearly cancel. Any inaccuracies in the calculation of the torques introduced by grid
discretization can introduce spurious torques. If the torques within the Hill sphere are ignored, convergence
is more easily achieved but the migration rate is artificially large. At our highest resolution, the migration
rate for case (b) is much less than the Type I rate, but somewhat larger than the Type II rate.

Subject headings: accretion, accretion discs — hydrodynamics — planetary systems: formation, protoplanetary
discs

1. Introduction

When the first planetary systems were discovered, migra-
tion provided the natural explanation for the existence of the
so-called “Hot Jupiters” (Lin, Bodenheimer & Richardson
1996). For this explanation to hold, migration time-scales
should be no longer than disc life-times of several million
years (e.g., Haisch, Lada & Lada 2001). However, the migra-
tion and planet formation processes are inter-related. Clearly,
there would be complications and possibly difficulties in un-
derstanding planet formation by a process whose time-scale
is long compared to the migration time-scale.

In the case of giant planet formation by the core accre-
tion process (e.g., Bodenheimer & Pollack 1986; Wuchterl

1To appear in the Monthly Notices of the Royal Astro-

nomical Society sometime in 2005.

1991a), the formation time-scale of about 107 years (Pollack
et al. 1996; Tajima & Nakagawa 1997) is rather long com-
pared to migration time-scales of about 105 years (e.g., Lin &
Papaloizou 1986; Ward 1997) for a Jupiter-mass planet and
about 106 years for an Earth-mass core (Tanaka, Takeuchi
& Ward 2002; D’Angelo, Kley & Henning 2003; Bate et al.
2003).

However, it has been found recently (Rice & Armitage
2003; Alibert, Mordasini & Benz 2004) that the effects of ac-
cretion and migration of a planetary core can significantly
reduce the time needed by the core to reach the mass neces-
sary for the nucleated instability to occur (Wuchterl 1991b;
Magni & Coradini 2004). Furthermore, several recent studies
have suggested that additional effects may be of importance
to migration. These include thermal effects of the disc mate-
rial near a planet (Morohoshi & Tanaka 2003; Jang-Condell
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2 Migration rates of protoplanets

& Sasselov 2004), effects of radial opacity jumps in the disc
(Menou & Goodman 2004), effects of vortices induced by a
planet (Koller, Li & Lin 2003), effects of turbulent fluctu-
ations (Nelson & Papaloizou 2004), and effects of coorbital
material (Masset & Papaloizou 2003, hereafter MP03). In
the current study, we consider effects of coorbital material,
along the lines of MP03.

Corotation torques arise in the coorbital region. In the
absence of dissipation or other time-dependent effects, the
corotation torque is zero in a smooth disc. The reason is that
in a steady-state, fluid elements circulate in closed orbits.
Over a libration time-scale, a fluid element will gain and lose
torque, but the result is zero average torque. Formally, the
corotation region in linear theory gives rise to a torque that
depends on the gradient of the disc vortensity (e.g., Goldreich
& Tremaine 1979). This torque is properly interpreted as
an “unsaturated” or maximal torque that arises over time-
scales less than a libration time-scale or when the effects of
viscosity are sufficiently large in steady-state. A derivation
that includes nonlinear feedback shows that the steady-state
corotation torque is indeed zero for a fluid in a smooth inviscid
disc (Balmforth & Korycansky 2001; Ogilvie & Lubow 2003,
see also Masset 2001). But, even the unsaturated corotation
torque for typical planet-disc systems is somewhat smaller in
magnitude than the other (Lindblad) torques present (Tanaka
et al. 2002). Furthermore, for typical disc parameters, this
torque is likely saturated (reduced to a smaller value), since
the effects of turbulent viscosity are not sufficiently strong, at
least in an alpha model description.

The above-described analyses did not take into account
the effects of the radial migration of the planet. This motion
may cause enough asymmetry in the corotational flow that a
net torque occurs, which may lead to a “runaway” situation
(MP03). That is, the migration of the planet might cause a
corotational torque that enhances the migration rate, which
in turn further promotes asymmetry and leads to a stronger
torque, etc. Examples of such a runaway phenomenon were
reported in simulations by MP03. The most favourable cir-
cumstances for such a process are expected when a planet
interacts with a massive disc in which there is not a clean
gap.

In addition to the classical corotational torques that arise
from nearly librating orbits, coorbital torques can also arise
within the Hill sphere of the planet. Material flows into
this region and forms a circumplanetary disc with shocks
(Lubow, Seibert & Artymowicz 1999; D’Angelo, Henning &
Kley 2002).

Our previous studies did not allow the planet to migrate
during the course of the simulation and therefore could not
have found such a runaway migration. Numerical resolution is
a key issue because densities near a planet are relatively high
and fractionally small density errors there can give rise to
large spurious torques. Bate et al. (2003) found that torques
near the planet may contribute somewhat (∼ 20 per cent) to
the migration rate. However, that study lacked the resolution
to reliably determine such torques.

In this paper, we investigate if the torques exerted on a
high-mass planet by a disc depend significantly on whether
the planet is kept on a fixed orbit or allowed to migrate.

We also investigate the possible role of torques due to ma-
terial within the Hill sphere. We do this by means of two-
dimensional (2D) and three-dimensional (3D) high resolution
hydrodynamical simulations. A key feature of the code is
that it allows high resolution to be achieved by means of
nested grids that encompass a region around the planet as
it migrates. With this code, we are able to examine the con-
tribution of the material inside the planet’s Hill sphere to the
total torque on the planet.

The outline of the paper is as follows. In Section 2 the
physical model is described. In Section 3 we present an
overview of the numerical procedures employed in these com-
putations. The results of the calculations are provided in
Sections 4 and 5. In Section 6 we present a discussion of
these results and our conclusions.

2. Description of the physical model

It is generally believed that the interaction between a cir-
cumstellar disc and a Jupiter-sized object can be studied by
means of a two-dimensional approximation (Kley, D’Angelo
& Henning 2001; D’Angelo et al. 2003). However, while this is
possibly true when considering interactions occurring at Lind-
blad resonance locations (i.e., at distances from the planet
larger than a disc scale-height, H), it is not yet clear whether
or to what extent this remains a valid assumption when deal-
ing with other interactions occurring at coorbital locations
(Masset 2002). Therefore, in this investigation we considered
both 2D and 3D disc models.

In the 2D geometry we employed a cylindrical coordinate
frame {O; r, φ, z}, with the disc confined in the plane z = 0,
whereas in the 3D geometry we used a spherical polar coor-
dinate frame {O;R, θ, φ}. The rotational axis of the disc is
either parallel to the z-axis or to the polar direction, θ = 0.
Both reference frames have their origin, O, on the star and
rotate about the disc axis with an angular velocity Ω and
an angular acceleration Ω̇, being this last vector also parallel
to the disc axis. The magnitudes of Ω and Ω̇ are specified
later in this section. For the sake of clarity we point out that,
whenever the variable r is used in the context of spherical po-
lar coordinates, it indicates the distance from the rotational
axis r = R sin θ.

2.1. Equations of motion for the disc

The hydrodynamical equations describing the disc evolu-
tion are usually written in the conservative form for the radial
and angular momenta. This can be derived from the Navier-
Stokes equations for the velocities (see, e.g., Mihalas &Weibel
Mihalas 1999, Chapter 3) and the continuity equation. Since
the 2D equations in cylindrical coordinates can be formally
derived from the 3D equations in spherical polar coordinates,
we explicitly write them only for the latter reference frame.
Indicating with ρ the mass density, with u ≡ (uR, uθ, uφ)
the fluid velocity, and with ωA = ω + Ω the absolute angu-
lar velocity of the fluid around the disc axis (ω r = uφ), the
equations of motion for the disc in conservative form can be
written as

∂ρ

∂t
+∇ · (ρu) = 0, (1)



G. D’Angelo, M. Bate, & S. Lubow 3

∂ξR
∂t

+∇·(ξR u) = ρ (
u2
θ

R
+ω2

A R sin2 θ)−
∂p

∂R
−ρ

∂Φ

∂R
+fR, (2)

∂ξθ
∂t

+∇ · (ξθ u) = ρω2
A R

2 sin 2 θ

2
−
∂p

∂θ
− ρ

∂Φ

∂θ
+Rfθ, (3)

∂ξφ
∂t

+∇ · (ξφ u) = −
∂p

∂φ
− ρ

∂Φ

∂φ
+R sin θ fφ, (4)

where

(ξR, ξθ, ξφ) = ρ (uR, uθ R,ωA R
2 sin2 θ) (5)

are the radial and angular momentum densities. Equations
in 2D cylindrical coordinates can be obtained from equa-
tions (1), (2), (4), and (5) by replacing ρ with the surface
density Σ, using the appropriate expression for the divergence
operator, dropping all terms that contain the velocity uθ, and
setting θ = π/2.

Note that ξφ is the absolute azimuthal angular momentum
(density) of the fluid rather than that relative to the rotating
reference frame. This basically means that the non-inertial
terms arising from the rotation of the reference frame (i.e.,
Coriolis and angular velocity accelerations) are incorporated
in the left-hand side of equation (4). This choice assures a
better numerical treatment of the associated conservation law
(Kley 1998).

We adopted a locally isothermal equation of state by set-
ting p = c2s ρ (or p = c2s Σ in 2D) . The sound speed, cs, is
equal to the disc aspect ratio, H/r, times the Keplerian ve-
locity, vK. We used a constant disc aspect ratio throughout
the disc, implying that the temperature distribution scales as
the inverse of the distance from the disc axis.

Since self-gravity is ignored, the gravitational potential,Φ,
only includes contributions from the star, the planet, and the
non-inertial forces arising from the motion of the frame origin,
O. Indicating the position vector of a fluid element as x and
that of the planet as xp, the disc gravitational potential reads

Φ = −
GM∗

|x|
−

GMp
√

|x− xp|2 + ε2
+
GMp

|xp|3
x · xp, (6)

where M∗ is the stellar mass, Mp is the planet mass, and
ε is a smoothing length (see the discussion in section 2.4).
The third term on the right-hand side of equation (6) origi-
nates from the fact that the origin of the coordinate frame is
accelerated by the planet2.

The viscosity force density, f ≡ (fR, fθ, fφ) (or f ≡
(fr, fφ) in 2D), is written as f = ∇ · S. It assumes a stan-
dard viscous stress tensor, S, for a Newtonian fluid with a
constant kinematic viscosity, ν, and a zero bulk viscosity. Ex-
plicit forms for the components of f can be found in Mihalas
& Weibel Mihalas (1999, Chapter 3), for the 3D spherical po-
lar coordinates case and in D’Angelo et al. (2002), for the 2D
cylindrical coordinates case.

2To be strict, an additional term should appear in equation (6)
due to the force exerted by the disc material on to the star, as
measured from the centre-of-mass reference frame. We neglected
this contribution, as is done when assuming that the centre-of-mass
of the whole system coincides with that of the star–planet system.

2.2. Equation of motion for the planet

In the present study the planet’s orbit evolves under the
gravitational action of the central star and of the disc mate-
rial. Moreover, since the orbit is described with respect to
a varying rotating reference frame, all non-inertial terms in-
volving the angular velocity, Ω, and the angular acceleration,
Ω̇, of the coordinate system have to be taken into account.
Restricting to those orbits coplanar with the disc midplane

(θ = π/2 or z = 0), the equation of motion of the planet is

ẍp = −
G(M∗ +Mp)

|xp|3
xp +Ap −A∗ (7)

−Ω× (Ω× xp)− 2Ω× ẋp − Ω̇× xp.

We recall that, by working hypothesis, Ω as well as Ω̇ are
perpendicular to the disc midplane and produce a counter-
clockwise rotation. The acceleration applied by the disc mat-
ter to the planet is given by

Ap = G

∫

MD

(x− xp) dMD(x)

(|x− xp|2 + ε2)3/2
, (8)

while the acceleration applied to the star is

A∗ = G

∫

MD

xdMD(x)

|x|3
. (9)

In both cases the integration is carried out over the simulated
disc mass, MD (see section 2.4).

Equation (8) contains the smoothing length in its denomi-
nator. This expression for acceleration appears in the second
term of equation (6). An acceleration with smoothing is ap-
plied to the planet’s motion in order to satisfy Newton’s third
law.

2.3. Rotational elements of the reference frame

The main aim of this paper is to study the exchange of
angular momentum occurring between a migrating planet and
disc material moving on U-turns of horse-shoe orbits. In order
to accurately resolve the flow variables in this region by means
of a local grid-refinement technique, the planet needs to move
through the grid as slowly as possible. To achieve this, we
worked in reference frames that rotate about the disc axis at
a variable rate, Ω = Ω(t). We then chose Ω and Ω̇ so as to
compensate for the fastest component of the planet motion,
i.e., the azimuthal one. This is accomplished by calculating
the total orbital angular momentum of the planet per unit
mass, HA, and then requiring that

HA = xp × (Ω× xp), (10)

ḢA = xp × (Ap −A∗). (11)

These equations are to be solved with the additional require-
ments that both Ω and Ω̇ must be perpendicular to the plane
of the orbit and produce a positive (i.e., counter-clockwise)
rotation. Equations 10 and 11 constrain the angular veloc-
ity and acceleration of the rotating coordinate system so that
the planet trajectory reduces to a purely radial motion. In
other terms, all of the planet’s orbital angular momentum is
conveyed to the rotation of the non-inertial reference frame.
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If the orbital eccentricity remains close to zero during the
system evolution, as we found in our simulations, then the
planet’s radial motion is only due to the disc gravitational
torques. We denote the planet’s semi-major axis as a = |xp|
and the time-scale of this drifting motion as τM = a/|ȧ|. The
quantity Nr∆r (or NR∆R) is the radial extent of the high-
est refinement region and the time spent within this region
is Nr∆r/|ȧ| = Nr (∆r/a) τM, which is on the order of 0.1 τM
for the parameters used in the calculations. Numerical sim-
ulations (e.g., Lubow et al. 1999; Nelson et al. 2000; Kley
et al. 2001; D’Angelo et al. 2002) as well as analytical the-
ories (Goldreich & Tremaine 1980; Lin & Papaloizou 1986;
Ward 1997) on disc torques suggest time-scales, τM, on the
order of 104 periods. Therefore, with this method one can
expect to track the planet and the coorbital regions, with the
necessary numerical resolution, for hundreds of orbits.

2.4. Physical parameters

We performed two kinds of simulations: the first kind is
dedicated to planets interacting with a low-mass disc and the
second is dedicated to planets orbiting in a high-mass disc.
In all of the calculations, the mass of the star, M∗, represents
the unit of mass whereas the initial semi-major axis of the
planet’s orbit, a0, gives the length unit. The unit of time is
such that 1/t0 =

√

G (M∗ +Mp)/a3
0. However, when it is

necessary to convert quantities into physical units, we used
M∗ = 1M¯ and a0 = 5.2AU.

2.4.1. Parameters for low-mass discs

In these models the simulated disc domain extends radially
from 0.4 to 4.0 length units around the star and, azimuthally
in angle, from 0 to 2π. These simulations describe a disc
of mass MD = 7.5 × 10−3 M∗ within the radial limits of the
computational domain, which is equivalent to 0.01M¯ within
26AU of a 1M¯ star. In the case of 3D models, we simu-
lated only the upper half of the disc between 80◦ ≤ θ ≤ 90◦

and assumed mirror symmetry with respect to the midplane.
The aspect ratio of the disc was fixed to H/r = 0.05. The
overall initial surface density scales as r−1/2 and is axisym-
metric. This would give an unperturbed disc surface density
at the location of the planet of 76 g cm−2, but we included
an initial gap along the planetary orbit that accounts for an
approximate balance of viscous and tidal torques. One model
was also run without an initial gap, in order to determine its
influence on the results. In 3D models, the initial latitude
dependence of the mass density is taken to be a Gaussian.

We employed a constant kinematic viscosity, ν, to account
for the effects due to turbulence in the disc. In the units
introduced above, we set ν = 10−5 that is also equivalent to
Shakura & Sunyaev parameter α = 4 × 10−3 at the initial
location of the planet. This choice is compatible with what
was recently found in studies of embedded Jupiter-size bodies
in discs with MHD turbulence (Papaloizou & Nelson 2003;
Winters et al. 2003). However, we do not include the spatial
variations in α consistent with the MHD results, nor the time
fluctuations due to MHD turbulence (Nelson & Papaloizou
2004).

The planet mass is such that Mp/M∗ = 10−3 (i.e., one
Jupiter-mass, MJ, for a one-solar-mass star). The planet

starts on a circular orbit of semi-major axis a0 = 1, which
is kept static for a certain number of periods to allow the re-
laxation of the system. This was done by setting to zero the
terms (8) and (9), in equation (7), and activating them at the
“release” time, t = trls. We used trls equal to either 100 or
300 orbits. The migration rates were found to be insensitive
to the release time (less than 10 per cent differences in rates),
provided it is greater than 100 orbits. The azimuthal position
of the planet remains constant throughout the computations
(see section 2.3) and it is equal to φ = φp = π.

The smoothing length of the planet potential, ε, in equa-
tion (6) was chosen to be a fraction of the planet’s Hill radius,

RH = a [Mp/(3M∗)]
1/3 = 0.069 a. We employed three differ-

ent values: ε = 0.4, 0.2, and 0.1RH, in order to study the
effects of smoothing on the results.

2.4.2. Parameters for high-mass discs

When simulating planets embedded in a high-mass disc,
we used parameters as similar as possible to those adopted
by MP03, in order to have a direct comparison with their
results. Therefore, in contrast to the previous settings, the
radial extent of the disc and its aspect ratio were reduced to
[0.4, 2.5] length units and 0.03, respectively. The simulations
describe a disc of massMD = 2.37×10−2 M∗ within the radial
limits of the computational domain, which is equivalent to
≈ 24MJ within 13AU of a 1M¯ star. As in MP03, the initial
surface density scales as r−3/2 and there is no initial gap.
This gives an unperturbed disc surface density at the location
of the planet of 653 g cm−2. The planet-to-star mass ratio
is Mp/M∗ = 3 × 10−4, roughly corresponding to a Saturn-
mass object for M∗ = 1M¯. We again employed a constant
kinematic viscosity ν = 10−5 in dimensionless units. The
planet was held on a static orbit (a0 = 1) and released at t =
trls. For most of the 2D calculations the planet was released
after 477 orbits, as done by MP03. For comparisons between
2D and 3D models we could not afford the time required to
run 3D calculations to 477 orbits, so we released the planet
at 200 orbits. For a convergence test with high-resolution
2D calculations we set trls = 277 orbits. The value of the
smoothing length was set to ε = 0.3878RH (RH = 0.046 a),
which is equal to 60 per cent of the local disc scale-height.

3. Description of the numerical method

The hydrodynamical equations (1) through (5) that de-
scribe the evolution of the disc are solved numerically by
means of a finite-difference scheme with directional operator
splitting. The method is second-order accurate in space and
first-order in time (Ziegler & Yorke 1997). The numerical res-
olution of the regions around the planet is greatly enhanced
by utilising a nested-grid technique (for details, see D’Angelo
et al. 2002, 2003). Each subgrid level increases the resolution,
with respect to the hosting grid, by a factor 2 in each direc-
tion. Thus, the total gain in resolution for each added subgrid
is 22 or 23 in 2D or 3D simulations, respectively. Subgrids are
fully nested, i.e., each occupies a region of space completely
contained inside the hosting grid. This implies that the num-
ber of zones of any subgrid, along any direction, can be at
most twice the number of zones of the hosting grid along that
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Table 1: Grid system employed in low-mass disc models.

Grid 2D3G 2D4G 2D5G 3D3G
level Nr ×Nφ Nr ×Nφ Nr ×Nφ NR ×Nθ ×Nφ

1 243× 455 243× 455 243× 455 243× 17× 455
2 114× 84 114× 84 114× 104 114× 24× 84
3 114× 84 114× 84 134× 124 114× 24× 84
4 134× 84 154× 144
5 174× 164

The linear resolution around the planet, averaged over all di-
rections, on the level 1 is 1.45 × 10−2. This value decreases
by a factor of 2(l−1) on a given level l. Thus, the grid sys-
tems 2D3G and 3D3G resolve the flow around the Hill sphere
of a Jupiter-mass planet with 19 grid zones per Hill radius,
while the grid 2D5G achieves a resolution of 76 zones per Hill
radius.

direction. A point in space is handled by the highest resolu-
tion grid (highest grid level) that covers that point.

In order to test the behaviour of the nested-grid code for
planetary migration calculations, we compared outcomes of
models executed in a single-grid mode with those of the same
models executed in a nested-grid mode with equal numeri-
cal resolution. We always found an excellent agreement with
discrepancies averaging ≈ 10−3 per cent. Some of these com-
parisons are reported in the Appendix.

The equations of motion of the planet are solved in Carte-
sian coordinates with a high-accuracy and fast hybrid algo-
rithm. This involves a Bulirsch-Stoer method with an adap-
tive time-step control (Press et al. 1992) and a standard
fourth-order Runge-Kutta solver. Each hydrodynamics time-
step ∆t (constrained by the Courant-Friedrichs-Lewy stabil-
ity criterion) is divided into substeps whose duration is dic-
tated by the requirement that the local truncation error is
always smaller than the chosen accuracy (10−7 in these cal-
culations). The maximum number of substeps allowed is set
to 5000. If the integration time has not reached the value ∆t
after this iteration cycle, the remainder of the time-interval is
integrated via a fourth-order Runge-Kutta method. Although
this is a necessary precaution, the overall procedure actually
requires only a few time-substeps of the Bulirsch-Stoer algo-
rithm to complete the whole hydrodynamics time-step ∆t,
since the vector equation (7) has no singular points inside
this integration interval. The orbit integrator was tested,
over long-term evolutions, against both circular and eccen-
tric Keplerian orbits. For a variety of values of Ω and Ω̇, no
deviations from the analytic solutions were found down to the
machine precision.

Disc gravitational forces given by equations (8) and (9) are
considered to be constant over the whole time span ∆t and
are computed by summation of discretised quantities over the
whole grid, always using densities from the subgrid with the
highest resolution available.

3.1. Numerical setup

In a disc-planet interaction calculation, the largest spatial
gradients of the flow variables develop around and inside the

planet’s Hill sphere. Over a distance of two Hill radii, the
density can change by three or more orders of magnitude
(D’Angelo et al. 2003; Bate et al. 2003) and the velocity field
describes highly complex patterns (e.g., Lubow et al. 1999;
Tanigawa & Watanabe 2002). In order to ascertain to what
extent our numerical experiments depend upon the numerical
resolution in this region, we performed a convergence study
in all cases. To this aim, we set up a number of grid systems
whose resolution in the coorbital regions ranges from 19 (or
13, when Mp/M∗ = 3×10−4) to nearly 76 (or 104) grid zones
per Hill radius (see details in Tables 1 and 2).

Most calculations were performed without allowing the
planet to accrete. When accretion is permitted, mass is re-
moved from around the planet within a tenth of its Hill radius.
The removal of mass occurs on a time-scale on the order of a
tenth of the orbital period.

Boundary conditions at the inner radial border allow flow
towards the central star, as naturally happens in viscous ac-
cretion discs. The outer radial border is closed so that no
inflow or outflow of material is permitted. At both radial
edges of the disc, the flow is assumed to be Keplerian around
the central star. This circumstance may occasionally lead to
spurious, small-amplitude wave excitation at the outer edge
of the disc, since material there has the tendency to orbit
about the centre-of-mass of the system rather than around
the central star (see discussion in Nelson et al. 2000). How-
ever, the effects of such waves are not relevant since they do
not propagate for a significant distance from the disc edge.
In 3D models, reflective and symmetric boundary conditions
are applied at the highest latitudes and at the midplane, re-
spectively. The velocity field in the disc is initialised with a
Keplerian circulation, corrected for the grid rotation.

It was pointed out by Nelson & Benz (2003a) that when the
planet moves through the grid cells, the smoothing length in
equation (6) needs to be larger than half the linear dimension
of the grid zone. This is required in order to avoid unphysical
effects on the planet’s trajectory due to close encounters with
grid centres. In these calculations we used initial values of
ε that are at least 1.8 times the average linear size of the
grid zone from which the planet is released. Furthermore,
the series of convergence tests that we performed indicate
that the ratios between ε and the average grid zone size are
large enough not to affect the outcome of the simulations (see
section 4).

4. Results of low-mass disc models

Previous studies of migrating Jupiter-mass planets showed
that the evolution of the orbital semi-major axis, a = a(t),
is dependent upon the resolution with which hydrodynamics
variables are discretised on the computing mesh (Nelson et al.
2000; Nelson & Benz 2003a). As emphasised by Nelson &
Benz (2003b), this issue becomes even more important when
torques in the coorbital region are resolved, i.e., when the
planetary gravitational smoothing lengths are a small fraction
of RH (see eq. [6]). The dependence of gravitational torques
on the numerical resolution is crucial to assess the reliability
of the outcomes. Therefore, we tackled this problem with
a number of dedicated simulations, before investigating any
possible physical effects of coorbital torques on the migration
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Table 2: Grid system utilised in high-mass disc models.

Grid 2D1Gb 2D3Gb 2D4Gb 2D5Gb 2D6Gb 3D3Gb
level Nr ×Nφ Nr ×Nφ Nr ×Nφ Nr ×Nφ Nr ×Nφ NR ×Nθ ×Nφ

1 147× 455 147× 455 147× 455 147× 455 147× 455 147× 17× 455
2 114× 84 114× 84 114× 84 134× 104 84× 24× 84
3 114× 84 114× 84 114× 84 134× 104 84× 24× 84
4 114× 84 134× 84 164× 104
5 164× 104 194× 124
6 324× 204

The average linear resolution around the planet on the level l is 1.43× 10−2/2(l−1). Hence, the
grid systems 2D3Gb and 3D3Gb resolve the flow around the Roche lobe of a 0.3MJ planet with
13 grid zones per Hill radius while the grid 2D6Gb achieves a resolution of more than 100 zones
per Hill radius. We used the single-level grid system, 2D1Gb, only for purposes of comparison
with the calculations reported in MP03,

of giant planets.

4.1. A convergence study

Convergence tests were carried out on each of the low-mass
disc models described in Section 2.4.1. The resolution was
progressively increased by employing the grid systems 2D3G,
2D4G, and 2D5G (see Table 1). The last two grid systems,
compared to the first, provide a linear resolution gain of a
factor 2 and 4, respectively. For comparison purposes, we set

Fig. 1.— Global surface density around a Mp = 1MJ planet
orbiting in a low-mass disk (see section 2.4.1). The density is
shown after 370 orbits, when the planet has migrated for 70
orbits. In the linear grey-scale, at 5.2AU, Σ = 10−4 corre-
sponds to 32.9 g cm−2.

the release time to trls = 100 orbits, except for the simulations
concerning the accreting model that have trls = 300 orbits.
The overall surface density from one of such calculations is
displayed in Figure 1.

Figure 2 shows that we achieved numerical convergence
in all cases, with either accreting or non-accreting planets
and with different values of ε. In some panels, the out-

Fig. 3.— Surface density profile along the azimuthal position
(φ = φp) of a Mp = 1MJ planet, after 100 orbital periods,
orbiting in a low-mass disc. Different line types indicate mod-
els with different values of the gravitational potential soften-
ing: ε = 0.1RH (solid line); ε = 0.2RH (short-dash line);
ε = 0.4RH (dash-dot line); accreting planet (long-dash line).
If a0 = 5.2AU and M∗ = 1M¯, Σ = 10−4 corresponds to
32.9 g cm−2.
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Fig. 2.— Convergence tests regarding different configurations of Jupiter-mass models orbiting in a two-dimensional low-mass
disc. Upper-left. Non-accreting planet with gravitational potential softening ε = 0.4RH. Upper-right. Non-accreting planet with
ε = 0.2RH. Lower-left. Non-accreting planet with ε = 0.1RH. Lower-right. Accreting planet with ε = 0.1RH. The release time
is equal to 100 orbits, except for the accreting model for which trls = 300 orbits. Each panel shows how the semi-major axis, a,
evolves when all torques from within the planet’s Hill sphere are taken into account (upper curves) and when the contribution
of those torques arising inside of 0.5RH from the planet are neglected (lower curves). See text for further details.

comes produced by the two grid systems can be hardly distin-
guished. The main numerical difficulty with the evaluation
of gravitational torques arising from the coorbital region is
related to the presence of large density gradients (Nelson &
Benz 2003b). Moreover, the shorter the smoothing length,
the larger such gradients are. Figure 3 shows that there is
an order-of-magnitude difference between the density peaks
of the models with ε = 0.1RH and ε = 0.4RH. For the
ε = 0.1RH case, using the grid system 2D3G would mean

that ε was resolved by less than 2 grid zones and, thus, the
density gradients could be resolved too poorly. Therefore, we
used the grid systems 2D4G and 2D5G for this case.

We also investigated whether there are any differences be-
tween simulations starting with or without an initial density
gap (see section 2.4). Provided that the system is allowed to
evolve for a sufficiently long time in order that the gap be-
comes deep enough (≈ 500 orbits), the migration behaviour
is very similar to that of models initiated with a density gap.
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Two sets of lines are displayed in each panel of Figure 2.
These are intended to address the lingering question of the
importance of torques exerted by matter residing deep inside
the planet’s Hill sphere (D’Angelo et al. 2003; Bate et al.
2003). Thus, two configurations were simulated, differing only
in whether or not torques within a radius βRH from the planet
are included in the calculation of the gravitational force in
equations (8) and (9). In one configuration, all torques are
taken into account (i.e., β = 0). In the second configuration,
the simulations were repeated neglecting the contribution of
material lying inside the inner half of the Hill sphere (i.e., β =
0.5). The choice β = 0.5 was made to avoid the region where
the density gradient is largest (see Fig. 3) and which mostly
contains material orbiting the planet before it is released (see
Fig. 4).

The streamlines in Figure 4 are constructed by integrat-
ing the velocity field (ur, uφ) at an instant in time. Strictly
speaking, this procedure is in error for a migrating planet
(right panels), as it moves during the interval of integration.
But provided the planet moves only a small fraction of its Hill
sphere over the integration time, the streamlines obtained
are reasonably accurate. This condition is satisfied for the
streamlines plotted in this Figure. It is of course incorrect
to ignore torques from within the Hill sphere since material
can move into or out of it (see Fig. 3) and the angular mo-
mentum associated with this mass flux is lost instead of being
transferred to the planet’s orbit. Therefore, migration rates
obtained from configurations with β > 0 are not fully consis-
tent from a physical standpoint, unless one can assure that
the neglected material is constantly and not temporarily or-
biting the planet.

In all cases we considered, the β = 0 calculations resulted
in slower migration and, thus, these results appear as the
upper curves in each panel of Figure 2. We note that even
when torques coming from material within the Hill sphere
are included, numerical convergence is still achieved. This
last point turns out to be crucial when high-mass discs are
considered (see section 5).

4.2. Three-dimensional simulations

The vertical stratification of the flow variables in (verti-
cally isothermal) discs does not play an important role in de-
termining the strength of Lindblad torques acting on Jupiter-
mass planets, provided that RH & H (Kley et al. 2001). How-
ever, since the flow structure around the Hill sphere of the
planet is fully three-dimensional (D’Angelo et al. 2003; Bate
et al. 2003), the amount of angular momentum delivered by
material in the vicinity of the planet may be affected by the
vertical motion of the fluid. We attempted to investigate this
issue by means of 3D calculations (grid system 3D3G), whose
results are shown in Figure 5. As for 2D computations, the
effects of torques exerted by material within the Hill sphere
were measured by running models with β = 0 and β = 0.5.
In each panel of Figure 5, the evolution of the semi-major
axis (solid lines) is compared to that obtained from 2D mod-
els (dashed lines) having an analogous grid system (2D3G).
We were unable to test for convergence of the 3D calculations
due to computational limitations (simulations with a factor 2
increase in linear resolution would have required around 5000

CPU hours each). But since the 2D calculations were con-
verged, we speculate that at the same resolution 3D calcula-
tions are also converged because the density structure around
and inside the Hill sphere is smoother in three dimensions.

Figure 5 shows that the two- and three-dimensional results
are similar in the non-accreting cases. The Hill spheres of
non-accreting planets contain more material in 3D than they
do in 2D (see Fig. 6). Therefore, it is reasonable to expect
that the migration is slightly faster in three dimensions.

The situation appears more complex in the accreting case,
for which migration is slower in 3D than in 2D if β = 0.5,
but it is faster if β = 0 (Fig. 5, right panel). Since the mass
inside the Hill sphere is nearly the same in the two geome-
tries (Fig. 6, bottom panel), we ascribed this discrepancy to
the strong spiral waves that occur in the two-dimensional ac-
creting calculations (Lubow et al. 1999; D’Angelo et al. 2002)
which are much weaker in three-dimensions due to the possi-
bility of vertical motions. Strong spiral waves do not develop
when ε is a fair fraction of RH. The non-accreting models
with ε = 0.4 and 0.2RH present a nearly featureless density
structure close to the planet in both geometries, hence the
similarity of the migration rates.

Finally, we note that non-accreting 3D migration rates
with ε = 0.4 or 0.2RH are very similar. This suggests that no
large variations should be expected if smaller values of ε were
employed, provided that a sufficiently refined mesh is utilised
(∆R = R∆φ¿ ε). The same conclusion seems to be valid in

Fig. 6.— Mass enclosed within the Hill sphere of a Mp =
1MJ planet, as measured in 2D (circles) and 3D (diamonds)
calculations. Top. Non-accreting model with ε = 0.4RH.
Centre. Non-accreting model with ε = 0.2RH. Bottom. Ac-
creting model with ε = 0.1RH. Whether or not a gap is im-
posed on the initial density structure, the amount of material
within the Hill sphere tends toward the same value.
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Fig. 4.— Surface density and streamlines around Jupiter-mass, non-accreting planets orbiting in a low-mass disc (MD =
0.01M¯ within 26AU). The results were obtained from computations executed with the grid system 2D4G (linear resolution
RH/∆r = 38) and softening ε = 0.4RH (top) and 0.1RH (bottom). The panels illustrate the situation at the release time t = 300
orbital periods (left) and 50 orbits later (right), while the planet is migrating. The grey-scale is logarithmic and, at 5.2AU,
Σ = 10−3 corresponds to 329 g cm−2. The two streamlines closest to the planet start from distances of ≈ 0.36 and ≈ 0.5RH,
respectively.

two dimensions, as discussed more quantitatively in the next
section.

4.3. Migration rates: a quantitative analysis

So long as the semi-major axis does not change signifi-
cantly (i.e., it remains of the same order of magnitude), the
migration of a Jupiter-mass planet roughly follows an expo-
nential decay (Nelson et al. 2000). We assume that even when
the action of torques arising from corotation regions and from

material orbiting the planet are included, the evolution of a
can also be described by an exponential decay law

a(t) = a0 e
−(t−trls)/τM , (12)

for times t ≥ trls. We take the migration time-scale τM =
a/|ȧ| to be a constant over the simulated time-interval of the
planet’s actual migration (between 40 and 100 orbits). This
simple parameterisation of a = a(t) is very useful because
τM can be directly connected to the acting torques. In fact,
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Fig. 5.— Three-dimensional simulations of Jupiter-mass models (grid system 3D3G) orbiting in a low-mass disc, compared
to analogous two-dimensional models (grid system 2D3G). Left. Non-accreting planet with gravitational potential softening
ε = 0.4RH. Centre. Non-accreting planet with ε = 0.2RH. Right. Accreting planet with ε = 0.1RH. The release time is equal
to 100 orbits for the non-accreting models and 300 orbits for the accreting models. In each panel, the slower migration occurs
with the configuration executed with β = 0, whereas the faster migration occurs with the configuration run with β = 0.5.

if the orbit eccentricity is negligible then the conservation of
the orbital angular momentum leads to the relation

ȧ =
2T ·Ω

Mp aΩ2
, (13)

in which the vector T denotes the total external torque. This
expression is commonly used to evaluate ȧ from the vertical
component of T (which we simply indicate as T ), when a
planet moves on a static orbit (i.e., it is not allowed to mi-
grate).

We obtained estimates of τM for all of the 2D models (grid
system 2D4G) by performing a linear least-mean-squared fit
of the relation ln (a/a0) = −(t − trls)/τM. The results are
listed in the second and third columns of Table 3, labelled
as “moving” migration time-scale. The relative error on each
estimate is at most 10−3 and only for this reason τM is given
with three significant digits. Discrepancies between estimates
computed from 2D and 3D non-accreting models are below
∼ 10 per cent. Since the accreting models present a more
significant discrepancy, τM is also reported for the simulations
in three dimensions.

Including the effect of matter orbiting the planet tends to
slow down its inward drifting motion, regardless of the em-
ployed disc geometry, as clearly indicated in Figure 5. The
comparison between the β = 0 and β = 0.5 migration time-
scales shows that the torque from this material can be compa-
rable to that from corotation and Lindblad resonances. The
total (positive) torque produced inside the inner half of the
Hill sphere is

THS = T − TLC ∝
1

τM[β = 0]
−

1

τM[β = 0.5]
, (14)

whereas the magnitude of the total (negative) torque ex-
erted from the rest of the disc (i.e., Lindblad and corotation
torques), |TLC|, is proportional to 1/τM[β = 0.5]. Hence, the

ratio between the two contributions is

THS

|TLC|
= 1−

τM[β = 0.5]

τM[β = 0]
. (15)

Entries in the second and third columns of Table 3 indicate
that in the model with softening ε = 0.4RH the material close
to the planet accounts for a relatively small contribution (22
per cent). However, shorter smoothing lengths dramatically
increase the torque ratio, which becomes greater than 60 per
cent in the non-accreting models with ε = 0.2RH and 0.1RH.
A similar ratio between torques is obtained in the 3D accret-
ing model.

These migration time-scales can be compared with the
Type I (no gap, resonant) time-scale of about 4 × 102 or-
bits in 2D and 6× 102 orbits in 3D (Tanaka et al. 2002) and
the Type II (viscous) time-scale 2 a2/(3 ν) ' 104 orbits.

Note that the 2D migration rates tend to converge as ε is
decreased. In particular, the migration rates for ε = 0.2RH

and 0.1RH differ by less than 10 per cent.

4.4. Comparison of migration rates of static and

migrating planets: the Jupiter-mass case

We examined whether the torque exerted on the planet
by the disc material is influenced by the radial motion of the
planet. As discussed in Section 1, the motion of the planet
might be able to affect the coorbital torques and therefore
the migration rate. In order to test this hypothesis, we com-
puted the total torque acting on the planet during the last
ten orbital periods before it was released. This was done for
both β = 0 and β = 0.5 configurations. Since no angular
momentum is actually extracted from or added to the plan-
etary orbit, which thus remains static, we shall refer to such
torques as static torques. The migration time-scales listed in
the two right-most columns of Table 3 were obtained from the
average static torques by using equation (13). In Table 3 we
compared these “static” migration time-scales, τ S

M, with the
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migration time-scales, τM, measured from the moving planet
calculations. In all cases, there is close agreement between the
static and moving migration time-scales. These results show
that under these circumstances of disc and planetary masses,
there is no strong dependence of the torques on whether plan-
ets are on fixed orbits or allowed to migrate.

5. Results of high-mass disc models

The Type II migration rate depends only on the viscous
time-scale of the disc near the location of the planet and is in-
dependent of the disc density, provided that the gap is devoid
of material. Yet gaps are generally not completely cleared and
the Type II time-scale prediction does not take into consider-
ation the angular momentum exchanged between the planet
and the “gap” material. Some of this material travels on
horse-shoe orbits, while other material circulates within the
planet’s Hill sphere. The angular momentum delivered in ei-
ther case may play a major role in planetary migration (see,
e.g., Masset 2001) and it is proportional to the local mass
density. In fact, MP03 recently claimed that there exists a
critical mass (when the material around the planet is more
massive than the planet), beyond which a runaway migration
process sets in.

We ran simulations of Saturn-like bodies (Mp = 0.3MJ)
embedded in a disc as massive as 24MJ inside 13AU. The
annular region within 2RH from the planet is initially 7.5
times as massive as the planet. Nonetheless, the aspect ratio
is small enough (H/r = 0.03) so the thermal condition for gap
formation, Mp/M∗ > 3 (H/r)3 (e.g., Lin & Papaloizou 1993),
is fulfilled and therefore the migration might be within the
Type II regime, although the gap is not completely cleared
as can be seen in Figure 7. In these cases, with massive discs
and small aspect ratios, very large density gradients develop

Table 3: Comparison of static and moving migration
time-scales for a Jupiter-mass planet in a low-mass disc.

Moving Static
ε

β = 0 β = 0.5 β = 0 β = 0.5

0.4RH 9.94× 103 7.75× 103 1.0× 104 7.8× 103

0.2RH 1.76× 104 6.34× 103 1.8× 104 6.2× 103

0.1RH 1.51× 104 5.71× 103 1.8× 104 5.7× 103

0.1RH
† 5.97× 104 4.86× 103 4.8× 104 4.2× 103

0.1RH
‡ 1.54× 104 5.77× 103 1.5× 104 5.4× 103

† 2D accreting model. ‡ 3D accreting model.

The migration time-scales labelled as “moving” refer to the
time-scale, τM, in equation (12) and were computed as ex-
plained in Section 4.3. They are expressed in units of initial
orbital periods, i.e., 11.9 years if a0 = 5.2AU. One-standard
deviation uncertainties for these estimates range from 1 to 10
orbits. See Section 4.1 for an explanation of configurations
β = 0 and β = 0.5. Migration time-scales labelled as “static”
were determined from equation (13) by employing torques av-
eraged over the last ten orbits before the release time. Com-
putations were executed with the grid system 2D4G.

inside the Hill sphere. Therefore, it is especially important to
investigate the dependence of the results on numerical resolu-
tion. We achieved convergence for the flow outside of the Hill
sphere by using numerical resolutions of order 13 grid zones
per Hill radius. However, in order to accurately determine
the contributions to the migration rate from material inside
the Hill sphere, resolutions higher than 52 grid zones per Hill
radius are necessary.

5.1. Convergence tests

As mentioned in Section 2.4.2, the model setup and the
disc parameters were chosen to match as closely as possible
those in MP03. The smoothing length was 60 per cent of the
local disc thickness, H, (i.e., ε = 0.3878RH), the planet was
non-accreting, and trls = 477 orbits. We performed a calcu-
lation using a single-level grid (2D1Gb, see Table 2) aimed
at reproducing the resolution used by MP03 (∆r/RH ' 0.3
and ∆r/ε ' 0.8). We then performed a convergence test us-
ing different numerical resolutions, as provided by the grid
systems 2D3Gb, 2D4Gb, and 2D5Gb (see Table 2). An addi-
tional convergence test, involving the grid system 2D6Gb, is
discussed in Section 5.1.1.

The left panel of Figure 8 shows the outcomes of the tests
for the evolution of the semi-major axis concerning the con-
figuration with β = 0. The dot-dash line in this panel rep-
resents the result from the single-grid computation 2D1Gb,
which should be compared to the model labelled as S8 in Fig-
ure 2 of MP03. Given the remarkable agreement between our

Fig. 7.— Global surface density around aMp = 0.3MJ (non-
accreting) planet orbiting in a 0.024M¯ disk. The density is
displayed at t = 550 orbits, when the planet has migrated for
about 70 orbits. The grey-scale is logarithmic and 10−3 cor-
responds to 329 g cm−2, at 5.2AU. The average gap density
is 2.5× 10−4 or 82 g cm−2.
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Fig. 8.— Computations of a Saturn-mass planet orbiting in a high-mass disc: convergence tests. The gravitational potential
softening, ε, is 60 per cent of the local disc scale-height. The release time is equal to 477 orbits. The left panel shows the
evolution of a when all torques are taken into account (i.e., β = 0). The right panel shows how the evolution of the semi-major
axis proceeds when the contribution of those torques arising from inside the Hill sphere (i.e., β = 1.0) are neglected . The
dot-dash line (labelled as 2D1Gb) refers to a calculation executed with the same numerical resolution as in MP03.

and their outcome, we are confident that we reproduced the
same physical and numerical conditions for runaway migra-
tion. Yet, computations repeated with finer and finer res-
olutions gave smaller and smaller migration rates which, as
displayed in Figure 8 (left panel), failed to converge. The gain
in linear resolution achieved (over the single-grid simulation)
with the employed grid systems ranges from 4 (2D3Gb) to
16 (2D5Gb). In the highest resolution models, there are 52
grid zones per Hill radius. Comparing the short-dash and
dot-dash curves in left panel of Figure 8, one realises that
the average migration speed obtained over the first 25 or-
bits with the grid system 2D3Gb is only half (in physical
units, 〈ȧ〉 ≈ −5 × 10−3 AUyr−1) of that in MP03. Calcu-
lations executed with the grid systems 2D4Gb and 2D5Gb
give even lower migration speeds of 〈ȧ〉 ' −5 × 10−4 and
−1.4× 10−4 AUyr−1, respectively.

While there is a factor of 10 decrease in disc torques acting
on the planet in going from grid systems 2D3Gb to 2D4Gb,
this factor reduces to 3.6 when the two most refined grid
systems are considered. Yet, from the behaviour of semi-
major axis evolution shown in the left panel of Figure 8, we
cannot determine whether it is converging. To assess this
point we employed the grid system 2D6Gb (see section 5.1.1)
which indicates that the solid line in Figure 8 is basically a
converged evolution.

The right panel in Figure 8 shows the semi-major axis
evolution from the same calculations as in the left panel but
executed with β = 1.0, i.e., excluded torques arising inside the
planet’s Hill sphere. As before, this choice of β was made to
exclude the region around the planet with largest density gra-
dients as well as largest torque densities. Clearly, numerical

Fig. 9.— Mass enclosed within the Hill sphere of a Mp =
0.3MJ planet, as measured from simulations with increasing
resolutions: single-level grid 2D1Gb (asterisks); grid system
2D3Gb (diamonds); grid system 2D4Gb (squares); grid sys-
tem 2D5Gb (circles).
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convergence was readily achieved with this configuration. The
migration time-scale, obtained from a least-mean-squared fit
to the data (see section 4.3), is τM = 493 orbits. Furthermore,
outcomes of simulations executed with β = 0.75 attained con-
vergence at almost the same rate of migration as with β = 1.0.
Therefore, we conclude that the material close to the planet
must be held responsible for the non-convergence of the β = 0
configuration in the left panel of Figure 8. That is, the torque
arising from within the Hill sphere converges very slowly with
increasing resolution. Despite the fact that the amount of ma-
terial inside the planet’s Hill sphere increases as the grid res-
olution is raised (see Fig. 9), the resulting migration rates or
net torques are actually smaller. Figure 10 shows the surface
density near the planet at an advanced time, shortly before it
is allowed to migrate. We note that the mass near the planet
seems to be converging at the highest resolutions, but conver-
gence is not yet formally achieved. This Figure also implies
that most of the material is piled up very close to the planet.
We measured that 80 per cent of the mass contained inside
the Hill sphere is concentrated within a distance of 0.2RH

from the planet.

The mass build up within the Hill sphere appears to sug-
gest that disc self-gravity may be dynamically important.
However, this may not actually be the case. A simple cal-
culation of a viscous disc that accretes at the typical rates of
10−8 M¯ per year suggests that it is likely not self-gravitating

Fig. 10.— Surface density profile at the azimuthal posi-
tion of a planet with Mp/M∗ = 3 × 10−4, after 450 orbital
periods (the planet starts migrating at trls = 477 orbits),
orbiting within a high-mass disc. Different line types re-
fer to computations performed with different grid systems:
2D5Gb (solid line); 2D4Gb (long-dash line); 2D3Gb (short-
dash line). If a0 = 5.2AU andM∗ = 1M¯, Σ = 10−2 is equal
to 3.29× 103 g cm−2.

(the value of the Toomre parameter Q is much greater than
unity for the parameters in this paper). In the simulations
presented here, the mass build up is concentrated in a re-
gion of order the smoothing length (see Fig. 10). Within that
radius, further inward viscous accretion is artificially slow be-
cause the gravitational potential of the planet tends to enforce
rigid rotation (see second term in eq. [6]). In addition, the
boundary condition of no accretion on the planet prevents the
accumulated gas from being removed from the simulation. As
such, much of the gas accumulated within a smoothing length
represents material that is incorporated by the planet, rather
than residing in the disc.

Although the configuration with β = 1.0 provides nu-
merically converged migration rates, one has to be wary of
their physical meaning. Figure 11 illustrates that before the
planet is released (top-left panel) material on horse-shoe or-
bits passes through the Roche lobe as close to the planet as
≈ 0.5RH. Yet, if the planet starts rapidly migrating this
picture is bound to change. The top-right panel shows a
snapshot after 20 orbits from the release time, as the planet
radially moves at a speed ȧ ' −1.5 × 10−4 AUyr−1 (con-
figuration β = 1.0 and grid system 2D5Gb). The situation
appears less symmetric than before the release and the flow
structure within the Hill sphere has been altered by the rapid
planetary motion. As a reference, we also show in the bottom
panel what happens when all torques are consistently taken
into account (β = 0). We calculated the torques arising from
the Hill sphere in the situation depicted in the top-right panel
and we found that they are three times as large (and more
positive) as those exerted, at the same time, in the configura-
tion β = 0 (bottom panel). This difference may indicate that
the faster motion in the β = 1 case has artificially changed
the density distribution inside the Hill sphere and thus the
circulation in the coorbital region.

The reason for the very fast migration rate, measured at
the lowest resolution (single-level grid 2D1Gb), can be un-
derstood by examining the two dimensional linear map of the
torque density magnitude in the left panel of Figure 12. The
plot describes the situation after 19 orbits from the planet’s
release, when it is migrating inwards at an average rate of
roughly 10−2 AUyr−1. The map clearly shows how the poor
resolution (the grid zone size is indicated by the shaded pix-
els) cannot properly handle the large torque gradients within
the Hill sphere and produces a very large differential torque.
This resolution effect led to the vastly different migration
time-scales between the lowest and highest curves in the left
panel of Figure 8. A cut of the torque density magnitude,
through the planet’s radial position, is shown in the right
panel of Figure 12 for both the computation executed with
the grid 2D1Gb (solid line) and that executed with the high-
resolution grid system 2D5Gb (dashed line). The dashed-line
profile was rescaled so that the maximum values were similar
to those of the solid-line profile. The filled circles represent
the actual data. The low-resolution torque density is highly
asymmetric. The two maxima alone exert a negative torque
that would result in a migration time-scale of 80 orbits. The
large mismatch between the torque density extrema is not ob-
served in high-resolution model, in which their opposite sign
contributions nearly cancel each other.
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Fig. 11.— Surface density and streamlines around a
Mp = 0.3MJ, non-accreting planet orbiting in a high-
mass disc (MD = 0.024M¯ within 13AU). The dashed
line indicates the Roche lobe and the crosses mark the
position of the L1 and L2 Lagrange points. The top-
left panel refers to the time t = 450 orbital periods
(i.e., before it is released) whereas the top-right panel
displays the situation at t = 497 orbits with the con-
figuration β = 1.0 (its instantaneous radial speed is
ȧ ' −1.5× 10−4 AUyr−1). The bottom panel refers to
the same time but when all torques are taken into ac-
count (i.e., β = 0). The grey-scale is logarithmic and, at
5.2AU, 10−3 corresponds to 329 g cm−2. These results
were obtained from computations executed with the grid
system 2D5Gb (linear resolution ∆r/RH ' 2 × 10−2).
As in Figure 4, the streamlines in the bottom panel
do not account for the planet’s motion because of the
small ȧ. A more strict procedure was instead employed
to calculate the streamlines in the top-right panel. In
this case we integrated the velocity field (ur − ȧ, uφ),
where ȧ is the instantaneous radial speed of the planet.

The differences between the two highest resolution calcu-
lations discussed here are less evident and require some dis-
cussion. Two-dimensional logarithmic maps of the magni-
tude of the torque density for such models are shown in the
top panels of Figure 13. They were obtained from the com-
putations with the grid systems 2D4Gb (left) and 2D5Gb
(right). Both maps describe the situation 60 orbits after the
planet’s release. The torque density is positive on the side
leading the planet, φ > φp, and negative on the opposite
side (φ < φp). As clearly indicated in the Figure, the torque
density within the inner half of the Hill sphere is orders of
magnitudes larger than it is anywhere else in the surrounding
region and, therefore, in the whole disc. This is the reason
why the migration speed is so susceptible to the torques ex-
erted within the planet’s Hill lobe. Any mismatch between
the positive (φ > φp) and negative (φ > φp) contributions

can produce a very large net (either positive or negative)
torque acting on the planet. From the top panels in Fig-
ure 13, the torque density magnitude appears rather symmet-
ric with respect to the direction φ = φp. This is clear from
the bottom-left panel, where cuts through the planet’s radial
position are compared for the two grid systems. The solid
line corresponds to the more resolved model. Nevertheless,
the results shown in the bottom-left panel of Figure 8 imply
that the torque exerted by the Hill sphere is more positive
(i.e., greater than zero and larger) in the higher resolution
model (grid system 2D5Gb) than it is in the lower resolution
one (grid system 2D4Gb). Indeed, this effect is highlighted
by the ratio between the two torque density cuts (solid to
dashed profile, that is higher to lower resolution results) re-
ported in the bottom-right panel of Figure 13. The important
thing to note is that the curve is asymmetric, with respect to
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Fig. 12.— Left. Absolute value of the torque density (linear scale) close to a planet with Mp/M∗ = 3× 10−4 and orbiting in a
high-mass disc. The dashed line indicates the Roche lobe and the crosses mark the L1 and L2 Lagrange points. This calculation
was executed with the single-level grid 2D1Gb (∆r ' 0.3RH). Shaded pixels represent the actual size of the grid zones. The
torque distribution is illustrated at t = 496 orbital periods while the planet is migrating at an average rate 〈ȧ〉 ≈ −10−2 AUyr−1.
The torque density is negative when φ < φp = π and positive when φ > φp. It is evident that at such low resolution there is an
unbalanced inward torque that is not observed in higher resolution calculations (see top panels of Fig. 13). Right. The solid line
shows the profile of the absolute value of the torque density (shown in the left panel) through the radial position of the planet.
The filled circles indicate the positions of the data. The dashed line refers to an analogous profile from the highest resolution
calculation (grid system 2D5Gb), which was rescaled so that its maximum value was 1.3× 10−6.

the direction φ = φp, towards the the outer parts of the Hill
sphere |φ− φp| > 0.02 ' 0.4RH/a. This means that the mis-
match between the positive (φ > φp) and negative (φ < φp)
torques arising from the region |φ − φp| > 0.02 produces a
net positive torque that is greater in the higher resolution
model than it is in the lower resolution model. Most of the
asymmetry, and therefore the discrepancy between the two
computations, must be confined to the region enclosed be-
tween roughly 0.4RH and 0.75RH from the planet because
convergence tests executed with the configuration β = 0.75
gave the same migration behaviour for the two models.

We also performed 3D simulations, using the grid system
3D3Gb (see Table 2), yet no appreciable differences from 2D
calculations executed with the grid system 2D3Gb were ob-
served. This was easily predictable, given the large smoothing
length adopted in these models and the very small the disc
thickness.

5.1.1. A converged migration rate

In order to evaluate how close to convergence the orbital
evolution given by the grid system 2D5Gb is (see Fig. 8, left
panel), we made a final attempt and ran a model with the
grid system 2D6Gb (see Table 2), which resolves the Hill ra-
dius with about 104 grid zones. However, we could not run
a complete model as those in Section 5.1. In fact, evolving a
model for about 550 orbits with such a grid system would have
required around 8000 CPU hours. We only had the compu-

tational resources to run this particular model for about 292
orbital periods. Therefore we set the release time to trls = 277
orbits and let the planet migrate for about 15 orbits.

To carry out a consistent comparison, we performed cal-
culations with the grid systems 2D4Gb and 2D5Gb imposing
the same release time. The results are shown in Figure 14.
Despite the short time over which the planet actually mi-
grated, the highest resolution model (solid lines) provided
evolutions of both a (top panel) and ȧ (bottom panel) that
are in very good agreement with those computed with the grid
system 2D5Gb (long-dash lines). This implies that the rates
of migration obtained with the latter grid system (2D5Gb)
can be considered as converged rates. This also indicates
that in order to accurately compute torques from within and
around the Hill sphere, in a configuration as described in Sec-
tion 2.4.2, linear resolutions on the order of 52 grid zones per
Hill radius are required.

It has to be emphasised that, while for Jupiter-mass plan-
ets in low-mass discs torques were converged with respect to
both the numerical resolution and the smoothing length of
the planet’s potential (see section 4), in the present case we
only examined convergence with respect to the numerical res-
olution.
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Fig. 13.— Top. Absolute value of the torque density (logarithmic scale) and contour lines around and inside the Hill sphere of
a planet with Mp/M∗ = 3 × 10−4, orbiting in a high-mass disc. The snapshots are taken at t = 537 orbital periods, i.e., after
the planet has migrated for 60 orbits. The left panel refers to the calculation executed with the grid system 2D4Gb while the
right panel refers to that executed with the grid system 2D5Gb. The torque density is negative when φ < φp and positive when
φ > φp. Note that the torque density at the planet position is not exactly zero because the planet does not sit on the centre of
a mesh zone, where density torque is computed. Bottom. The left panel shows the cut of the torque density magnitude through
the planet’s radial position for the models shown in the top panels. The solid line represents the outcome of the higher resolution
simulation (2D5Gb) whereas the dashed line corresponds to the lower resolution simulation (2D4Gb). The ratio between these
two curves (higher to lower resolution calculation) is displayed in the right panel. The profile appears asymmetric (with respect
to φ− φp = 0) only towards the outer regions |φ− φp| > 0.02 ' 0.4RH/a.

5.2. Comparison of migration rates of static and

migrating planets: the Saturn-mass case

We performed the same type of comparison, as done above,
for the torques acting on a static and migrating planet. We

considered both the configurations β = 0 and β = 1.0. These
results were obtained from the calculation run with the grid
system 2D4Gb (26 grid zones per Hill radius). Recall that
with β = 1.0, complete numerical convergence was attained
with 13 grid zones per Hill radius and therefore the same re-
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sult is produced by the model executed with the grid system
2D5Gb. With β = 0, convergence was presumably obtained
only with this last grid system. Nonetheless, it is still of inter-
est to investigate if migration times-scales depend on whether
the planet is allowed to migrate or kept on a fixed orbit, with
the grid system 2D4Gb, since it yields a larger migration rate.

Using the torques measured during the last ten orbits be-
fore the planet is released, by the same procedure outlined
in Section 4.4, we obtained static migration time-scales of
τS
M = 770 initial orbits for β = 0 and τS

M = 540 initial or-
bits for β = 1.0. Both values are remarkably close to those
obtained when the planet is allowed to move: τM = 773 and
τM = 493 initial orbits, respectively (see Fig. 8).

6. Discussion and Conclusions

We calculated the migration rates of planets embedded in
discs. These calculations were performed in two and three
dimensions, using a reference frame that corotates with the
planet and a nested-grid code that can provide high resolution
close to the planet while it migrates. The models span a vari-
ety of smoothing parameters for the potential and a variety of
grid resolutions. Both accreting and non-accreting boundary
conditions near the planet were considered. We were espe-
cially interested in whether torques from the coorbital region
can lead to runaway migration, as reported in MP03.

Fig. 14.— Semi-major axis evolution (top) and migration
speed (bottom) obtained from the grid system 2D6Gb (solid
line) versus those calculated with grid systems 2D5Gb (long-
dash line) and 2D4Gb (short-dash line). The units of ȧ are
initial Hill radii per orbit. In these simulations the release
time was equal to trls = 277 orbits (see text). All torques are
taken into account (i.e., β = 0). This additional convergence
test shows that the migration behaviour given by the grid
system 2D5Gb is fundamentally a converged one.

In the case of a Jupiter-mass planet embedded a low-mass
disc (MD = 0.01M¯ within 26AU), the planet opens a gap in
which there is some flowing material. Numerical convergence
was readily obtained (see Fig. 2). The torques arising from
within the Hill sphere do make a contribution to the torque
(up to 60 per cent), but always in the sense of reducing the
migration rate. The migration time-scales are numerically of
order the Type II migration time-scale 2 a2/(3 ν) ' 104 orbits
(see Table 3) and much longer than the Type I time-scale of
about 5× 102 orbits.

In the case of a Saturn-mass planet embedded in a high-
mass disc (MD = 0.02M¯ within 13AU), the planet opens
a less clean gap and is much more susceptible to the larger
amount of material that resides in the coorbital region. Nu-
merical convergence in this case was much more difficult to
achieve when torques from within the Hill sphere were in-
cluded. Convergence was more easily obtained when consid-
ering only torques from outside the Hill sphere (see Fig. 8).
The reason is that the mass of gas flowing within the Hill
sphere is larger than the mass of the planet. Any inaccura-
cies in the density structure near the planet (e.g., due to finite
resolution) can lead to strong net torques (see Fig. 12 and
Fig. 13). Although numerically converged, migration rates
that do not account for torques from within the Hill sphere
(or a large fraction of it) are artificially large (compare curves
for grid system 2D5Gb in the left and right panels of Fig. 8).
This also affects the flow structure around the planet and in
the coorbital region (see Fig. 11). With increasing resolution,
the gas mass within the Hill sphere increases, yet the migra-
tion rate decreases. In the case that the resolution was about
equal to the smoothing length, which was 0.39RH, the migra-
tion rate was very high, comparable to the Type I migration
rate (as also found by MP03). However at the highest resolu-
tion we applied with a release time of 477 orbits, which was
sixteen times higher (in terms of linear resolution) than that
used by MP03, the migration rate dropped dramatically by
more than two orders-of-magnitude. Discrepancies between
higher resolution calculations are more subtle and arise from
the outer half of the Hill sphere (see Fig. 13). A calculation
based on the grid system 2D6Gb, for which RH/∆r = 104,
indicates that accurately describing torques from around and
inside the Hill sphere requires resolutions of at least 52 grid
zones per Hill radius. At highest resolution, the migration
time-scale is about 3 × 103 orbits (see left panel of Fig. 8),
somewhat shorter than the Type II time-scale. But the pro-
cess is unlikely to be simply described in terms of Type II
migration.

We calculated the torques exerted by the disc on plan-
ets whose orbits are fixed and used these to obtain migra-
tion time-scales. Comparing these time-scales to those ob-
tained by releasing the planet and allowing it to migrate freely
through the disc, we found no significant difference in the mi-
gration time-scales. This argues that the corotation torques
are not greatly affected by the radial drift of a planet.

In summary, the migration rates for planets that open im-
pure gaps (in which some material flows) are substantially
smaller than Type I rates and do not seem to be simply de-
scribed by Type II migration. Torques arising near the planet
can be important, but do not appear to have a dramatic effect
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in raising the rates. Resolution is key to obtaining accurate
torques.
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A. Numerical tests

The purpose of this Appendix is to demonstrate the re-
liability of the nested-grid technique when it is applied to
disc-planet interaction calculations and, more specifically, to
planetary migration. The capabilities of this technique in the
context of astrophysical fluid-dynamics modelling have been
addressed by a number of authors (e.g., Ruffert 1992; Yorke,
Bodenheimer & Laughlin 1993; Yorke & Kaisig 1995; Ziegler
& Yorke 1997, and references therein). We therefore concen-
trate on specific test computations that closely concern the
application we did in this paper. The tests that we report
here were done in two dimensions only to avoid excessively
long computing times.

We set up a model of a Jupiter-mass planet (Mp/M∗ =
10−3) in a massive disc with MD = 1.1 × 10−2 M∗ (inside
13AU of a 1M¯ star) and whose aspect ratio is H/r = 0.03.
The initial surface density drops as r−1/2 but it also includes
a theoretical gap along the planetary orbit, as done for most
of the Jupiter-mass models discussed so far. The adopted
viscosity prescription was the same as that chosen for all the
other calculations (see section 2.4.1). The radial extent of the
computational domain ranges from 0.4 to 2.5 length units and
reflective boundary conditions were applied to both edges of
the disc to enforce mass conservation (the planet was not ac-
creting). The planet’s orbit was initialised with a0 = 1 (and
with zero eccentricity) and it was kept steady for the first
orbital period (i.e., trls = 1). The reference frame was set to
rotate at a variable rate Ω = Ω(t) so that φp = π through-
out the simulations, according to the procedure introduced in
Section 2.3.

In order to evaluate in quantitative terms the behaviour
of the nested-grid technique, the model outlined above was
executed with a two-level grid system (i.e., in nested-grid
mode) as well as with a single-level grid (i.e., in single-grid
mode). The first grid level of the two-level grid system (hence-
forth 2G), which covers the whole computational domain, had
Nr×Nφ = 147×455 grid zones (∆r ' 1.46×10−2 and ∆φ '
1.40×10−2), whereas the second level hadNr×Nφ = 264×464
zones (∆r ' 7.3 × 10−3 and ∆φ ' 7.0 × 10−3). With this
setup, the higher resolution region extends from r ' 0.5 to
r ' 2.4 and from φ ' π/2 to φ ' 3π/2. In order to achieve
the same resolution with a single-level grid (henceforth 1G),
the mesh must haveNr×Nφ = 290×904 grid zones. Although
the grid system 2G covers nearly a half of the whole domain
with the same numerical resolution as the grid 1G, the per-
turbations induced by the planet propagate to the entire disc
over a short time-scale and after 5 orbits the spiral wave pat-
tern has already developed. Therefore, after a few orbits, one
should expect that the results of the two simulations start to
differ. The discrepancy depends upon the ability of the first
level of the grid 2G to capture the same flow features as the
grid 1G does, in the region φ < π/2 and φ > 3π/2.

Since this study is about migration, we focused on the
evaluation and comparison of the semi-major axis evolutions,
which also give a direct indication of the acting torques as
a function of time. Note that this is a more strict test than
simply comparing the torque distributions at certain times,
which would imply only that ȧ is the same at those times.
The orbital decay for the two simulations is shown in Fig-

Fig. 15.— Semi-major axis evolution of the test model as
calculated in a nested-grid mode with the grid system 2G
(solid line) and in a single-grid mode with the grid 1G (dashed
line). Radial and azimuthal resolutions (∆r ' ∆φ ' 7.0 ×
10−3) coincide over roughly a half of the whole computational
domain ([0.4, 2.5]× 2π).

Fig. 16.— Top. Normalised difference of the two functions
a2G and a1G, shown in Figure 15, according to equation (A1).
Each filled circle represents the average of the data over time-
intervals of a tenth of an orbit, which is centred at the middle
point of each time-interval. Bottom. Running time average
of the data displayed in the top panel, according to equa-
tion (A2).
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ure 15. The solid and dashed lines pertain to grids 2G and
1G, respectively. To estimate the differences in more detail,
we computed the normalised difference

∆a

ā
= 2

(

aII − aI

aII + aI

)

, (A1)

where the labels I and II identify the used grids 1G and 2G,
respectively. Since the time-step is different in the two sim-
ulations, a1G and a2G were averaged over time-intervals of
0.1 orbits and the value measured from equation (A1) was
assigned to the central time of each interval. As shown in
the top panel of Figure 16, ∆a/ā is typically a few times
10−5 and it doesn’t increase beyond 1.5× 10−4. The bottom
panel of Figure 16 illustrates the running time average of the
normalised difference

〈

∆a

ā

〉

t

=
1

t

∫ t

0

∆a

ā
dt′, (A2)

which indicates that the discrepancies in the orbital evolu-
tions are on average around a few times 10−3 per cent.

From the viewpoint of the computational load, the ad-
vantage of the nested-grid technique is remarkable: in the
computations reported above, the time-step required for nu-
merical stability by grid 2G (first level) is twice as long as
that required by grid 1G and so the time needed to complete
one orbital period is twice as short. It is also worthwhile to
point out that the refinement capabilities of the nested-grid
strategy does not reduce the accuracy of the numerical algo-
rithm, which strictly remains second-order accurate in space
since the mesh step size is always constant on each grid level.

For the sake of completeness, we show a test on the ac-
celerated grid technique that we implemented and employed
in this work. Other tests (not reported here) on the angu-
lar momentum conservation of both the disc and the planet
proved that conservation was achieved down to the machine
precision. Thus, we refer to a more relevant situation and
show how the migration calculated in a reference frame ro-
tating with a variable Ω compares to that calculated in a
uniformly rotating grid with Ω = Ω0 =

√

GM∗/a3
0. The

outcome of such comparison is illustrated in Figure 17. We
computed the normalised difference (top panel) and the run-
ning time average (bottom panel), where the quantity aII in
equation (A1) was obtained from the grid 1G with Ω̇ 6= 0
while the quantity aI was obtained from the grid 1G with
static rotation (i.e., Ω̇ = 0). As Figure 17 proves, the dis-
crepancy between the two semi-major axis evolutions is not
significant. It has to be stressed that although the planet
moves on a “continuous” path, the gravitational potential
is centred in a grid zone. Therefore, results cannot be ex-
actly the same since the planet’s trajectory through the grid
centres is different in the two simulations. In fact, in the
model with Ω̇ 6= 0 there is only radial motion due to mi-
gration, thus the time taken by the planet to cross a grid
zone is ∆r/ȧ ' (∆r/a) τM. Instead, in the other model, the
azimuthal drift soon becomes the fastest component of the
planet’s motion and the time needed to cross a grid zone is

then given by ∆φ/ |ΩK − Ω0| or (∆φ/2π)

[

1−
√

(a/a0)
3

]−1

orbits. For instance, when ∆r/a ≈ ∆φ and a = 0.99 a0, in

Fig. 17.— Comparison between the orbital evolutions com-
puted with the grid 1G setting a constant rotation rate
Ω = Ω0 =

√

GM∗/a3
0 and a variable rate (i.e., Ω̇ 6= 0) such

that the planet’s azimuthal position remains constant. Top.
Normalised difference (see eq. [A1]) sampled as in the top
panel of Figure 16. Bottom. Running time average of the
data displayed in the top panel.

a steadily rotating grid a planet undergoes ≈ τM/11 ≈ 300
(see Fig. 15) as many encounters with the grid centres as it
does in a grid rotating at a variable rate where there is no
azimuthal drift.
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