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ABSTRACT

We analyze the orbital and mass evolution of planets that undergo run-away gas accretion by
means of two- and three-dimensional hydrodynamic simulations. The disk torque distribution per
unit disk mass as a function of radius provides an important diagnostic for the nature of the disk-
planet interactions. We first consider torque distributions for nonmigrating planets of fixed mass and
show that there is general agreement with the expectations of resonance theory. We then present
results of simulations for mass-gaining, migrating planets. For planets with an initial mass of 5 Earth
masses (ME), which are embedded in disks with standard parameters and which undergo run-away gas
accretion to one Jupiter mass (MJ), the torque distributions per unit disk mass are largely unaffected
by migration and accretion for a given planet mass. The migration rates for these planets are in
agreement with the predictions of the standard theory for planet migration (Type I and Type II
migration). The planet mass growth occurs through gas capture within the planet’s Bondi radius at
lower planet masses, the Hill radius at intermediate planet masses, and through reduced accretion at
higher planet masses due to gap formation. During run-away mass growth, a planet migrates inwards
by only about 20% in radius before achieving a mass of ∼ 1 MJ. For the above models, we find no
evidence of fast migration driven by coorbital torques, known as Type III migration. We do find
evidence of Type III migration for a fixed mass planet of Saturn’s mass that is immersed in a cold and
massive disk. In this case the planet migration is assumed to begin before gap formation completes.
The migration is understood through a model in which the torque is due to an asymmetry in density
between trapped gas on the leading side of the planet and ambient gas on the trailing side of the
planet.

Subject headings: accretion, accretion disks — hydrodynamics — methods: numerical — planetary
systems: formation — planetary systems: protoplanetary disks — solar system:
formation

1. INTRODUCTION

In the core accretion picture of planet formation (Bo-
denheimer & Pollack 1986; Wuchterl 1991; Pollack et al.
1996; Hubickyj et al. 2005, and references therein), a
small mass solid core initially rapidly accretes solid ma-
terial, followed by a slow evolution phase of gas and
solid accretion. During this slow evolution phase, the
planet is limited in its ability to accrete gas by the ther-
mal heating caused by the impacting solids. Once the
planet’s gas mass is greater than its solid mass, typi-
cally at several Earth masses, the planet undergoes “run-
away” gas accretion, in which it can accrete whatever
mass is provided to it. These processes have been treated
by one-dimensional, spherically symmetric structure cal-
culations in the above papers.

On the other hand, multi-dimensional hydrodynami-
cal calculations of a protostellar disk interacting with
the planet has revealed various flow properties of the
gas, including the gap opening by tidal effects, previ-
ously anticipated by one-dimensional disk models (Lin
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& Papaloizou 1986). In addition, planet migration that
results from disk-planet interactions has been analyzed
by means of such simulations. Good agreement is often,
but not always, found between the simulations and the
expectations of theory (Nelson et al. 2000; Bate et al.
2003; D’Angelo et al. 2003; Nelson & Benz 2003; Li et al.
2005; D’Angelo et al. 2006). These calculations typically
do not include the mass evolution of the planet. Usu-
ally they apply accretion boundary conditions onto the
planet as a means of modelling the run-away gas accre-
tion process. One aim of this paper is to analyze the
effects of planet mass growth on migration.

Several controversies remain on the effects of gas. The
role of coorbital torques on planet migration, in the sub-
giant mass range, is not well understood. Masset & Pa-
paloizou (2003, hereafter MP03) suggested on the basis
of a model and simulations that a fast mode of migration
(sometimes called Type III migration) can occur due to
strong coorbital torques. Ogilvie & Lubow (2006, here-
after OL06) found support for the concept of coorbital
dominated migration under certain conditions. At higher
grid resolution under the conditions specified by MP03,
simulations by D’Angelo et al. (2005, hereafter DBL05)
found that the migration rate was much slower.

Another subject of interest is how planet masses may
be limited by a reduction in the gas accretion rate. Lin
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& Papaloizou (1986) proposed such a reduction by tidal
torques that open a gap about the orbit of the planet.
The value of the highest planet mass achieved in the
presence of gap opening is somewhat controversial. Some
studies (Lubow et al. 1999; Bate et al. 2003; D’Angelo
et al. 2003) have suggested that the maximum planet
mass is about 6–10 MJ, corresponding to the upper limit
of the observed range of extrasolar planets (Marcy et al.
2005; Butler et al. 2006). This limit suggests that some
other process, such as disk dispersal or other self-limiting
feedback on planetary accretion, is responsible for the
lower masses (∼ 1 MJ) typically found observationally.
Other studies suggest that the tidal limit is ∼ 1 MJ and
therefore no additional process is required to explain the
typical masses (e.g., Dobbs-Dixon et al. 2007).

We will address these and other issues in this paper by
analyzing the orbital evolution of a mass-gaining planet
embedded in a gas disk. In section 2 we analyze the
torque distributions for planets of constant mass on fixed
circular orbits. In section 3 we analyze the orbital and
mass evolution of migrating planets that undergo run-
away mass accretion. Section 4 describes a model that
appears to exhibit migration that is dominated by coor-
bital torques, i.e., Type III migration. Section 5 contains
the summary and discussion.

2. TORQUE DISTRIBUTION FOR A
NON-MIGRATING PLANET

Disk-planet gravitational torques result in planet mi-
gration (Goldreich & Tremaine 1980; Lin & Papaloizou
1993; Ward 1997). The distribution of torque with disk
radius provides a means of connecting the theory with
simulations. In this section, we model the disk as a three-
dimensional system and consider fixed mass planets on
fixed circular orbits. The torque per unit radius for a
planet embedded in a disk was previously considered in
Bate et al. (2003). Here we reconsider the analysis with
higher resolution, especially in the coorbital region, and
apply the torque distribution per unit disk mass.

2.1. Numerical Procedure

In this section, we describe the torques exerted by a
disk on an embedded planet with mass, Mp, equal to
1 ME, 10 ME, 0.3 MJ, and 1 MJ. For the two small-
est mass planets we consider, the planet’s Hill radius is
smaller than the vertical disk thickness of several per-
cent of the distance to the star. For the two largest mass
planets, the Hill radius is comparable or larger than the
disk thickness.

2.1.1. Disk Model

We use spherical polar coordinates {R, θ, φ}, with the
origin located at the star-planet center of mass. The
reference frame corotates with the star-planet system.
The planet’s orbit lies in the plane θ = π/2. The disk
is assumed to be symmetric with respect to this plane,
hence only the disk’s northern hemisphere (i.e., the vol-
ume θ ≤ π/2) is simulated.

We assume that the material in the disk is locally
isothermal and that the pressure p is given by

p(R, θ, φ) = ρ(R, θ, φ)c2
s(r), (1)

where ρ(R, θ, φ) is the mass density. Quantity cs(r) is the
gas sound speed, which is taken to be a function of cylin-
drical radius r = R sin θ. The aspect ratio of the disk,

H/r, is taken to be constant and equal to 0.05. There-
fore, the temperature distribution in the disk is only a
function of the distance from the disk’s rotation axis, r,
and decreases as c2

s ∝ 1/r. Viscous forces are calculated
by adopting the stress tensor for a Newtonian fluid (Mi-
halas & Weibel Mihalas 1999) with constant kinematic
viscosity, ν and zero bulk viscosity. Disk self-gravity is
ignored. In Appendix C, we discuss some effects of disk
self-gravity and of the axisymmetric component of disk
gravity on the migration rates.

2.1.2. Disk and Planet Parameters

We adopt the stellar mass Ms as unit of mass,
the orbital radius a as unit of length, and Ω−1

p =
[

G (Ms + Mp)/a3
]−1/2

as unit of time. In converting
to dimensional units we consider a = 5.2 AU and Ms =
1 M⊙.

The disk extends from 0 to 2π in azimuth around the
star and, in radius, from 0.4 to either 4.0 (Jupiter-mass
case) or 2.5 (lower mass cases). In the θ-direction, the
disk domain extends above the midplane (θ = π/2) for
10 degrees, comprising 3.5 pressure scale heights, H . The
initial mass density distribution is independent of φ, has
a Gaussian profile in the θ-direction, and has a radial
profile proportional to R−3/2, so that the initial (un-
perturbed) surface density varies as R−1/2. We adopt
a constant dimensionless kinematic viscosity ν equal to
10−5, corresponding to a turbulent viscosity parameter
α = 0.004 at the cylindrical radius r = 1 (5.2 AU).

As mentioned above, we perform calculations for four
planet masses: Mp = 3 × 10−6, 3 × 10−5, 3 × 10−4, and
1×10−3, which correspond, respectively, to 1 ME, 10 ME,
0.3 MJ, and 1 MJ. The gravitational potential, Φp, of the
planet is smoothed over a length ǫ equal to 0.1 RH and
is given by

Φp = − GMp√
S2 + ǫ2

, (2)

where S is the distance from the planet and RH is the
Hill radius of the planet.

2.1.3. Numerical Method

The mass and momentum equations that describe the
evolution of the disk (e.g., DBL05) are solved numer-
ically by means of a finite-difference scheme that ap-
plies an operator splitting procedure to perform the spa-
tial integration of advection and source terms (Ziegler
& Yorke 1997). The algorithm is second-order accu-
rate in space and semi-second-order accurate in time.
The equations are discretized over a mesh with constant
grid spacing in each coordinate direction. Nested grids
are used to enhance the numerical resolution in (arbi-
trarily large) regions around the planet (D’Angelo et al.
2002, 2003). This strategy allows the volume resolution
to be increased by a factor 23 for each added grid level.
These calculations are executed with grid systems involv-
ing 5 levels of grid nesting. The linear base resolution is
∆R = a ∆θ = a ∆φ = 0.014 a. The linear resolution
achieved in the coorbital region around the planet is ap-
proximately 9 × 10−4 a, which corresponds to ∼ 0.01 RH

and ∼ 0.1 RH in the Jupiter-mass and Earth-mass cases,
respectively. To quantify resolution effects in the Earth-
mass case, we also applied a linear resolution twice as
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high throughout the entire grid system (base resolution
of 7×10−3 a and resolution in the coorbital region around
the planet of 4 × 10−4 a). The torques at the two reso-
lutions, integrated over the disk domain, differ by about
5%.

The boundary condition near the planet involves re-
moving gas from ∼ 0.1 RH of the planet at each timestep.
The procedure for mass removal is described in more de-
tail in section 3.1.1. In the calculations reported in sec-
tion 2.3, the removed mass is not added to the planet’s
mass in order to keep it fixed. In sections 3 and 4 (as
well as in Appendix A and C), we will present cases in
which the planet’s mass is augmented by the mass of the
gas removed from the disk.

The outer boundary of the disk domain is closed to
both inflow and outflow, whereas the inner boundary al-
lows outflow (material can flow out of the grid domain)
but not inflow. Reflective and symmetry boundary con-
ditions are applied at colatitude θ = θmin and at the disk
mid-plane (θ = π/2), respectively.

Simulations are run for about 100 orbital periods. In
models with 0.3 MJ and 1 MJ mass planets, the initial
density distribution includes a gap along the planet’s or-
bit to account for an approximate balance between vis-
cous and tidal torques, which reduces the relaxation time
towards steady state. In all calculations discussed here,
the flow achieves a fairly steady state within ∼ 100 or-
bits.

2.2. Theoretical Considerations

2.2.1. Torque Density

Consider a cylindrical coordinate system {r, φ, z} cen-
tered on the star-planet center of mass. The disk torque
along the rotation axis per unit radius exerted on the
planet is given by

dT

dr
(r, t) =

〈

r

∫ 2π

0

dφ

∫ ∞

−∞

dz ρ(r, t) ∂φΦp(r, t)

〉

, (3)

where 〈X(t)〉 denotes the time-average of X over an orbit
period centered about time t, ρ is the gas density, and
Φp is the potential due to the planet (eq. 2).

2.2.2. Radial Overlap Regions

The linear theory of Lindblad resonances for disk-
planet interactions demonstrates that the strongest con-
tributing resonances have azimuthal wavenumbers m ∼
r/H . This estimate comes from considering the so-called
torque cutoff effect that arises from Lindblad resonances
that lie close to the planet (Goldreich & Tremaine 1980;
Ward 1986; Artymowicz 1993). As a consequence of the
resonance condition, we expect the peak torque density
to be at a distance of roughly H from the planet. The
torque cutoff is not sharp and there are torque contribu-
tions from resonances that lie closer than distance ∼ H
from the planet, although at a decreasing level as they
get closer to the planet. As we will see, the numerical
results show the torque density peak to be close to dis-
tance H from the planet. However, the torque cutoff
calculations assume that the orbits are such that the gas
azimuthally passes by the planet, i.e, lies on circulating
orbits. On the other hand, close to the planet’s orbit,
this assumption breaks down and the gas flows on librat-
ing streamlines of the horseshoe orbit region. This region

generally extends in the radial direction to a distance of
about 3 RH from the planet’s orbital radius, where RH

is the planet’s Hill radius. But, close to the planet, the
region becomes less extended radially, spanning only to
approximately RH. That is, the noncoorbital (circulat-
ing) streamlines pass closest to the planet at a distance
about equal to RH (see streamline a in Lubow et al. 1999
and Figure 5 in Bate et al. 2003). In the horseshoe orbit
region, the corotational resonance can play a role.

These two regions, the coorbital region (extending up
to about 3 RH from the planet’s orbital radius) and Lind-
blad torque region (extending beyond about distance
H from the planet’s orbital radius), overlap in a one-
dimensional radial sense for planet-to-star mass ratios

q &
1

9

(

H

r

)3

. (4)

This condition does not necessarily imply a physical over-
lap in two or three dimensions. But it does affect our
interpretation of the torque density reduced to one di-
mension, dT (r)/dr. The reason is that for a given radius
r such that RH < |r−a| < 3 RH, the gas lies in either the
coorbital (librating) or noncoorbital (circulating) region,
depending on the azimuth.

For the disk parameters considered in this section, the
one-dimensional overlap occurs for planet masses greater
than about 4.6 ME, which covers all, but one, of the
planet masses considered. For a 1 MJ planet, this overlap
occurs out to a radius of about 1.2 a or a radial distance
of about 4 H from planet.

The two regions physically overlap in a two- or three-
dimensional sense, when the closest approach of all non-
coorbital (circulating) streamlines, which occurs at a dis-
tance ∼ RH from the planet, is greater than the distance
where there are maximum Lindblad torques (∼ H). This
occurs when

q & 3

(

H

r

)3

. (5)

In this case, the usual torque cutoff condition for Lind-
blad resonances is questionable. This argument suggests
that the torque density maximum for Lindblad reso-
nances should occur at a radial distance from the planet

|r − a| ≃ max (RH, H). (6)

When this condition is satisfied, the overall torque on
the planet will be reduced, even if RH . H , since reso-
nances that lie closer than distance H from the planet are
suppressed3. For the disk parameters considered in this
section, this condition is satisfied for Mp & 4 × 10−4 Ms

(or 0.4 MJ).

2.2.3. Saturation Effects of Coorbital Torques

The flow in the coorbital region is trapped in horseshoe
orbits. For a time-reversible system (e.g., no dissipation
or migration), the streamlines are exactly periodic and no
net torque occurs on the planet due to the disk (i.e., the
torque saturates), except for possible initial transients
due to initial conditions. However, turbulent viscosity
introduces irreversibility that can lead to a net torque.
The condition for saturation within the framework of the

3 They may still partially contribute, due to their finite widths.
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Fig. 1.— Torque per unit disk mass on the planet as a function
of radius in units of the planet’s semi-major axis, a. The vertical
scale is in units of GMs(Mp/Ms)2/a. The solid, long-dashed, dot-
dashed, and short-dashed curves are for 1 ME, 10 ME, 0.3 MJ, and
1 MJ mass planets, respectively. The disk is modeled as a three-
dimensional system. The vertical disk thickness is H/r = 0.05 for
all the cases. Torque distributions are averaged over one orbital
period.

α-disk model is that the libration timescale of the fluid
in the coorbital region is shorter than the viscous radial
diffusion timescale across this region. Based on scaling
arguments, the saturation condition is given by (Ward
1992)

α . q3/2
( r

H

)7/2

. (7)

For the parameters in this section, this constraint implies
that for planets of order 10 ME or greater, the corotation
torques should be saturated (small). Saturation effects
should be important for the larger planet masses we con-
sider.

2.3. Numerical Results

The torque per unit disk mass is defined by

dT

dM
(r, t) =

〈

1

2πΣ(r, t)

∫ 2π

0

dφ

∫ ∞

−∞

dz ρ(r, t) ∂φΦp(r, t)

〉

,

(8)
where Σ(r, t) is the axisymmetric disk density (i.e., the
surface density averaged over the azimuth φ) and nota-
tion 〈X(t)〉 is defined below equation (3).

Numerically, the torque distribution per unit disk mass
is determined by dividing the (three-dimensional) disk
into a series of concentric shells, of radius R and thickness
∆R, centered at the origin and calculating the torque ex-
erted by the shell and the mass of the shell. The torque
per unit disk mass is obtain from the ratio of these two
quantities4, averaged over an orbit period. We use the
radial grid spacing on the base grid for the value of ∆R.
The torques arising from within the Hill sphere of the
planet are ignored in this section, but are included in
later sections of this paper. We ignore such considera-
tions here in order to compare results with the standard
theory of coorbital and Lindblad torques, which does not
include such contributions (Tanaka et al. 2002).

4 There is a slight error of order (H/r)2 in this procedure due
to the difference between the spherical coordinate system used in
the calculations and the cylindrical coordinates that apply to the
definition of the torque in equation (3).

The torque per unit disk mass for four planet mass
cases is shown in Figure 1. The plots are normalized
such that the torque densities in the four cases would
be the same, according to linear theory, if the axisym-
metric disk density gradients and gas properties (sound
speeds and viscosities) were the same. That is, the torque
density per unit disk mass is scaled by the square of
the star-to-planet mass ratio. The 1 ME (solid line) and
10 ME (long-dashed line) cases nearly exactly overlap as
predicted, while the 0.3 MJ (dot-dashed line) and 1 MJ

(short-dashed line) cases have a smaller scaled torque
density. The scaling in the plot masks the fact that the
results span a large range of parameter space. In going
from 1 ME to 1 MJ there is a change in torque density
by a large factor, 105, while the discrepancy is about a
factor of 2.5.

The deviations in the 0.3 MJ and 1 MJ cases could be
due to the modified torque cutoff, pressure gradients, and
nonlinearities. Since RH & H in these cases, Lindblad
resonance contributions are weakened by the modified
torque cutoff, as discussed in Section 2.2.2. Pressure
gradients cause shifts in the resonance locations. For
mild pressure gradients that change sign across the or-
bit of the planet (as would occur for a mild gap), the
resonances shift away from the orbit of the planet (see
eq. 26 of Ward 1986). The shift would then cause the
torques per unit disk mass to be weaker, as seen in the
figure. The situation is more complicated in the case of
stronger pressure gradients, as may occur for deep gaps,
and the sign of the effect on the torque depends on the
detailed shape of the density profile. Nonlinearities may
play a role in the 1 MJ case, since there are shocks in the
disk in that case, due to the strong forcing. But the to-
tal torque is not expected to be substantially effected by
nonlinearity. For a fixed smooth background disk den-
sity distribution, resonant torques are quite insensitive
to the level of nonlinearity (Yuan & Cassen 1994). For a
1 MJ planet and a resonance with azimuthal wavenumber
m = 20 = H/a, the nonlinearity is mild with nonlinear-
ity parameter f = 0.6, as defined by Yuan & Cassen
(1994). Some broadening of the torque density profile is
predicted, while the total torque is reduced by only about
1%. For much stronger nonlinearity, f = 3, the torque
reduction is only 5%. This estimate is based on consid-
ering only a single resonance. Many resonances overlap,
increasing the level of nonlinearity. However, the theory
does not describe overlapping resonances. So, although
we cannot be definite about the importance of nonlinear-
ities, indications for a single resonance suggest that they
are not important.

The torque density per unit disk mass for the 1 MJ

planet in Figure 1 (short-dashed line) shows indications
of saturation for |r − a| < RH. As discussed above, this
effect is suggested by theoretical considerations. The
torque density peak for the 1 MJ case is slightly displaced
away from the planet relative to the smaller mass cases
and lies close to a distance RH ≃ 0.07 a from the planet.
This result is consistent with equation (6) in the 1 MJ

case, |r − a| ≃ 0.07 a = 1.4 H .
Figure 2 shows that the torque in the 1 MJ case is ac-

quired close to the planet, well within the gap region.
Most of the torque is accumulated by material with in-
termediate/low density interacting with an intermediate
magnitude torque per unit disk mass. About 80% of the
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Fig. 2.— Azimuthally averaged surface density (long-dashed
curve), disk torque per unit disk radius exerted on the planet
(short-dashed curve), and cumulative torque (solid curve), i.e.,
torque per unit radius integrated outward, as a function of radius
for a 1 MJ planet on a fixed circular orbit. The disk is modeled
as a three-dimensional system. The unit of radius is the planet’s
orbital radius a. The surface density and cumulative torque are
normalized by their absolute values at r = 2. The disk torque
per unit disk mass is normalized by 103 GMs(Mp/Ms)2/a. The
plotted values are averaged over one orbital period.

torque is due to material within a radial distance of 0.25 a
from the planet.

3. MIGRATING AND GROWING PLANETS

We investigate the orbital migration of a planet that
is undergoing run-away gas accretion. We consider sev-
eral disk configurations, by changing the initial surface
density, the pressure scale height, and the kinematic vis-
cosity. We use disk models and numerical procedures
similar to those introduced in section 2.1. Throughout
this section, the disk is modeled as a three-dimensional
system. The origin of the coordinate system is taken to
be the star. The coordinate system rotates about the
origin at a rate equal to the rotation rate of the planet
around the star. We integrate the equations of motion
of the planet, under the action of disk torques and ap-
parent forces arising from the rotation of the reference
frame, as described in DBL05. The unit of length is the
initial star-planet separation a0 (or 5.2 AU when convert-
ing into physical units). The unit of time is the inverse
of Ω0, the initial angular speed of the planet. The unit
of mass is the stellar mass Ms (1 M⊙).

The grid system achieves a linear base resolution of
∆R = a0 ∆θ = a0 ∆φ = 0.014 a0. In the coorbital re-
gion around the planet, the linear resolution is about
9 × 10−4 a0. Nested grid levels cover extended radial re-
gions of the disk so that the planet remains within the
domain covered by the most refined grid level over the en-
tire orbital evolution. Convergence tests were carried out
with a grid system that used a volume resolution (3/2)3

times as high throughout the whole disk domain and on
all grid levels. No significant differences are observed
(see Appendix A.1). To avoid depletion of the disk inte-
rior of the planet’s orbit, we apply nonreflecting bound-
ary conditions to the inner grid (radial) border. We test
our results against possible boundary condition effects in
Appendix A.2 by applying outflow boundary conditions
and moving radial disk boundaries farther away from the

planet’s orbit in both directions. No important effects are
observed. Near the planet we apply accreting boundary
conditions on the gas, as described in section 3.1.1. We
consider planetary mass increases that extend over more
than two orders of magnitude and a range of disk surface
densities.

To avoid possible spurious torques exerted by material
gravitationally bound to the planet, contributions from
within RH/2 of the planet are not taken into account. We
report in Appendix A.3 on the sensitivity of the results to
the radius of the excluded region by considering a smaller
radius. We find that the changes are not significant.

We generally initiate the calculations with a planet
mass Mp = 1.5 × 10−5 Ms, or 5 ME. However, in some
applications discussed in section 4, we use an initial mass
Mp = 3 × 10−4 Ms (about 0.3 MJ) in order to study the
effects on migration of releasing a more massive planet
in an unperturbed disk.

3.1. Planet Mass Growth

3.1.1. Gas Accretion

In the core accretion scenario of giant planet forma-
tion, prior to the phase of run-away gas accretion, the
rate at which gas is accreted is largely determined by
the ability of a planetary core’s envelope to radiate away
the energy delivered by gas and solids (phase of slow
gas accretion, see e.g., Hubickyj et al. 2005). During
the initial stages of planet growth, the accretion of solids
dominates, and the dissipation of the kinetic energy of
the impacting solids provides an important heat source
for the accreted gaseous envelope. Models of Hubickyj
et al. (2005), which ignore the effects of planet migra-
tion, experience a depletion of solid disk material in the
vicinity of the planet and consequently a reduction in
the envelope heating rate. When the mass of the gas (in
the envelope) is comparable to the mass of solids (in the
core), the pressure gradient cannot prevent the gravita-
tional collapse of the envelope. This situation results in
a sudden increase of the gas accretion rate and a rapid
growth of the planet’s mass, the so-called run-away gas
accretion phase (e.g., Wuchterl 1993; Pollack et al. 1996).

The models presented here assume run-away gas ac-
cretion. They do not account for the thermal struc-
ture and detailed microphysics of a planet’s envelope.
Therefore, we do not determine self-consistent gas accre-
tion rates, prior to the phase of run-away gas accretion
(Mp . 10 ME). The models also ignore the effects of
heating by impacting solids that act to slow the gas ac-
cretion, as the planet migrates out of the region of de-
pleted solids. During the run-away gas accretion phase,
the accretion rate onto the planet is only limited by the
amount of gas that the disk is able to supply. The calcu-
lations described here provide estimates of such limiting
gas accretion rates during the run-away gas accretion
phase.

In these models, we adopt a prescription that gas
within a distance of Racc = 0.1 RH from the planet can
accrete onto it. Accreted gas is removed from the disk
and its mass is added to the planet mass. For the mod-
els we consider, this distance is safely smaller than the
possible characteristic accretion radii: the Hill radius,
RH, and the Bondi radius, RB (distance beyond which
the thermal energy of the gas is larger than the gravi-
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Fig. 3.— Mass evolution of a protoplanet having initial
planet mass 5 ME undergoing run-away gas accretion in a three-
dimensional disk with initial surface density Σp = 3×10−4 Ms a−2

0

or about 100 g cm−2 at the planet’s initial orbital radius of 5.2AU
(solid line) and Σp = 9×10−4Ms a−2

0
or about 300 g cm−2 (dashed

line). In both cases, the disk thickness is H/r = 0.05 and the tur-
bulent viscosity parameter is ν = 1 × 10−5 a2

0
Ω0 (α = 0.004 at

5.2AU). The time refers to orbits at a0 = 5.2AU or about 12
years.

tational energy that binds the gas to the planet). The
distance Racc is at least a factor of 3 smaller than RB.
Therefore, this mass removal prescription should not de-
termine the accretion rate for the case of run-away gas
accretion (see also Tanigawa & Watanabe 2002). The
amount of material accreted per time-step ∆t is given
by (∆t/τacc)

∫

ρ dV , where dV is the volume element and
τacc is a removal timescale. The integral is performed
over the sphere of radius 0.1 RH centered on the planet.
Here we set τacc = 0.1 Ω−1

0 within the sphere of radius
0.05 RH and τacc = 0.3 Ω−1

0 for 0.05 RH < S < 0.1 RH (S
is the distance from the planet).

3.1.2. Mass Evolution

In this section we describe the accretion rates of mi-
grating, mass-gaining planets. Figure 3 shows the planet
mass as a function of time, Mp = Mp(t), for a model
with initial (unperturbed) surface density at the initial
orbital radius of the planet Σp = 3 × 10−4 Ms a−2

0 (solid
line). For a planet orbiting a Solar mass star at 5.2 AU,
this density is about 100 g cm−2, roughly corresponding
to the minimum mass solar nebula.

The mass evolution can be understood in terms of
Bondi and Hill accretion. Consider a simple model in
which gas is captured within some radius, Sc, of a planet
and assume Sc < H . Mass is accreted with some velocity
relative to the planet of order Ω Sc, and so the mass ac-
cretion rate in a three-dimensional disk (where ρ ≈ Σ/H)
is estimated as

Ṁp ∼ Σ

H
Ω S3

c , (9)

where we take Sc as either the Bondi or Hill radius, with
the Bondi radius given by RB = GMp/c2

s and the Hill

radius given by RH = a [Mp/(3 Ms)]
1/3.

In the case that gas pressure prevents the gas from be-
ing bound to the planet within the Hill sphere (or, equiv-
alently, that pressure forces dominate over gravitational
three-body forces), we expect the Bondi description to

Fig. 4.— Mass growth rate 1/τG = Ṁp/Mp in units of inverse
orbital periods at the initial radius of the planet, Ω0/(2π), plotted
against Mp/Ms for the solid curve case in Figure 3. The dashed
line plots the growth rate according to equation (15). The slopes
of the two dashed line segments are predicted by the model. The
two free parameters, CB and CH, are dimensionless constants of
order unity that control the intercepts and are fit to the solid curve.
The slanted portion of dashed line corresponds to accretion within
the Bondi radius, given by 1/τB in equation (15) with CB = 2.6.
The horizontal portion of the dashed line corresponds to accretion
within the Hill radius for a disk with no gap, given by 1/τH in
equation (15) with CH = 0.89. At higher planet masses, the growth
rates drop due to the presence of the tidally produced gap.

be appropriate. This condition is that

c2
s &

GMp

RH
(10)

or
RB . RH. (11)

Therefore in the general case we take

Sc = min (RB, RH). (12)

It then follows that the Bondi and Hill mass growth
rates, Ṁp/Mp, of the planet are given by

1/τB =CB Ω
Σ a2

Ms

( a

H

)7
(

Mp

Ms

)2

, (13)

1/τH =
1

3
CH Ω

Σ a2

Ms

( a

H

)

, (14)

where CB and CH are dimensionless coefficients of order
unity. The overall mass growth rate is given by

1/τG =

{

1/τB for Mp < Mt

1/τH for Mp ≥ Mt
(15)

where

Mt =
Ms√

3

√

CH

CB

(

H

a

)3

(16)

is the transition planet mass where τH = τB.
In Figure 4, we plot the mass growth rate, 1/τG, for

the solid curve case in Figure 3. We applied equa-
tion (15) and adopted constant values of Σ = Σ(a0),
at time t = 0, and Ω = Ω0. The figure shows that
the Bondi and Hill accretion rates in equation (15) agree
with the simulation results for values of CB = 2.6 and
CH = 0.89. The transition mass in this case evaluates
to Mt = 4.2 × 10−5 Ms. It lies between the Bondi and
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Hill accretion regimes in the figure, at the intersection
between the two dashed line segments. For larger values
of planet mass, Mp & 2 × 10−4 Ms ≈ 4.8 Mt, this simple
estimate of the mass growth rate breaks down because
the density is depleted near the planet due to the onset
of gap formation. The density near the planet is reduced
by about 40% when Mp ≈ 2× 10−4 Ms (see Fig. 6, right
panel). In addition, the Hill radius becomes comparable
to H , since RH = H = 0.05 a for Mp = 3.75 × 10−4 Ms.

Simulations carried out in two dimensions would have
different scaling behavior, since the right-hand side of
equation (9) would be Σ Ω S2

c . The dependence of the
mass accretion rate on planet mass and disk sound speed
then artificially deviates from the three-dimensional case.
In two dimensions we have that 1/τB ∝ (Mp/Ms) (a/H)4

and 1/τH ∝ (Ms/Mp)
1/3.

The maximum of the accretion rate for the solid curve
case of Figure 3 is Ṁp ∼ 5× 10−3 Σp a2 ≃ 1.5× 10−3 MJ

per orbit and occurs when Mp ≈ 0.3 MJ. This re-
sult is consistent with the previous findings of D’Angelo
et al. (2003) and Bate et al. (2003), who considered
planets on fixed orbits. Also displayed in Figure 3 is
the planet’s mass evolution in a disk with initial Σp =

9 × 10−4 Ms a−2
0 (dashed line) or about 300 g cm−2 at

5.2 AU. For Mp/Ms . 10−4, the accretion rate is a fac-
tor of 3 larger than that of the lower density disk case
(solid line). Hence, equation (15) applies to the growth
rate with the same coefficients CB and CH as those given
above. For larger planet masses, the accretion rate keeps
increasing until Mp ≈ 0.7 MJ, at which point Ṁp starts
to decline very rapidly as Mp grows further. This is
because effects due to gap formation are delayed. The
timescale required to form a gap of half-width ξRH is
τgap ∼ ξ5 q−1/3 Ω−1 (see, e.g., Bryden et al. 1999), where
ξ ≈ 2 (see long-dashed line in Fig. 2). In the lower
density disk model (solid curve in Fig. 3), τgap < τG

for Mp/Ms & 10−4. In the higher density disk model
(dashed curve), τgap becomes shorter than τG only when
Mp & 0.7 MJ.

In Figure 5, the mass evolution is shown for cases
in which Σp = 3 × 10−4 Ms a−2

0 ≈ 100 g cm−2, but
with different scale heights, H , and kinematic viscosi-
ties, ν. Near Mp = 1 MJ, the accretion rates of the
two models with different H/r (solid and long-dashed
lines), but the same Σp and ν, are nearly equal, with

Ṁp ≈ 3 × 10−3 Σp a2 ≃ 9 × 10−4MJ per orbit. At larger

planet masses, Ṁp is smaller in the case of a colder disk
(long-dashed line) because of the stronger tidal torques
exerted by the planet on the disk material that produce
a wider gap. When Mp ≈ 1 MJ, the simulation with 10
times larger viscosity (short-dashed line) yields an ac-
cretion rate that is a factor of nearly 8 larger. This re-
sult is consistent with previous two-dimensional studies
of planets on fixed orbits that do not gain mass. For
Mp ≈ 1 MJ these studies showed that Ṁp scales ap-
proximately linearly with νΣ, the overall disk accretion
rate evaluated just outside the gap (Kley 1999; Lubow &
D’Angelo 2006).

3.1.3. Mass Within the Hill Sphere

We discuss here the relevance of torques exerted on a
planet and originating within the planet’s Hill sphere.

Fig. 5.— Mass evolution of a protoplanet having initial
planet mass 5 ME and undergoing run-away gas accretion in a
three-dimensional disk with initial surface density Σp = 3 ×

10−4 Ms a−2

0
≈ 100 g cm−2 at the planet’s initial orbital radius

a0 = 5.2AU. The solid line represents a case with H/r = 0.05
and turbulent viscosity ν = 1 × 10−5 a2

0
Ω0 (α = 0.004 at 5.2AU),

the long-dashed line refers to a variant model with H/r = 0.04
and the same ν value (α = 0.006 at 5.2AU), and the short-dashed
line represents a variant model with ν = 1 × 10−4 a2

0
Ω0 (α = 0.04

at 5.2AU). The time refers to orbits at a0 = 5.2AU or about 12
years.

We may expect that material gravitationally bound to
the planet should not be capable of exerting significantly
strong torques, if resolution is appropriate (DBL05). In
some situations, if the local density is large, any torque
imbalance can be easily amplified by lack of numerical
resolution (because torques depend on 1/S2, where S is
the distance to the planet). Artificial effects may arise
when the mass within ∼ RH of the planet is larger than
the planet’s mass. However, not all this material is nec-
essarily bound to the planet. Because of the nonspherical
nature of the Roche lobe, the Hill radius represents an
overestimate for the size of the region where gas is bound
to the planet (Paczyński 1971; Eggleton 1983). We have
found that accumulated gas may be bound to the planet
within distances shorter than RH/2 from the planet (see
Appendix D.1).

In all the cases discussed in this section, the amount
of material that lies within RH/2 of the planet is smaller
than Mp, throughout the evolution, by several orders
of magnitude. For models in Figure 3, as well as for
those in Figure 5, the ratio of these two masses ranges
from less than ∼ 10−3 to ∼ 10−2, depending mainly on
the planet’s mass. We also consider models with initial
densities larger than those discussed here (described in
section 4). However, this mass ratio remains on the or-
der of 10−2 or smaller. Therefore, due to the accretion
boundary condition employed here at the planet location,
these models do not experience a build-up of mass near
the planet (with possible effects on planet migration).
The accreted mass is accounted for by the increase in
the planet mass.

3.2. Planet Migration

3.2.1. Theoretical Regimes of Migration

A planet that grows in mass from a few Earth-masses
to a few Jupiter-masses is susceptible to two “classical”
regimes of migration. The Type I regime is expected
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when the planet causes small, linear disk density pertur-
bations (e.g., Ward 1997; Tanaka et al. 2002). In the op-
posite limit, Type II occurs when the planet mass is large
enough to cause nonlinear density perturbations that re-
sult in a density gap along its orbit (Lin & Papaloizou
1986).

For the parameters we adopt (pressure scale height
H/r ∼ 0.05, kinematic viscosity of disk ν ≥ 1 ×
10−5 a2

0 Ω0, and initial planet mass Mp/Ms = 1.5× 10−5

(or Mp = 5 ME), it is expected that the initial evolu-
tion of the planet will follow Type I migration, since the
usual gap opening criteria are not satisfied. In the lin-
ear theory of Tanaka et al. (2002), the rate of migration
resulting from the action of both Lindblad and (unsatu-
rated) coorbital corotation torques is given by

daI

dt
= − (2.73 + 1.08 s)

(

Mp

Ms

a

H

)2
Σp

Mp
a3 Ωp, (17)

where s is the slope of the unperturbed surface den-
sity. For the case of saturated (zero) coorbital corotation
torques, the migration rate is given by

daI

dt
= − (4.68 − 0.20 s)

(

Mp

Ms

a

H

)2
Σp

Mp
a3 Ωp. (18)

The conditions for saturation are discussed in sec-
tion 2.2.3. For higher planet masses that arise in the
later stages of the simulations, the torques are expected
to be saturated.

In the presence of a sufficiently clean density gap and
for a planet whose mass is less than the local disk mass,
the rate of migration follows Type II theory that is dic-
tated by disk viscous inflow

daII

dt
= −ζ

ν

a
. (19)

Note that if there is residual material in the horseshoe
orbit region, the migration rate can differ from that in
equation (19). The coefficient ζ on the right-hand side of
equation (19) is of order unity and also depends on the
evolutionary state of the disk. For a steady-state disk,
the coefficient is 3/2. But for nonsteady disks where νΣ
varies in radius, as in our initial states, the coefficient
may differ by order unity amounts.

In the unsaturated case, some nonlinear effects of the
corotation resonance can cause migration rates to dif-
fer from those predicted by equation (17) (Masset et al.
2006). For s = 1/2, H/r = 0.05, these effects occur in
the range of masses is between ≈ 10 ME and ≈ 20 ME.
However, in the models presented here, the planet grows
too quickly through this mass range (taking less than a
few tens of orbits) to significantly affect migration (see
Fig. 23 in Appendix B).

When the amount of material in the horseshoe orbit
region is larger than the planet’s mass, a regime of fast
migration known as Type III may occur. The origins
of such a regime are not yet entirely clear. The model
of MP03 suggests that it is driven by strong corotation
torques originating from material that streams past the
planet, while the planet is moving in the radial direction.
However, an analytic model of OL06 suggests that such
torques could originate from trapped librating gas. A
somewhat similar model was developed by Artymowicz
(2004).

3.2.2. Orbital Radius Evolution

We evaluate quantities Σp, H , and Ωp at the planet’s
orbital radius, a. Surface density Σp = Σp(a) is eval-
uated according to its initial value Σp(a) ∝ (a0/a)s,
and so ignores evolutionary effects and tidal gap forma-
tion. The planet mass Mp is regarded as a function of
time that we obtain from our simulations, via piecewise
polynomial fits. For the numerical models we consider,
s = −d ln Σp/d ln a = 1/2. Equations (17) and (18) are
then solved numerically, providing the migration tracks
aI = aI(t).

In the left panel of Figure 6, we compare such tracks
with outcomes from our simulations. For the first 400
orbits, while RH . 0.9 H and Mp . 0.27 MJ, the orbital
radius (i.e., semi-major axis) evolution is in good agree-
ment with the results of Type I migration. The unsatu-
rated coorbital torques appear to give a better fit than
the saturated ones. But this is not always the case, as we
see later when different disk parameters are considered.
The right panel of Figure 6 plots the density evolution
of the gas near the planet, ΣB , computed as ratio of the
disk mass in the radial band |r− a|/a ≤ H/r to the area
of the band (Σ0

B is the local initial value of ΣB). It shows
that the migration rate follows the Type I tracks on the
left while the disk density near the planet remains close
to the local initial disk value, assumed in equations (17)
and (18). Up to a time of about 400 orbits, the density
near the planet is reduced below its local initial value by
less than 20%. At time of about 600 orbits, the density
near the planet’s orbit is reduced by about a factor of 3,
and we should expect the migration rates deduced from
the simulation to be substantially slowed below the rates
based on Type I theory, in accord with the results on the
left panel. After about 1000 orbits, when Mp & 0.9 MJ,
the migration rate in the simulation becomes comparable
to the (local) viscous inflow rate (long-dashed line). At
this point, the disk density near the planet is depleted
by a factor of about 30.

The torque per unit disk mass as a function of dis-
tance from the planet for the case in Figure 6 is plotted
in Figure 7. The plot shows very similar behavior to the
case of a stationary, nongrowing planet seen in Figure 1.
Therefore, there is no evidence that planet migration or
growth substantially affects the disk-planet torques for
these model parameters. In particular, there is no evi-
dence for strong coorbital torques.

The results obtained from a model with H/r = 0.04
(i.e., with a lower disk temperature compared to the
model in Fig. 6) are shown in the left panel of Figure 8.
As in the case of the warmer disk, the Type I migra-
tion tracks (short-dashed curves) reproduce reasonably
well the radial migration from the simulation (solid line)
while Mp . 0.14 MJ (see long-dashed line in Fig. 5) or
RH . 0.9 H . As before, the right panel of Figure 8 shows
that the migration rate follows the Type I tracks while
the disk density near the planet remains close to the
local unperturbed value. Again, when Mp & 0.75 MJ,
ΣB/Σ0

B . 0.03 and |da/dt| is on the order of the viscous
inflow velocity (long-dashed line).

The dependence of migration on viscosity was investi-
gated by running a simulation with kinematic viscosity
ν = 1 × 10−4 a2

0 Ω0 (α = 0.04), ten times the value in
Figure 6 with all other parameters being the same. The
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Fig. 6.— Orbital migration of a planet undergoing run-away gas accretion. Left : Orbital radius in units of a0 (5.2 AU), as a function of

time in units of the initial orbital period (≈ 12 years). The initial planet mass is 5 ME. The initial surface density is Σp = 3×10−4 Ms a−2

0
≈

100 g cm−2 at the planet’s initial orbital radius and H/r = 0.05. Solid curve: Results from the three-dimensional numerical simulation of
a migrating, gas-accreting planet. Short-dashed curves: Predictions based on Type I migration theory, obtained by solving equations (17)
and (18), for a planet that undergoes the mass growth given by the solid line in Figure 3 and is embedded in a disk with the initial
unperturbed density distribution. The upper (lower) curve is for migration with unsaturated (saturated) coorbital torques. Long-dashed
line: Consistent with Type II migration, the line has slope −1.5 ν/a and passes through a ≈ 0.8a0 when Mp ≈ 0.9 MJ. Right : Average
disk density near the planet relative to the local initial value as a function of time. The density is averaged over a band of radial width
2 H centered on the orbit of the planet (see text for details). Solid circles mark times when the mass ratio Mp/Ms is equal to 5 × 10−5

(Mp = 16.7 ME) and when it is an integer multiple of 1 × 10−4 (Mp = 33.3 ME).

Fig. 7.— Torque per unit disk mass on the planet as a function of
normalized distance from the migrating and growing planet plotted
in Figure 6 (Σp = 3 × 10−4 Ms a−2

0
≈ 100 g cm−2 at the planet’s

initial orbital radius and H/r = 0.05). The vertical scale is in units
of GMs(Mp/Ms)2/a, where a = a(t). The solid, long-dashed, dot-
dashed, and short-dashed curves refer to times when Mp = 6.0 ME,
9.3 ME, 0.36 MJ, and 1.0 MJ, respectively.

results are shown in Figure 9. The left panel shows the
orbital migration from the simulation as a solid curve and
the Type I migration based on equations (17) and (18)
as dashed curves. In this case, the relation Mp = Mp(t)
represented by a short-dashed line in Figure 5 is used
in equations (17) and (18). The long-dashed line indi-
cates a migration at a constant rate of |ȧ| ≈ 0.7 ν/a,
with a ≈ 0.9 a0. The long-dashed line passes through a
range of masses that spans from ≈ 0.2 MJ to ≈ 1.2 MJ.
However, at Mp ≈ 1 MJ (t ≈ 600 orbits), the density
gap along the planet’s orbit has not yet fully formed.
This can be observed on the right panel of Figure 9,
which displays the averaged disk density near the planet
normalized to the local unperturbed (initial) disk value.

There is a drop of only a factor of 2.5 in the disk den-
sity near the planet by the time Mp ≈ 1 MJ. The reason
is that one of the conditions for steady-state gap forma-
tion, Mp/Ms > 40 ν/(a2Ω) ∼ 4×10−3 (Lin & Papaloizou
1993), is not fulfilled in this higher viscosity case until
Mp & 4 MJ. At about 780 orbits, ΣB/Σ0

B ∼ 0.1 but
the planet mass has reached beyond 2 MJ and is there-
fore more massive than the local disk mass. At those
stages of the orbital evolution, inertia effects and further
gap clearing are likely playing an important role in re-
ducing the migration rate, as demonstrated in the next
paragraph.

Figure 10 displays a comparison of the orbital radius
evolution from two calculations. The solid line is the
same as that in the left panel of Figure 9. The dot-
ted line with solid circles is the outcome of a three-
dimensional simulation in which the planet mass is fixed
at Mp = 1 MJ. Material is removed from the vicinity
of the planet according to the usual procedure we apply
(see section 3.1.1), but in this case it is not added to the
mass of the planet. The planet’s orbit is held fixed for the
first 100 orbital periods, after which time it is allowed to
evolve under the action of disk torques. The plot shows
that there is general agreement, while Mp ∼ 1 MJ, with
the variable mass model and that the effect of adding
mass to the planet in this regime is to slow its migration
rate.

The local viscous timescale, tν = r2/ν, in the models
presented in Figures 9 and 10 is about 1600 orbital peri-
ods at r = a0. Therefore, one might wonder whether the
viscous evolution of the disk at radii larger than the outer
grid boundary has any significant impact on the orbital
evolution of the planet. We address this issue in Ap-
pendix B and show that extending the disk further out at
larger radii does not affect the migration tracks shown in
Figures 9 and 10. In Appendix B, we also present results
for cases with viscosity parameter α = 0.2 (kinematic
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Fig. 8.— Orbital migration of a planet undergoing run-away gas accretion. Same as Figure 6, but for a cooler disk with aspect ratio
H/r = 0.04 (the same ν and initial Σp). Left : The theoretical Type I migration tracks (dashed curves) use the mass evolution shown as a
long-dashed curve in Figure 5. As in Figure 6, the upper (lower) short-dashed curve is for unsaturated (saturated) coorbital torques. The
long-dashed line, representing Type II migration, has a slope equal to −1.5 ν/a and passes through a ≈ 0.85 a0, when Mp ≈ 0.9 MJ. Right :
Normalized disk density near the planet as a function of time, as described on right panel of Figure 6 (see also text). Solid circles mark
times when Mp/Ms is 5 × 10−5 (Mp = 16.7 ME) or an integer multiple of 1 × 10−4 (Mp = 33.3 ME).

viscosity ν = 5 × 10−4 a2
0 Ω0) that have tν ≃ 320 orbits

at r = a0. This case also leads to inward migration that
can be interpreted as a Type I regime, partially modified
by the perturbed surface density of the disk.

4. TYPE III MIGRATION

Figures 6 and 8 indicate that a growing planet un-
dergoes Type I migration, as long the disk density near
the planet remains undepleted. At higher planet masses
where the gap opening sets in, there is a smooth tran-
sition towards Type II migration with migration speeds
that are on the order of the viscous inflow velocity. There
is no evidence for another form of migration, since the
torque distributions are essentially the same in the mi-
grating and nonmigrating cases explored thus far (com-
pare Figures 1 and 7). Type III migration was suggested
to involve coorbital material that provides a fast form
of migration (MP03). In this section we discuss planet
migration for several variants on the models of section 3
that should be favorable for a Type III regime of migra-
tion. We describe a case that appears to exhibit Type III
migration.

4.1. Higher Disk Mass

Coorbital torques are stronger for higher mass disks.
Masses in the coorbital region are on the order of
8π RH a Σ(a). For the model presented in Figure 6,
involving disks of relatively low density, the coorbital
disk mass is approximately equal to the planet mass
when Mp ≈ 0.2 MJ. We describe here results of three-
dimensional calculations with initial surface densities
Σp = 9 × 10−4 Ms a−2

0 ≈ 300 g cm−2 and Σp = 1.5 ×
10−3 Ms a−2

0 ≈ 500 g cm−2 at the planet’s initial orbital
radius of a0 = 5.2 AU. The mass evolution in the for-
mer case is plotted as the dashed line in Figure 3. The
mass evolution in latter case is similar, but the growth
proceeds very rapidly reaching about 1 MJ within 130
orbital periods. The resulting orbital radius evolution
for both simulations is plotted in Figure 11 (left panel)
along with the average disk density near the planet nor-
malized to the local unperturbed value (right panel).

For both cases presented in the figure, at earlier times
(t . 170 and t . 100 initial orbits, respectively), the
simulated migration rates are comparable to the Type I
rates. During that stage of the evolution, the coorbital
region is more massive than the planet. In the model
with initial Σp ≈ 300 g cm−2 at 5.2 AU (upper migration
track in Fig. 11), for times t . 170 orbits (Mp . 0.3 MJ)
the coorbital region mass to planet mass ratio is larger
than 2. In the model with initial Σp ≈ 500 g cm−2

at 5.2 AU (lower migration track Fig. 11), for times
t . 100 orbits (Mp . 0.4 MJ) the ratio of coorbital region
mass to planet mass is larger than 3. However, during
those stages, the results are generally consistent with the
Type I migration and some slowing at later times, with
no indication of another form of migration.

To examine the situation in more detail, we plot the
torque per unit disk mass as a function of distance from
the planet in Figure 12. The plot shows very similar be-
havior to the case of a nonmigrating, nongrowing planet
seen in Figure 1, as well as to the case of a migrating,
growing planet within a lower density disk presented in
Figure 7. Again, there is no evidence that planet mi-
gration or growth substantially affects the disk-planet
torques for the parameters adopted in these models.
Furthermore, there is no evidence for strong coorbital
torques dominating planet’s migration.

In carrying out calculations at higher disk masses, we
have introduced a possible inconsistency between the or-
bital motion of the disk and the planet. The orbital mo-
tion of the planet is affected by the axisymmetric grav-
itational force of the disk. On the other hand, the mo-
tion of the disk near the planet is not affected by this
force, since disk self-gravity is ignored. This difference
in rotation rates can lead to an artificial increase in the
planet migration rate (Pierens & Huré 2005; Baruteau &
Masset 2008). This issue has some quantitative effect on
our results in this section. But, the qualitative results
(approximately following the expectations of standard
Type I and II theory) remain. We examine this issue
further in Appendix C.
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Fig. 9.— Left : Same as left panel of Figure 6, but for a disk with ten times the turbulent kinematic viscosity (ν = 1 × 10−4 a2

0
Ω0 or

α = 0.04), same H/r, and initial Σp. As in Figure 6, the upper (lower) short-dashed line is for unsaturated (saturated) coorbital torques,
using the mass evolution shown as a short-dashed curve in Figure 5. The long-dashed line representing Type II migration has a slope
equal to −0.7 ν/a. Right : Average disk density near the planet relative to the local initial (unperturbed) value as a function of time, as
in the right panel of Figure 6. Solid circles mark times when Mp/Ms is 5 × 10−5 (Mp = 16.7 ME) or an integer multiple of 2 × 10−4

(Mp = 66.6 ME).

Fig. 10.— Comparison of radial migration obtained from the sim-
ulation on the left panel of Figure 9 (solid line) with that obtained
from a similar three-dimensional simulation (dotted line with solid
circles) with a fixed mass planet Mp = 1 MJ (see text for further
details).

4.2. Higher Initial Planet Mass

We have shown that if a low mass protoplanet is al-
lowed to rapidly grow in mass while it migrates, the or-
bital radius evolution begins at the Type I rate (eqs. 17
and 18) and approaches the Type II migration rate as
a clean gap develops. Since the evolving planet gains
mass at the fastest possible rate, the run-away accretion
rate, the time available for gap clearing is relatively short.
Such conditions should be favorable for migration domi-
nated by coorbital torques. But as we saw in Figure 11,
such situations only reveal Types I and II migration. In
this section, we explore a more extreme situation for pro-
viding coorbital material. We consider the case that a
planet of higher initial mass (higher than the 5 ME con-
sidered thus far) is suddenly immersed in a smooth disk.
Gap clearing is then not initially present for the higher
mass planets. More coorbital gas is available for affecting
migration.

We consider a planet with initial mass Mp = 0.3 MJ

(Mp/Ms = 3×10−4) that is allowed to grow and migrate
in a three-dimensional disk with initial density Σp ≈
300 g cm−2 at a0 = 5.2 AU (same as the lower initial den-
sity disk in Fig. 11), H/r = 0.05, and ν = 1×10−5 a2

0 Ω0.
Its orbital radius evolution is plotted as a dotted curve
with solid circles in Figure 13, together with the migra-
tion track of the model that starts with Mp = 5 ME at
t = 0 (plotted as a solid curve). For purposes of com-
parison, the initial orbital radius a0 for the dotted curve
case is chosen to be the a value of the solid curve case
when its planet mass is also 0.3 MJ. Given the large
initial mass of the planet for the dotted curve case, the
mass growth is very rapid: the planet gains about 0.7 MJ

over the first ∼ 50 orbits of evolution. The figure shows
that, with these disk conditions, migration rates differ
only for a brief period of time, but they soon converge
to values compatible with orbital migration in the more
relaxed disk (compare slopes of solid and dotted lines).
The dashed lines in the figure show that the planet ini-
tially migrates at the Type I rate5. But it later slows
to nearly the same rate as the solid curve case. Again,
there is no indication of Type III migration.

4.3. Nongrowing Planets in a Colder Disk

We consider the case of a nongrowing 0.3 MJ planet by
removing gas mass near the planet without adding the
mass of this material to the planet’s mass. This situation
may mimic the effects of an efficient disk wind. These
models differ from those in MP03 and DBL05, who con-
sidered nonaccreting planets, only with respect to the
accretion boundary conditions near the planet and the
time of planet release.

Unlike the mass removal case, the nonaccreting case
may introduce a complication because of the buildup
of gas within the planet’s Hill sphere, which can be-
come more massive than the planet. It has been ar-
gued that inertia effects from material close to the planet
could introduce complications in self-consistently analyz-

5 Note that, for a constant mass planet and Σp ∝ a−1/2, it
follows that |ȧI| ∝ a (see eq. 17).
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Fig. 11.— Right : Orbital evolution under the same conditions as the model in Figure 6, but with higher disk densities. Solid curves:
Simulation results for orbital migration of a planet in a three-dimensional disk with initial surface density equal to Σp = 9× 10−4 Ms a−2

0
,

or about 300 g cm−2 at a0 = 5.2AU (upper migration track), and Σp = 1.5 × 10−3 Ms a−2

0
, or about 500 g cm−2 (lower migration track).

Dashed curves: Predicted orbital migration according to Type I theory, equations (17) (upper curve of pair for unsaturated coorbital
torques) and (18) (lower curve of pair for saturated coorbital torques). Right : Average disk density near the planet relative to the local
initial (unperturbed) value as a function of time, as in the right panel of Figure 6. Solid circles mark times when Mp/Ms is 5 × 10−5

(Mp = 16.7 ME) or an integer multiple of 2 × 10−4 (Mp = 66.6 ME).

ing the dynamics of the system (Papaloizou et al. 2007).
Appendix D describes some effects of the nonaccreting
boundary condition. To avoid this potential problem,
we remove gas near the planet and ignore torques ex-
erted by the gas on the planet within the inner half of
the Hill sphere (by radius), where most of the bound gas
resides (see Fig. 29).

We are interested in seeing whether these situations
could give rise to strong torques outside the Hill sphere
that cannot be accounted for by Type I or Type II theory
in the case of a planet of fixed mass. As we show below,
there are conditions under which such strong torques oc-
cur in the coorbital region.

4.3.1. Simulations Setup

We consider a Saturn mass (0.3 MJ) planet in a disk
having H/r = 0.03. The initial (unperturbed) disk
surface density varies as Σ = Σp(a0) (a0/r)3/2, with

Σp(a0) = 2 × 10−3 Ms a−2
0 ≈ 670 g cm−2, and kinematic

viscosity ν = 1 × 10−5 a2
0 Ω0. Most of these calculations

are carried out in two dimensions since RH ≃ 1.5 H .
However, we checked that results from three-dimensional
models are in general agreement with those from two-
dimensional models (see dotted curves in Fig. 14). Simu-
lations in three dimensions use the grid system outlined
in section 3. As in the three-dimensional case, the two-
dimensional grid has a linear base resolution of 0.014 a0.
In the coorbital region around the planet, the linear res-
olution is 0.02 RH. Since we intend to study some global
properties of flow dynamics in the coorbital region, three
grid levels extend 2π in azimuth around the star. Con-
vergence tests at these grid resolutions are presented in
Appendix D.

As anticipated above, here we assume that some pro-
cess removes gas from the disk, according to the proce-
dure detailed in section 3.1.1, but that the planet mass
remains constant. The migration rate of the fixed mass
planet is not substantially affected by the assumption
that the gas is removed. In Appendix D we show that

configurations with a nonaccreting planet result in simi-
lar migration tracks. Hence, our conclusions would apply
to nonaccreting planets as well.

In MP03 and DBL05, the planet’s orbital radius was
initially fixed for over 470 orbits, so that a time-steady
disk gap would form before it underwent migration.
Here we reconsider that configuration, but examine cases
where the planet’s initial orbital radius is fixed for a
shorter time, only 100 orbits. This case is somewhat like
that of section 4.2 which has more gas in the coorbital
region (lower curve case in Fig. 11), but instead has a
fixed mass planet in a cooler disk. The following factors
applied here should help increase the torques from the
coorbital region: cooler disk, fixed planet mass, higher
disk density, and reduced time on initially fixed orbit.

4.3.2. Results

Figure 14 shows that the migration timescale of the
planet is quite short and that it lengthens as the re-
lease time increases (and the gap deepens). We focus
on the case with trls = 100 (solid line case in the figure),
which has a migration timescale of order 100 initial or-
bital periods. Although short, this migration timescale
is longer than the Type I migration timescale that would
be predicted if the planet did not open a gap (lower
short-dashed curve of pair6). The planet does open a
partial gap, as seen in Figure 15. So it might appear
that a weakened form of Type I migration, due to par-
tial gap opening, could explain the simulated migration
rate. However, we demonstrate below that the migration
cannot be explained by the usual Type I theory.

Figure 16 shows the torque distribution per unit disk
mass exerted on the planet, as defined by equation (8).
The torque density distribution at the time of release
of the planet, 100 orbits after the start of the simula-
tion, reveals a curve characteristic of Type I torques.

6 Note that, for a constant mass planet and Σp ∝ a−3/2, it
follows that ȧI is a constant (see eq. 17).
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Fig. 12.— Torque per unit disk mass on the planet as a function of normalized distance for the migrating and growing planets plotted in
Figure 11. Left : Case with initial surface density at the initial orbit of the planet equal to Σp ≈ 300 g cm−2. Right : Case with initial surface
density at the initial orbit of the planet equal to Σp ≈ 500 g cm−2. The vertical scale is in units of GMs(Mp/Ms)2/a, where a = a(t). The
solid, long-dashed, dot-dashed, and short-dashed curves refer to times when Mp = 6.0 ME, 9.3 ME, 0.36 MJ, and 1.0 MJ, respectively.

Fig. 13.— Migration with different initial conditions. Solid
curve: Orbital radius evolution of a planet with initial mass
Mp = 5 ME that interacts with a three-dimensional disk hav-
ing initial surface density at the planet’s initial radial position
Σp ≈ 300 g cm−2 at a0 = 5.2AU (same as the upper migration
track plotted in Fig. 11). It has mass Mp = 0.3 MJ at a time of
about 165 orbits (see Fig. 3, dashed line), when a ≃ 0.92 a0. Dot-
ted curve with solid circles: Orbital radius evolution of a planet
with initial mass Mp = 0.3 MJ that interacts with the same initial
unperturbed disk density distribution as the solid curve case has
at time t = 0. The planet starts at the same radius (a ≃ 0.92 a0)
as the solid curve where that planet has acquired a mass of 0.3 MJ.
The difference in the two cases is that the solid curve case has
a partially cleared gap when Mp = 0.3 MJ (see Fig. 11, right
panel), while the dotted curve case starts in a smooth unperturbed
disk. Dashed curves: Orbital radius evolution of a planet accord-
ing to Type I theory (eq. 17 and 18) for a planet of fixed mass
Mp = 0.3 MJ (lower curve of pair for saturated coorbital torques)
and disk density at r = 0.92 a0 for the unperturbed initial disk.

The distribution is similar to the cases plotted in Fig-
ure 1, although it is somewhat larger in magnitude, as
expected by the lower sound speed of the gas and the
two (rather than three) dimensions of the simulation.
However, at later times the torque distribution changes
character, with much larger values in the coorbital zone,
within radial distances of about 2 RH ≃ 0.1 a(t) from
the orbit of the planet. In particular, there is substan-
tial torque occurring in the radial band |r − a| < RH,
where RH = 0.046 a. We argued in section 2.2.2 that

Fig. 14.— Orbital migration of a Saturn-mass planet of fixed
mass (Mp = 0.3 MJ) in a cold (H/r = 0.03) and high mass disk
(Σp ≈ 670 g cm−2 at the planet’s initial position). Mass is removed
from the disk near the planet to prevent a mass buildup there.
The planet is embedded in a two-dimensional disk and held on
a fixed orbit for trls = 50 (dotted lines), 100 (solid line), and
200 (long-dashed line) initial orbital periods. The dotted line with
solid circles plots the migration track from a three-dimensional disk
model with trls = 50 orbits. The orbital radius is in units of a0.
For a0 = 5.2AU, the unit of time is ≈ 12 years. The predicted
Type I migration tracks, assuming the planet does not open a gap,
are plotted for a two-dimensional (short-dashed line) and a three-
dimensional (short-dashed line with solid circles) disk.

this region involves only coorbital torques (not Lindblad
torques). We have verified that this torque is not origi-
nating from within the planet’s Hill sphere (see Fig. 27).
The contribution from within the Hill sphere is about
20% of the net torque at release time and generally less
than about 10% at later times.

Figure 15 shows that the planet is migrating on a
shorter timescale than that of gap opening. At release,
the planet is fairly symmetrically positioned in the gap.
Later, the planet lies much closer to the inner edge of
the gap than to the outer edge, and the gap is less deep.
Such a situation would be expected to lead to slower or
even outward migration according to Type I theory of
Lindblad resonances, since the inner resonances (which
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Fig. 15.— Axisymmetric radial density distribution Σ(r, t), of a
disk containing a Saturn-mass planet (Mp = 0.3 MJ), plotted as a
function of radius at 3 times: the time of planet release trls = 100
initial orbital periods (short-dashed line), trls + 10 initial orbital
periods (long-dashed line), and trls+20 initial orbital periods (solid
line). The solid circles mark the planet orbital radii at these times,
as the planet migrates inward.

Fig. 16.— Torque per unit disk mass on a Saturn-mass planet
(Mp = 0.3 MJ) in units of G Ms (Mp/Ms)2/a(t) as a function of
the normalized distance from the planet, undergoing fast migra-
tion, at 3 different times: the time of planet release trls = 100
initial orbital periods (short-dashed curve), trls + 10 initial orbital
periods (long-dashed curve), and trls + 20 initial orbital periods
(solid curve).

provide outward migration) are more strongly activated
than the outer resonances (which provide inward migra-
tion) due to the asymmetric density distribution near the
planet. If fact, the slowing/stalling of inward migration
due to the feedback from the inward disk density of a
migrating planet was envisioned by Hourigan & Ward
(1984) and Ward & Hourigan (1989) in their considera-
tion of the inertial limit to planet migration. To quan-
tify the effects of standard Type I torques, we apply the
Type I torque distribution taken at the time of planet re-
lease in Figure 16. In doing so, we are ignoring pressure
effects on dT/dM due to the changing gap shape. We
determine the Type I torques at the later times by in-
tegrating this torque distribution (appropriately shifted
to the instantaneous position of the planet) over the disk
mass distributions in Figure 15. The torque is then given

by

TI(t) = 2π

∫

dT

dM
(x, trls)Σ(r, t) r dr (20)

where x = (r−a)/a and a = a(t). We find that the result-
ing Type I migration rates at times of 10 and 20 orbits
after release are outward and equal to ȧ = 2×10−4 a0 Ω0

and 4 × 10−5a0 Ω0, respectively. Clearly, results from
the simulation are not consistent with the expectations
of the usual Type I migration theory. Instead, we claim
the effects of the corotation resonances are critical for
migration here.

In the model by OL06, fast migration is due to torques
caused by a density asymmetry in the coorbital region be-
tween gas on the leading and trailing sides of the planet.
The gas on the leading side of the planet is trapped and
contains gas acquired at other radii, while the trailing
side contains ambient gas near the planet. The con-
trast between the trapped and ambient gas is limited by
viscous diffusion. The trapped gas is in a quasi-steady
advective-diffusive equilibrium. The density asymmetry
and thus the torque is caused by the motion of the planet.

To test this model, we analyzed streamlines in the coor-
bital region in the frame comoving with the planet. We
determine the streamlines in the simulations by follow-
ing the motion of tracer particles that move with the
velocity of the gas (see Appendix D.1). In Figure 17
we plot coorbital streamlines near before the planet is
released, i.e., while the planet was on a fixed station-
ary orbit. The figure shows good agreement between
the simulation and theory. The streamlines are symmet-
ric between the leading (φ > φp) and trailing (φ < φp)
sides of the planet. Figure 18 shows the streamlines af-
ter the planet is released, while the planet is migrating.
Strictly speaking, these are not streamlines in the sim-
ulation case but trajectories, since the flow is not in a
strict steady state in the comoving frame of the planet
because the planet is migrating at a variable rate. The
theoretical streamlines depend on the planet-to-star mass
ratio and the migration rate of the planet. They are cal-
culated assuming a steady state and constant migration
rate by means of the linear perturbation model of OL06.
The theoretical streamlines were calculated by using in-
termediate parameter values from the simulation during
the interval of planet migration: ȧ = −0.002 a0 Ω0 and
r = 0.85 a0. The simulated and theoretical streamlines
in Figure 18 are in approximate agreement. They show
closed streamlines on the leading side of the planet’s az-
imuthal motion. They contain the trapped gas described
above. The open streamlines on the trailing side of the
planet involve ambient gas that streams outward past
the planet. The smaller closed streamlines are centered
at about the same azimuth in the two plots, about 0.2 π
ahead of the planet. Figure 19 shows that the gas density
asymmetry in the coorbital region between the leading
and trailing sides of the planet increases with time. The
unperturbed background density increases with time as
the planet encounters higher density gas in its inward
migration. Notice that the density increase is higher on
the trailing side of the planet than on the leading side.
This result suggests that the trapped gas approximately
retains its initial density as the planet migrates. The gas
on the trailing side more fully reflects the local density.
The density asymmetry then gives rise to the dominant
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Fig. 17.— Trajectories of gas in the coorbital region near a Saturn-mass planet (Mp = 0.3 MJ) on a fixed circular orbit with orbital
radius a = a0. The trajectories are determined in the comoving frame of the planet, which is located at the origin. Disks properties are
the same as in Figure 14. The left panel shows the results of our simulation and the right panel shows results given by a theoretical model
(OL06).

Fig. 18.— Trajectories of gas in the coorbital region near a Saturn-mass planet undergoing fast migration (solid curve in Fig. 14). The
trajectories are determined in the comoving frame of the planet, located at the origin. The thicker lines denote open trajectories that pass
by the planet. The thinner lines denote closed trajectories containing trapped gas. Results from the simulation are presented in the left
panel and results from a theoretical model (OL06) are displayed in the right panel.

torque on the planet.
The OL06 model does not determine the value of coor-

bital corotational torque for a migrating planet. It does
provide a detailed analysis for the noncoorbital corota-
tional torque. In that case, the effect of migration is
to amplify the standard coorbital torque for a nonmi-
grating planet (Goldreich & Tremaine 1979). By anal-
ogy, one might expect similar behavior in the coorbital
case. The standard torque is proportional to the radial
derivative of Σ(r)/B(r), and hence of the disk vortensity
−2B(r)/Σ(r), where Σ(r) is the disk axisymmetric sur-
face density (azimuthally averaged surface density) and
B(r) is the Oort constant. In the unperturbed disk model
considered here, the vortensity is constant, and so the
coorbital torque is predicted to be zero. However, the
gap structure in the disk modifies the surface density
Σ(r) near the planet (see Fig. 15), thereby providing a
vortensity gradient.

4.4. Conditions for Type III Migration

The results in section 4.3.2 provide evidence for migra-
tion dominated by coorbital torques, or Type III migra-
tion. Within the framework of the OL06 model we gen-
eralize the results of the simulations and describe some
conditions that are favorable for Type III migration.

As in section 4.3.2, we consider a planet of fixed mass.
For a planet whose mass is large enough to open a gap,
we apply the initial condition that the planet undergoes
migration before steady gap formation completes, as was
the case in section 4.3.2.

We require that the planet does not strongly deplete
the gas in the coorbital region as it migrates. This re-
quirement implies that the migration timescale across the
coorbital region be shorter than the timescale to clear a
gap over that region. Figure 15 demonstrates that this
condition holds for the model in section 4.3.2.

To derive a crude estimate for this condition, we as-
sume that the torques exerted by the planet lead to a
local change in disk angular momentum over a region
whose size is comparable to the coorbital region. Each
one-sided torque (interior and exterior to the orbit of the
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Fig. 19.— Radial average of the surface density within the
coorbital region (defined as having radial extent 2 RH ≃ 0.1 a(t)
of the planet’s orbit) as a function of azimuth at 3 different times:
the time of planet release trls = 100 initial orbital periods (short-
dashed line), trls+10 initial orbital periods (long-dashed line), and
trls + 20 initial orbital periods (solid line).

planet) on the gas is capable of clearing a gap, while the
net effect of both interior and exterior torques results in
migration. The condition that the gap clearing timescale
is longer than the migration timescale becomes

Mc &
Mp

A
, (21)

where Mc is the mass of the coorbital region and A is
the dimensionless torque asymmetry

A =
|Te| − |Ti|

|Te|
, (22)

where Ti and Te denote the torques interior and exterior
to the planet’s orbit, respectively.

Another condition is that the migration rate be large
enough that there a strong asymmetry in streamlines be-
tween the leading and trailing sides of the planet, as
seen in Figure 18. According to OL06, the asymme-
try is strong for migration rates greater than |ȧA| =
1.45 Ω a Mp/Ms. Since the migration begins as Type I
migration (see short-dashed line in Fig. 16), the condi-
tion is that |ȧI| & |ȧA|. This condition is approximately

Σp &
Ms

a2

(

H

a

)2

. (23)

Notice that the condition is independent of planet mass,
since both ȧI and ȧA are linear in the planet mass.

We now apply these conditions to the model simulated
in section 4.3.2. The asymmetry parameter is estimated
as A ≈ 0.3, from the initial torque distribution in Fig-
ure 16. Condition (21) is then satisfied for this model,
since Mc ≈ 7 Mp. Condition (23) is also (marginally)
satisfied, since the initial density is Σpa

2/Ms = 2× 10−3

and (H/a)2 = 9 × 10−4. None of the other models dis-
cussed in this paper satisfy both conditions.

It also appears that the condition that the planet mass
is fixed (or slowly increasing) is important. The dashed
curve on the right panel of Figure 27 in Appendix D sug-
gests that a planet that grows in mass at the run-away
rate would not undergo rapid migration long enough to
move very far. The slow-down is partly due to gap open-
ing that reduces the torques.

The picture is then that a fixed mass planet, initially
undergoing sufficiently fast Type I migration, develops
strong coorbital torques due to asymmetric trapped gas.
The situation is not simple, however. We saw in sec-
tion 4.3.2, that the disk’s feedback to the planet’s mo-
tion might slow or halt Type I migration, but the coor-
bital torques allow the inward migration to continue. We
found that the rate of the resulting migration is actually
slower than Type I migration for a smooth disk. So the
conditions (21) and (23) are suggestive only at this point
and require further testing.

5. SUMMARY AND DISCUSSION

We have analyzed the evolution of migrating planets
that undergo run-away gas accretion by means of multi-
dimensional numerical simulations. The results agree
with the predictions of Type I and Type II migration
(see Figures 6 through 9) for a planet of time-varying
mass that we obtain from simulations. The set of sim-
ulations include cases with disk densities as low as the
minimum mass solar nebula value and as high as 5 times
that value, viscosities α ≈ 0.004 and 10 times that
value (also 50 times that value, α ≈ 0.2, in a test re-
ported in Appendix B), disk temperatures corresponding
to H/r = 0.05 and a colder case of H/r = 0.04. The mass
accretion rates onto the planet (see Figures 3 and 5) are
in general agreement with previous determinations based
on fixed mass planets on fixed circular orbits, when com-
paring cases with the same planet mass and disk prop-
erties for which the growth timescale is longer than the
gap opening timescale. Planet mass growth rates can be
understood in terms of accretion within the Bondi radius
at lower planet masses, accretion within the Hill radius
at intermediate masses, and accretion through the gap
at higher planet mass (see Fig. 4). Mass growth rates
typically peak at the intermediate planet masses, a few
tenths of a Jupiter mass.

An important diagnostic for the nature of the disk-
planet torques is the scaled torque density distribution
per unit disk mass as a function of the scaled radial dis-
tance from the planet. In the linear regime of the stan-
dard theory of disk-planet resonances, for a fixed form of
the disk density distribution d ln Σ/d ln r and gas proper-
ties (sound speed and viscosity), this scaled torque distri-
bution should be universal, independent of planet mass
and disk density value. We verified this universality for
low mass planets, although the distribution varies some-
what with planet mass for larger mass planets that open
gaps (compare low mass cases in Figures 1, 7, and 12).

There is no fundamental distinction between the
torques involved in Type I and Type II migration. This
follows from the near independence of the scaled torque
density distribution with planet mass. Previous concepts
of Type II suggested that a planet in a clean gap would
migrate inward like a test particle that follows the disk
accretion. Here we describe a view for cases where the
gap is not completely clear of material. The difference
in Type I and Type II rates is due to the mass density
distribution of the gas that multiplies torque density in
determining the torque on the planet. In Type II mi-
gration, the density distribution adjusts so that the net
torque on the planet causes it to migrate at approxi-
mately the viscous evolution rate of the disk. The transi-
tion between the two forms of migration is quite smooth.
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Fig. 20.— Orbital migration of a planet undergoing run-away
gas accretion. Orbital radius in units of a0 (5.2AU), as a func-
tion of time in units of the initial orbital period (≈ 12 years).
The initial planet mass is 5 ME. The initial surface density is
Σp = 3 × 10−4 Ms a−2

0
≈ 100 g cm−2 at the planet’s initial or-

bital radius and H/r = 0.05. Solid curve: Results from the same
simulation as in Figure 6 for a migrating, mass-gaining planet.
Short-dashed curves: Predictions based on Type I migration the-
ory, obtained by solving equations (17) and (18), taking into ac-
count the time variable mass of the planet (Fig. 3, solid line) and
roughly accounting for the gas depletion near the planet (see text).
The upper (lower) dashed curve is for migration with unsaturated
(saturated) coorbital torques.

To illustrate this point, we plot in Figure 20 the orbital
evolution of the planet through the phase where gap for-
mation sets in. The figure shows that the migration rate
can be accounted for by standard Type I theory, cor-
rected for the gas depletion in the gap region, although
there is no unique prescription to do this. In the figure,
the theoretical curves (dashed lines) are determined by
Type I migration theory, equations (17) and (18), with
the density Σ taken to be the average value in a radial
band of half-width 0.15 a (a typical gap width) centered
on the planet.

For a given planet mass, the torque density diagnostic
reveals that the distribution is not strongly affected by
migration or accretion (Figure 1 is quite similar to Fig-
ures 7 and 12 for similar planet masses). In particular,
there is no evidence for strong coorbital torques. How-
ever, in a certain case, we do find evidence for strong
coorbital torques, or Type III migration. This case has a
planet of fixed mass, 0.3MJ, that is immersed into a cold,
smooth disk. The planet is held at a fixed orbit for rela-
tively short time (∼ 100 orbits) before being released, so
that gap clearing is incomplete. The torque distribution
at the time the planet is released follows the expecta-
tions of the standard theory for nonmigrating planets.
This can be seen by comparing the curve for the 0.3 MJ

case in Figure 1 (dot-dashed curve) with the short-dashed
curve (time t = trls) in Figure 16. (There are differences
in the magnitude of the distributions because of differ-
ences in gas sound speeds and dimensionalities of the
calculations, but the forms of the distributions are sim-
ilar). At later times, Figure 16 reveals a transition to a
completely different torque distribution, where coorbital
torques play a critical role.

The strong coorbital torque can be understood in terms
of an asymmetry in the streamlines between the leading
and trailing sides of the planet, in accord with the an-

alytic model of OL06 (see Figures 17 and 18) and also
along the lines of Artymowicz (2004). This asymmetry
causes trapped material to persist on the leading side of
the planet which has a different density from the ambi-
ent gas that flows on the trailing side (see Fig. 19). The
asymmetry gives rise to the coorbital torque. We suggest
some criteria for this form of migration (see section 4.4).
More exploration is needed to test them.

Although we find evidence for Type III migration, the
conditions required appear somewhat artificial, i.e., in-
complete gap clearing (nonequilibrium gap) of a cool disk
with a planet of fixed mass. It is not clear whether and/or
how conditions for Type III could arise in a more plau-
sible evolution scenario.

We have generally assumed that the planet is able
to accrete almost all gas the disk is able to provide
(so-called run-away gas accretion). For a disk viscosity
ν & 1 × 10−5 a2

0 Ω0, the mass accretion rates are large.
The time to build a 1 MJ planet starting with a 5 ME

planet in a minimum mass solar nebula is shorter than
∼ 105 years, substantially less than the observationally
determined disk lifetimes of ∼ 106 years (Haisch et al.
2001; Flaherty & Muzerolle 2008). Over this 105 year
time interval, the planet has radially migrated inward by
only ∼ 20% of its initial radius. In other words, for these
models, the mass doubling timescale for a Mp . 1 MJ

planet is short compared to the migration timescale and
the disk lifetime. This situation stands in strong con-
trast to the earlier phases of planet formation where the
migration timescales are shorter than the planet mass
doubling timescales and disk lifetimes (e.g., Ward 1997;
Hubickyj et al. 2005).

The run-away accretion rates pose some challenges
for explaining the mass distribution of planets (Butler
et al. 2006). Typical accretion rates in T Tauri stars
are ∼ 1 × 10−8 M⊙ per year (Hartmann et al. 1998).
For a steady-state unperturbed disk (without a planet),
the accretion rate is given by 3πνΣ. The initial disks
considered in this paper are not in a steady state, but
this accretion rate provides a reasonable estimate. For
the minimum mass nebula model (Fig. 3), the kinematic
turbulent viscosity we typically adopt, ν ∼ 10−5 a2

0 Ω0,
was chosen so that the accretion rate evaluates to about
this same value, ∼ 1 × 10−8 M⊙ per year. In the case of
a planet embedded in a disk, if there is a comparable ac-
cretion rate onto a planet of mass Mp . 1MJ (as found
by Lubow & D’Angelo 2006), then the mass doubling
timescale for a Jupiter-mass planet is about 105 years,
consistent with what we found in the simulations in this
paper. But then it is not at all clear why planets would
not almost always achieve masses higher than ∼ 1 MJ,
in contradiction with the observed mass distribution of
extra-solar planets and the case of Saturn. Special timing
for disk dispersal could be invoked, but may be artificial.

There are a few possible explanations. A colder disk
(H/r < 0.05) would experience stronger tidal trunca-
tion effects from a Jupiter-mass planet, as H becomes
significantly smaller than RH ≃ 0.07 a. This effect could
certainly reduce the accretion rate by a large enough fac-
tor (say 10), so that the mass doubling timescale for a
∼ 1MJ planet would become of order 106 years, consis-
tent with the suggestion by Dobbs-Dixon et al. (2007).
The issue then is how cold the disk would need to be.
The model in this paper with H/r = 0.04 (Fig. 5, long-
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dashed line) has the same unperturbed overall disk ac-
cretion rate as the H/r = 0.05 case (Figures 3 and 5,
solid line), since ν and the initial surface density Σ(r)
are the same. The accretion rate onto the planet from
the colder disk (H/r = 0.04) differs from the case with
H/r = 0.05 by only 10%. Model h in Lubow & D’Angelo
(2006) for a nonmigrating planet of fixed mass, having
H/r = 0.03, has an accretion rate that is ∼ 25% less
than model b, which has H/r = 0.05 and the same un-
perturbed overall disk accretion rate. Consequently, in
this disk thickness range (0.03 ≤ H/r ≤ 0.05), we find
that the reduction in the accretion rate onto the planet
due to cooler disks is not significant. For higher mass
planets (5–10 MJ), we expect that the accretion rate will
be reduced by tidal truncation effects to a level where the
planet mass doubling timescale is comparable to the disk
lifetime, as found in previous studies of planets on fixed
orbits (Lubow et al. 1999; Bate et al. 2003; D’Angelo
et al. 2003). This effect may set the upper limit to planet
masses.

Another possibility is that there is a feedback effect
that limits the gas accretion rate. Perhaps the heating
of the protoplanet envelope by impacting solids contin-
ues to later times than is assumed in the standard core
accretion model. Depletion of disk solids near the planet
occurs in the standard core accretion model, when planet
migration is not included. With migration, it is possible
that continued accretion of disk solids would occur (e.g.,
Alibert et al. 2005), resulting in continued heating that
could limit the gas accretion rate further. It is not clear
how well this possibility works, since planetesimals will

get trapped into resonances as the planet migrates (Zhou
& Lin 2007). Having a higher mass solid core is prob-
lematic in the case of Jupiter, whose solid core mass is
thought to be a small fraction of the total mass (see Guil-
lot 2005 and discussion in Lissauer & Stevenson 2007).
It is also possible that winds emanating from the cir-
cumplanetary disk within the planet’s Hill sphere could
reduce the accretion rate onto the planet. Magnetically
driven winds are believed to play an important role in
the case of young stars (Blandford & Payne 1982; Pu-
dritz & Norman 1986; Shu et al. 1994). There are likely
differences in the flow properties from the stellar outflow
case (Fendt 2003). However, it is not clear that the winds
would be able to expel a large enough fraction (say 90%)
of the accreting gas to sufficiently reduce the accretion
rate onto the planet.
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APPENDIX

A. NUMERICAL SENSITIVITY STUDY

We conducted several tests to assess the sensitivity of the results presented in section 3 to the choice of various
numerical parameters. Since the main objective of that section is the mass and orbital evolution of an embedded
planet, we present here quantitative comparisons of planetary masses and orbital radii as function of time.

A.1. A Resolution Test

For purposes of a resolution study, we performed a three-dimensional calculation in which the grid resolution is
raised by a factor of 3/2 over the standard resolution (see section 3) in each coordinate direction, throughout the
entire disk domain, and on all grid levels. Note that such an increase implies an overall refinement gain of a factor
(3/2)3 ≃ 3.4, in terms of volume resolution of the system or number of grid elements. Nested grids cover extended disk
regions, so that the planet always remains in the domain described by the most refined grid during the calculation. We
focus on the disk model with initial surface density at the planet’s initial position Σp = 9× 10−4 Ms a−2

0 (300 g cm−2),
H/r = 0.05, and ν = 1 × 10−5 a2

0 Ω0. The planet’s mass and orbital radius evolution, obtained at standard grid
resolution, are shown in Figure 3 (dashed curve) and Figure 11 (top-most solid curve), respectively. In order to carry
out a quantitative comparison, results (for both Mp and a) from the two calculations, which will be labelled as 1 and
2, are averaged over time intervals of half of the (initial) orbital period and then relative differences are computed as

∆X

X̄
= 2

(

X1 − X2

X1 + X2

)

, (A1)

where X is either Mp or a. In order to give time-averaged estimates of the relative differences, over the course the
calculations, we perform a running-time average of quantity ∆X/X̄, which is defined by

〈

∆X

X̄

〉

t

=
1

t

∫ t

0

∆X

X̄
dt′. (A2)

Results are shown in the left panels of Figure 21. The largest differences are observed in the results for the mass
evolution (top-left), after the onset of the rapid accretion phase (see dashed line in Fig. 3). The average difference,
over the entire evolution, stays within 10–15%. The average relative difference between the evolution results of the
orbital radii (bottom-left) is much smaller and remains well within 1%.

In order to test whether the orbital evolution is consistent with Type I migration theory of Tanaka et al. (2002) at
our standard resolution, we set up a three-dimensional disk model with a planet that grows at a prescribed rate and
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Fig. 21.— Left : Running-time average, defined by equation (A2), of the relative differences between two three-dimensional calculations,
whose numerical resolutions differ by a factor of 3.4 in terms of grid elements (see text for details). Most of the difference in the mass
growth of the planet (top) is accumulated between about 100 and 150 orbits, during the early phases of the rapid mass growth, when
Mp ∼ 1 × 10−4 (see dashed curve in Fig. 3). Overall, the running-time average of ∆Mp/M̄p is in the range 10–15%. Relative differences
between the evolution of the orbital radii (bottom) remain negligible over the course of the calculations and the running-time average
is contained within 1%. Right : Orbital migration of a planet that grows at a prescribed rate in a three-dimensional disk whose initial
(unperturbed) surface density has slope s = −d lnΣp/d lna = 3/2. Results from a calculation (solid curve) are compared to predictions
of Type I theory (dashed curve, see section 3.2.1). The top panel shows the orbital radius evolution, whereas the bottom panel shows the
migration rate as a function of the planet mass.

whose initial mass is Mp = 1 × 10−5 Ms (about 3 ME). The initial (unperturbed) surface density has slope s = 3/2,
so that ȧI(t) ∝ Mp(t). In the right panels of Figure 21, results from the simulation (solid line) are compared against
predictions of Type I theory (dashed line, see section 3.2.1) for both the orbital radius evolution (top panel) and the
migration rate as a function of Mp (bottom panel).

A.2. Boundary Condition Effects

Boundary conditions may play some role and affect the late stages of the system’s evolution, especially when Mp

becomes on the order of a Jupiter mass. In our situation, the major concerns that may arise are related to the
positions of the grid radial boundaries. The finite extent of the inner radius of the grid (Rmin) may lead to an
augmented depletion of the disk within the orbit of the planet. At the outer radial boundary (Rmax), reflection of
waves may affect torques exerted on the planet. The first effect can be mitigated by reducing the inner radius of
the grid or adopting nonreflective boundary conditions (e.g., Godon 1996, 1997), whereas the second can be largely
suppressed by choosing Rmax ≫ a. However, while increasing the outer grid radius possibly lengthens the computing
time only because a larger number of grid elements in the radial direction is required (for a given value of ∆R),

decreasing the inner grid radius directly affects the time-step of the calculation, which is proportional to R
3/2
min because

of the stability criterion imposed by the Courant-Friedrichs-Lewy condition.
The left panels of Figure 22 shows a comparison of results obtained from a three-dimensional calculation (Σp =

9×10−4 Ms a−2
0 at t = 0, H/r = 0.05, and ν = 1×10−5 a2

0 Ω0) with nonreflective boundary conditions at Rmin = 0.4 a0

and one with Rmin = 0.19 a0 but outflow boundary conditions, as outlined in section 2.1.3. The position of the inner
grid boundary affects the density distribution interior to the planet’s orbit. The effect on the planet’s mass is at the
3% level, on average over the entire course of the simulation (top-left panel). The orbital radius evolution (bottom-left
panel) displays average relative differences much smaller than 1%. In the right panels of Figure 22, results from a
three-dimensional calculation with outer grid radius at Rmax = 2.5 a0 are compared to those from a calculation in
which Rmax = 4.9 a0. Both the evolution of planet mass (top-right panel) and orbital radius (bottom-right panel) are
hardly affected by the position of the outer grid boundary.

A.3. Effects of Excluded Torques

The region of space in which material is gravitationally bound to the planet depends on several disk parameters
(including H/r and ν) and on the planet’s mass. Calculations with fixed mass and fixed orbit planets indicate that,
for H/r ≈ 0.05 and ν ≈ 1× 10−5 a2

0 Ω0, only material within about 0.3 RH is gravitationally bound to the planet when
5 ME . Mp . 40 ME (Hubickyj et al. 2007). Analytical and numerical models of disk formation around a Jupiter-mass
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Fig. 22.— Left : Running-time average of relative differences between results obtained from two three-dimensional models: one with inner
grid boundary at radius Rmin = 0.4 a0 and nonreflecting boundary conditions (Godon 1996, 1997) and the other with Rmin = 0.19 a0 and
outflow boundary conditions (see section 2.1.3). Average relative differences in planet’s mass (top) and orbital radius evolution (bottom)
are around 3% and ≪∼ 1%, respectively. Right : Same comparison between two three-dimensional calculations with outer grid boundary at
radii Rmax = 2.5 a0 and 4.9 a0, respectively. Relative differences much smaller than 1% are observed in the evolution of both the planet’s
mass and orbital radius.

planet suggest that such disks may extend over a distance of about RH/4 (or less) around the planet. In the calculations
presented in section 3 and 4, torques originating within RH/2 of the planet are not taken into account, which may
include nonzero net torques exerted by unbound material. In order to estimate how this choice affects the evolution
of the orbital radius, we also considered cases in which only torques from within 0.3 RH are neglected. The models
with initial surface density Σp = 3 × 10−4 Ms a−2

0 and 9 × 10−4 Ms a−2
0 at r = a0 (H/r = 0.05, ν = 1 × 10−5 a2

0 Ω0),
discussed in sections 3.1.2 and 3.2.2, are restarted at regular time intervals, covering entirely their respective mass
range. The evolution is then integrated for time periods of & 100 orbits at each restart. We compare the evolution of
orbital radii by measuring the relative differences ∆a/ā and find that for none of the cases considered |∆a/ā| exceeds
1%. We therefore conclude that excluded torques from unbound material have only marginal effects on the results
presented in section 3.2 and 4.1.

B. MIGRATION IN HIGH VISCOSITY DISKS

Results presented in section 3.2 indicate that the orbital radius evolution of a growing planet can be described
reasonably well in terms of standard Type I and Type II regimes of migration (as long as the local disk mass is
comparable or larger than the planet’s mass). This conclusion holds when the disk’s kinematic viscosity is ν ∼
10−5 a2

0 Ω0 (see Fig. 6) as well as when ν ∼ 10−4 a2
0 Ω0 (see Fig. 9), which brackets a range of α-parameters between

4× 10−3 and 4× 10−2 at the location of the planet. Here we present further analysis of a case with ν = 1× 10−4 a2
0 Ω0

and examine cases with ν = 5× 10−4 a2
0 Ω0 (α ∼ 0.2), which still result in a form of Type I migration modified by the

perturbed surface density of the disk.

B.1. An Additional Model With ν = 1 × 10−4 a2
0 Ω0

As anticipated in section 3.2.2, some concern may arise when the viscous timescale, tν = r2/ν, at Rmax becomes
comparable to the length of time over which the orbital evolution of the planet is calculated. However, it is unlikely
that the disk’s viscous evolution at R > Rmax has a large impact on the results displayed in Figure 9 since tν at
R = Rmax is more than 6 times as long as the viscous timescale at a, about 104 (initial) orbital periods of the planet.
Therefore, at this viscosity level, we may experience some effects only over simulations covering timescales longer than
104 orbits (note that inward migration will increase even further this timescale).

In order to address this issue more in detail, we set up a three-dimensional model with ν = 1 × 10−4 a2
0 Ω0 and

H/r = 0.05. We adopt the same parameters, numerical resolution (0.014 a0 of linear base resolution and 9×10−4 a0 of
resolution in the coorbital region around the planet), and boundary conditions, as those of the simulations discussed
in section 3. In this model, however, the grid radial boundary extends out to Rmax = 6.7 a0. Therefore, the viscous
timescale at Rmax is a factor of at least 6.72 ≃ 45 as long as tν at the orbital radius of the planet. Thus, we could
in principle follow the planet’s orbital evolution for tens of local viscous timescales. Additionally, to monitor the
sensitivity of our results to boundary and initial conditions at Rmin, we use the initial surface density represented



Migrating Planets Undergoing Gas Accretion 21

Fig. 23.— Left : Azimuthally averaged surface density of a three-dimensional disk with ν = 1× 10−4 a2

0
Ω0 and H/r = 0.05 at time t = 0

(thinner solid line) and at times when Mp = Mp(t) is equal to 0.1 MJ (short-dashed line), 0.3 MJ (long-dashed line), and 1 MJ (thicker solid
line). Right : Migration rate (da/dt) as a function of the planet mass (Mp) over the first 330 orbital periods of the simulation, during which
time the planet’s orbit is held fixed. The planet mass growth is prescribed. Migration rates are evaluated by means of Gauss perturbation
equations. The upper and lower dashed curves indicate Type I migration rates predicted by equation (17) and (18), respectively.

Fig. 24.— Left : Orbital radius evolution of a 1 MJ planet in a disk whose kinematic viscosity is ν = 1 × 10−4 a2

0
Ω0 (H/r = 0.05). The

solid line represents the model discussed in this Appendix while the dotted line with solid circles is the same as Figure 10. Note that the
two models produce very similar migration tracks (see inset), although they use grids with different outer radial boundaries, respectively
at 6.7 a0 and 2.5 a0, and although the surface density profiles at r . a are different. In both calculations, the planet’s orbit is held fixed
over the first trls (initial) orbital periods (see text for details). The dashed (straight) line has a slope about equal to −7 × 10−5 a0 Ω0.
Right : Cumulative torque at time t = trls + 600 initial orbital periods (thicker curve), in units of GMsMp/a, where a = a(t). See text for
an explanation of the thinner curve. Nearly all torque is exerted by material within a radial distance of 0.25 a from the planet’s orbit.

as a thin solid line in the left panel of Figure 23. The initial mass density, ρ, is related to Σ at t = 0 as described
in section 2.1.2. Material near the planet is removed from the disk, but its mass is not added to the planet’s mass.
Instead, for the purposes of this test, the planet mass is increased, at a prescribed rate, from Mp = 1×10−5 Ms (3 ME)
to 1× 10−3 Ms (1 MJ) over about 330 orbital periods. The orbit of the planet is held fixed (a = a0) during this period
of time.

The left panel of Figure 23 shows the azimuthally averaged surface density at times when Mp = 0.1 MJ (short-dashed
line), 0.3 MJ (long-dashed line), and 1 MJ (thick solid line). By means of Gauss perturbation equations (e.g., Beutler
2005), we measure migration rates da/dt, which result from disk’s gravitational forces (while a = a0), as a function
of time and hence of Mp = Mp(t). The right panel of Figure 23 displays these static migration rates (solid line)
compared to Type I rates (dashed curves) yielded by equation (17) and (18). The upper (lower) dashed curve refers
to the unsaturated (saturated) coorbital corotation torques in the linear theory (see section 3.2.1). As observed in the
figure (right panel), initial migration rates agree with those predicted by linear theory. The reduction of |ȧ|, which
peaks at Mp/Ms ∼ 10−4, is likely related to the onset of nonlinear effects (Masset et al. 2006).

At time trls = 340 orbital periods, the planet is released and allowed to change its orbit in response to disk’s torques.
We recall that, at this stage, the planet’s mass is constant and equal to 1 MJ. The migration track is displayed as a
solid line in Figure 24 (left panel). The planet’s orbit is integrated for about 0.5 tν at a0. The dashed (straight) line
has a slope about equal to −7 × 10−5 a0 Ω0 or −0.7 ν/a. For comparison purposes, also plotted in the left panel of
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Fig. 25.— Left : Azimuthally averaged surface density of simulations with disk kinematic viscosity ν = 5 × 10−4 a2

0
Ω0 and H/r = 0.05.

The planet mass grows from Mp ≃ 3 ME to 1 MJ, at a prescribed rate, over roughly 330 initial orbital periods. The planet’s orbit is fixed
during this time interval. Thin solid line: Initial surface density distribution (same as the thin solid line in the left panel of Fig. 23).
Thick solid line: Averaged surface density at time when Mp = 1 MJ from a three-dimensional model whose outer radial boundary is
Rmax = 6.7 a0. Dotted line with solid circles: Averaged surface density when Mp = 1 MJ from a two-dimensional model with outer radial
boundary at 13 a0. Dashed line: Case of a disk with Mp = 1 MJ and ν = 1 × 10−4 a2

0
Ω0 (same as the thick solid curve in the left

panel of Fig. 23). Right : Orbital radius evolution after release, trls = 340 initial orbits, obtained from the three-dimensional model with
Rmax = 6.7a0 (solid line) and the two-dimensional model (dotted line with solid circles). Note that the orbital evolution covers more than
1.8 local viscous timescales. The inset shows migration tracks obtained from the three-dimensional calculations over tν/2 viscous timescales
at the initial orbital radius of the planet. The solid diamonds represent data from the case with Rmax = 13 a0. The solid line represents
the same model as in the main panel.

Figure 24, as a dotted line with solid circles, are results shown in the right panel of Figure 9 (dotted line with solid
circles) and obtained with the model discussed towards the end of section 3.2.2, which has a different disk density
profile inside the planet’s orbit and a different radial coverage of the disk. Despite these differences, the two models
produce consistent and very similar migration tracks, indicating that disk regions at radii much smaller and much
larger than the planet’s orbital radius are not playing a determinant role.

The thick curve in the right panel of Figure 24 plots the cumulative torque (in units of GMsMp/a), i.e., the torque
per unit radius dT/dr integrated outward over radius, at t = trls + 600 orbits. As also noted for the 1 MJ case in
Figure 2, almost all the torque is due to material within a radial distance of 0.25 a from the orbit of the planet.
Figure 24 (left panel) indicates that the migration rate decreases over the course of the simulation. We find that this
is not caused by a changing character of the torque per unit disk mass, dT/dM , but rather by a changing (azimuthally
averaged) surface density profile around r ∼ a. We calculate dT/dM at release time and the averaged surface density
600 orbits after release. We then use equation (20) to obtain the expected cumulative torque, at time t = trls + 600
orbits, under the assumption that the intrinsic character of dT/dM remains unchanged over time. This is plotted as
a thin curve in the right panel of Figure 24, along with the actual cumulative torque (thick curve). The difference
between the two curves is less than 10%.

B.2. A Model With ν = 5 × 10−4 a2
0 Ω0

We wish to examine here whether the migration trend observed in raising the viscosity from ν ∼ 10−5 a2
0 Ω0 to

ν ∼ 10−4 a2
0 Ω0 persists at larger viscosity. As shown in the left panel of Figure 23 (solid line), when ν = 1×10−4 a2

0 Ω0

a Jupiter-mass planet is able to open only a shallow gap along its orbit (there is a drop in density of about a factor 3
relative to the value just outside the gap). This is because gap opening conditions are not satisfied (see section 3.2.2).
At larger disk viscosity we therefore expect an even shallower gap.

We perform two three-dimensional simulations with the same setup as that outlined above but with ν = 5×10−4 a2
0 Ω0

(α = 0.2 at r = a0) and outer radial boundaries at Rmax = 6.7 a0 and 13 a0, respectively. The linear base resolution
is ∆R = a0 ∆θ = a0 ∆φ = 0.014 a0 while the resolution in the coorbital region around the planet is 9 × 10−4 a0. The
viscous diffusion timescale, tν , at r = a0 is approximately 320 (initial) orbital periods whereas tν at Rmax = 6.7 a0 is
over 1.4×104 orbits (and 5.4×104 orbits at Rmax = 13 a0). We also consider a two-dimensional version of such models,
having the same grid structure and resolution in the r-φ plane, and outer grid boundary located at rmax = 13 a0 (nearly
68 AU from the central star). The planet mass grows, at a prescribed rate, from Mp ≃ 3 ME to 1 MJ over about 330
periods (which is similar to tν at the planet position), while the planet’s orbit is held fixed. The left panel of Figure 25
shows the initial surface density (thin solid line) and the azimuthally averaged density profile when Mp = 1 MJ for the
three-dimensional model with Rmax = 6.7 a0 (thick solid line) and the two-dimensional model (dotted line with solid
circles). As reference, the azimuthally averaged density for the case with viscosity ν = 1× 10−4 a2

0 Ω0 and Mp = 1 MJ

is also plotted as a dashed line (same as the thick solid curve in the left panel of Fig. 24). In the overlapping disk
region, two- and three-dimensional calculations give consistent results. No significant deviations from the initial density
distribution are observed at r ≫ a.

The viscosity condition for gap opening requires that Mp/Ms & 0.02 (see section 3.2.2), or Mp & 20 MJ, in order for
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Fig. 26.— Orbital evolution under the same disk conditions as for models in Figure 11. But, the planet’s angular speed is imposed
to be equal to the instantaneous keplerian value while the planet migrates in response to the nonaxisymmetric disk forces. Solid curves:
Simulation results for orbital migration of a planet in a disk with initial surface density equal to Σp = 9 × 10−4 Ms a−2

0
, or about

300 g cm−2 at a0 = 5.2AU (upper migration track), and Σp = 1.5 × 10−3 Ms a−2

0
, or about 500 g cm−2 (lower migration track). Dashed

curves: Predicted orbital migration according to Type I theory, equations (17) (upper curve of pair for unsaturated coorbital torques) and
(18) (lower curve of pair for saturated coorbital torques). Analogous calculations executed for density distributions and disk thicknesses
used in section 3 produce migration tracks that differ by ∼ 1%, over the entire planet mass range, from those displayed in the left panels
of Figures 6, 8, and 9.

gravitational torques to overcome viscous torques. In fact, the density distribution in the left panel of Figure 25 (thick
solid line and dotted line with solid circles) shows a form of rather shallow gap. Hence, Type II migration should not
be expected.

The planet is released from its fixed orbit at time trls = 340 (Mp = 1 MJ for t ≥ trls) and the orbit is integrated for
1.8 tν viscous timescales at r = a0. Figure 25, (right panel) displays the orbital radius evolution for the two-dimensional
(dotted line with solid circles) and three-dimensional (thick solid line) simulations. The two migration tracks in the
main panel closely follow one other. A comparison between the results obtained from the three-dimensional models,
over tν/2 at the initial orbital radius of the planet, is shown in the inset. Again, there is no indication that disk’s
evolution at r ≫ a has a significant influence on planet’s migration. As for the case discussed above, nearly all the
torque is accumulated by material within a radial band |r − a| . 0.25 a centered on the planet’s orbit.

The rate of migration after release time is approximately −8× 10−5 a0 Ω0, which is similar to that of the solid curve
in the left panel of Figure 24. This near equality is expected for Type I migration, since it is independent of the level
of disk viscosity. We use the torque per unit disk mass, dT/dM , at t = trls from the model with ν = 1 × 10−4 a2

0 Ω0

discussed above in Appendix B.1 and the averaged surface density profile in the left panel of Figure 25 (thick solid
line). By applying equation (20), we estimate the total torque expected under the assumption that dT/dM has
similar shapes in the two models. There will be some dependence of dT (r)/dM on viscosity, since viscosity affects the
resonance widths. This estimate yields a migration rate that agrees within a factor of 1.7 with the value stated above,
indicating that the intrinsic character of the torque per unit disk mass is roughly similar in these two cases.

C. CORRECTIONS FOR DISK GRAVITY

As discussed in section 4.1, there is a possible artificial torque that can act on a planet surrounded by a massive disk,
when the planet responds to the gravity of the disk but the disk self-gravity is not included (Pierens & Huré 2005).
This torque is a consequence of the disk’s axisymmetric gravitational force in changing the planet’s orbital rotation
rate, but not changing the disk’s rotation rate (since the disk is not self-gravitating). This artificial difference leads to
a shift in disk resonances that in turn leads to an artificial increase in the planet’s inward migration. It can largely be
remedied by forcing the planet to rotate at the local keplerian rate, i.e., at the same speed as the gas rotates apart from
effects of gas pressure. In this prescription, the planet responds to the nonaxisymmetric forces of the disk that result in
migration, while undergoing orbital motion at the keplerian rate. This scheme is in reasonable accord with simulations
that include the full effects of disk self-gravity (Baruteau & Masset 2008). The full effects of self-gravity cause a slightly
faster migration rate than this approximation suggests. We have carried out three-dimensional simulations with such
imposed keplerian planetary orbits for various disk mass cases discussed in sections 3 and 4. For mass distributions
and disk thicknesses, as those applied in section 3, migration tracks show negligible differences, over the entire planet
mass range. The only cases that produce changes beyond a few percent in migration rates are those in Section 4. In
Figure 26 we plot the resulting migration for the same disk models as in Figure 11. The migration rates are slower, as
found by Baruteau & Masset (2008). But, they are still in approximate agreement with the predictions of migration



24 D’Angelo & Lubow

Fig. 27.— Orbital migration of a 0.3 MJ planet in a cold and massive disk (see section 4.3 for details). The planet’s orbit is held fixed
for trls initial orbital periods. Left : Comparison between two-dimensional models with (solid lines) and without (dotted lines) accreting
boundary conditions near the fixed mass planet (trls = 100). The curves marked with solid circles represent migration tracks obtained
by excluding torques from within the planet’s Hill sphere. Right : Migration tracks from three-dimensional models with sudden release
(trls = 1), and fixed (solid and dotted lines) and variable (dashed line) mass planets. The solid and dotted curves are for an accreting and
nonaccreting planet, respectively. The long-dashed curve represents a case in which the initial planet mass (0.3 MJ) is augmented by the
mass of the gas within RH/4 of the planet.

theory.

D. ADDITIONAL TESTS ON FAST MIGRATION

Simulations of the orbital evolution of a fixed Saturn-mass planet (Mp = 0.3 MJ) in a cold (H/r = 0.03) and massive

disk (Σp = 2× 10−3 Ms a−2
0 ≈ 670 g cm−2 at the planet’s initial orbital radius) can lead to a buildup of gas within the

planet’s Hill sphere, which is eventually halted when a sufficiently large pressure gradient is established. The mass of
material that accumulates around the planet can exceed the planet’s mass, with possible effects on migration rates.
In order to prevent the accumulation of gas within the Hill sphere, in the models presented in section 4.3, we applied
accreting boundary conditions near the planet, without adding the gas mass to the planet mass. In this Appendix
we wish to reconsider the nonaccreting configuration (as in MP03 and DBL05). The nonaccreting approach may be
considered to be crudely simulating a case where some process prevents the planet from gaining further mass.

In the left panel of Figure 27, migration tracks from a two-dimensional model with an accreting planet (solid curves)
are compared to those obtained from a two-dimensional model with a nonaccreting planet (dotted curves). The gas
masses within the Hill spheres are drastically different: ∼ 0.07 Mp and ∼ 1.6 Mp in the accreting and nonaccreting
planet cases, respectively. In the nonaccreting case, the mass of the gas (∼ 1 Mp) within the bound region (see Fig. 29,
right panel) should be added to the inertial mass of the planet, thereby slowing migration (Papaloizou et al. 2007).
This effect is indeed seen at early times (less than 10 orbits after release). The migration of the nonaccreting planet
with bound gas (dotted curve) is slowed by about a factor of 2 relative to the accreting case (solid curve). At later
times, the migration rates are closer, although it is not clear why. The reason may be related to our determination
that the mass of “bound” gas decreases at later times in the nonaccreting case (see also right panel of Fig. 29).

The left panel of Figure 27 also plots the orbital evolution when torques from within the Hill sphere are not taken
into account (solid and dotted curves with solid circles). The similarity of these migration tracks to the other plotted
in the figure indicates that torques from gas in this region do not dominate the migration rates in this particular case.

In the nonaccreting case, dense gas that accumulates around the planet could be thought of as forming an envelope,
once it becomes bound to the planet. A massive envelope would then participate in both the gravitational and
inertial mass of the planet. We set up a three-dimensional model, with the same disk properties mentioned above (see
section 4.3.1 for details), and planet mass Mp = Mc + Me, where Mc = 0.3 MJ is a “core” mass and Me = Me(t)
is the mass of the gas within RH/4 of the planet. Given the large initial mass in the coorbital region (∼ 2 MJ), the
planet rapidly gains mass, growing beyond 1 MJ in less than 25 initial orbits. The planet is released in a smooth disk
after a few orbits. The orbital radius evolution is shown as a dashed line in the right panel of Figure 27, together with
those from three-dimensional models with a fixed mass planet and accreting (solid line) and nonaccreting (dotted line)
boundary conditions near the planet. The initial migration rates are similar in all three configurations but migration
starts to rapidly slow down when the planet mass, in dashed-line case, grows beyond Mp ≈ 0.8 MJ. This behavior
resembles that seen in Figure 13 (dotted line with solid circles).

Figure 28 displays numerical convergence tests for the accreting (left) and nonaccreting (right) planet models pre-
sented in the left panel of Figure 27. The two simulations in the left panel have coarsest (linear) resolutions in the
coorbital region that differ by a factor of 4, in both radial and azimuthal directions. Calculations in the right panel
have resolutions in the coorbital region around the planet that differ by a factor of 2 in each direction.
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Fig. 28.— Numerical convergence tests for two-dimensional models with and without accreting boundary conditions near the planet (see
Fig. 27). The planet’s orbit remains fixed for trls = 100 initial orbital periods. Left : Comparison between simulations with an accreting
planet and coarsest grid resolution in the coorbital region ∆r = a0 ∆φ = 0.014 a0 (dashed curve) and 3.5 × 10−3 (solid curve). Right :
Comparison between models with a nonaccreting planet and a linear resolution in the coorbital region around the planet of 0.02 RH (dotted
curve) and 0.01 RH (dashed curve).

Fig. 29.— Tracer particles deployed within about 2 RH of a 0.3 MJ planet orbiting in the cold disk model (H/r = 0.03) discussed in
this Appendix and in section 4.3. The plot shows the distance, in units of RH, from an accreting (left) and nonaccreting (right) planet.
Distances of trajectories that return to the disk are indicated as thin lines, otherwise they are indicated as a thick lines.

D.1. Gas Bound to the Planet

In the calculations with an accreting planet, torque contributions from within RH/2 of the planet are ignored. By
following fluid paths, here we show that most of this material is captured and eventually accreted by the planet.

In a nonstationary flow, streamlines can be used as a proxy for fluid trajectories only over short distances and periods
of time. Therefore, we track trajectories of fluid parcels by deploying tracer (massless) particles in the flow and then
following their motion. This procedure allows us to obtain a reliable determination of fluid paths regardless of whether
the flow is close or far from steady state.

The equations of motion of each particle are integrated every hydro-dynamical time-step by interpolating the velocity
field at the particle’s location and by advancing its position in time via a second-order Runge-Kutta method. Both
spatial and temporal interpolations are performed by using the velocity field with the highest resolution available, i.e.,
that belonging to the most refined grid level in which the particle resides. The spatial interpolation is based on a
monotonized harmonic mean (van Leer 1977), which is second-order accurate and capable of handling discontinuities
and shock conditions. Hence, trajectories are formally second-order accurate in both space and time.

Here we employ tracer particles to estimate the size to the region occupied by gas bound to nonmigrating planets.
Tracers are deployed in the disk within about 2 RH of a Saturn-mass planet (Mp=0.3 MJ). We use both models with
and without accreting boundary conditions near the planet discussed in this Appendix (Fig.27, left panel) and in
section 4.3. Figure 29 shows the distance from the planet, S, of particles as a function of time. Tracers are deployed at
a time td, when the mass within the Hill sphere has reached a nearly steady value. The distance along the trajectories
is normalized to the Hill radius, RH. The left panel refers to the accreting planet case, whereas the right panel refers
to the nonaccreting planet case. Thin curves mark distances of trajectories that are not captured and thus return



26 D’Angelo & Lubow

to the disk. Thick curves mark distances of trajectories that are captured in the planet’s gravitational potential (left
panel) or otherwise remain within RH/2 of the planet, over the simulated evolution (right panel). In the accreting case,
bound trajectories rapidly decay towards the planet and it is therefore possible to make a clear distinction between
bound and unbound trajectories. In the nonaccreting case, the distinction is less clear and may apply only over a
given amount of time.
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