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ABSTRACT

We analyze the gas accretion flow through a planet-produced gap in a protoplanetary disk. We adopt the
alpha disk model and ignore effects of planetary migration. We develop a semi-analytic, one-dimensional
model that accounts for the effects of the planet as a mass sink and also carry out two-dimensional
hydrodynamical simulations of a planet embedded in a disk. The predictions of the mass flow rate through
the gap based on the semi-analytic model generally agree with the hydrodynamical simulations at the 25%
level. Through these models, we are able to explore steady state disk structures and over large spatial
ranges. The presence of an accreting ∼ 1MJ planet significantly lowers the density of the disk within a
region of several times the planet’s orbital radius. The mass flow rate across the gap (and onto the central
star) is typically 10% to 25% of the mass accretion rate outside the orbit of the planet, for planet-to-star
mass ratios that range from 5 × 10−5 to 1 × 10−3.

Subject headings: accretion, accretion discs — hydrodynamics — planets and satellites: general

1. Introduction

The presence of a ∼ 1MJ planet influences the structure of a
circumstellar disk. The most obvious effect is the opening of a
tidally produced gap (Lin & Papaloizou 1993). Recent stud-
ies of young stars such as CoKu Tau/4 (D’Alessio et al. 2005),
TW Hya (Calvet et al. 2002), KH 15D (Herbst et al. 2002),
HR 4796A (Schneider 1999), and HD 141569A (Clampin et
al. 2003) suggest the presence of inner holes in circumstellar
disks. One possible mechanism for producing such a hole is
the tidal barrier created by a planet. A planet’s tidal forces
can, in principle, prevent material from accreting across the
orbit of the planet. The unreplenished material interior to the
planet’s orbit accretes onto the central star, thereby produc-
ing a hole. However, alternative explanations for apparent
holes have been offered for some cases, such as dust segrega-
tion (Takeuchi & Artymowicz 2001).

This paper deals with the determination of the extent to
which the disk material exterior to a planet’s orbit can re-
plenish the interior material. A planet of ∼ 1MJ opens a
gap in a disk having typical parameters. But the gap is not
clean and is accompanied by accretion onto the planet and
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accretion flow across the gap (Artymowicz & Lubow 1996;
Bryden et al. 1999; Kley 1999; Lubow, Seibert, & Artymow-
icz 1999). Several other past studies of planet-disk interac-
tions have concentrated on analyzing torques and accretion
flows onto planets. They also have sometimes reported find-
ing mass flow through gaps (e.g., Winters, Balbus, & Hawley
2003), while other studies have reported little inflow (e.g.,
Bate et al. 2003).

The extent of the flow through the gap depends on the
planet mass and disk properties. In the study of a 1MJ planet
that orbits a 1M� star by Lubow, Seibert, & Artymowicz
(1999), very little mass was found to accrete interior to the
planet’s orbit, not surprisingly, with nonaccreting boundary
conditions at the inner boundary located at 0.3 times the
orbital radius of the planet. On the other hand, if the interior
disk was initially strongly depleted of material, then there was
a substantial accretion flow that built up the interior disk. In
this configuration, the accretion rate into the interior disk is
comparable to the rate onto the planet. A similar density
profile was considered recently by Quillen et al. (2004) to
model CoKu Tau/4. Consequently, the accretion rate onto
the central star depends on the density distribution and the
inner boundary conditions.

Even low mass planets which do not open gaps can affect
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the global structure of a circumstellar disk. The previous
studies of flow across a gap are largely based on multidimen-
sional hydrodynamical simulations. They are limited by their
dynamic range in space, which typically involve a region that
ranges from 0.4 to 6 times the orbit radius of the planet.
A smaller inner boundary increases the computational over-
head, due the need to take shorter timesteps because of the
higher rotational velocity. Simulations are limited in time to
at most a few thousand orbits of the planet, which is less than
the viscous evolution timescale of a typical protostellar disk.
To overcome these limitations and provide some physical in-
sight, we develop in Section 2 a semi-analytic model for the
steady state flow across the gap. This model depends on a
key parameter, the accretion efficiency, which we determine
by two-dimensional simulations described in Section 3. The
semi-analytic model predicts the rate of accretion past the
planet and the steady state density profile. The predictions
are compared with results of numerical simulations. Section 4
contains the conclusions.

2. Semi-analytic Model

We develop a one-dimensional, semi-analytic model for a cir-
cumstellar disk containing a planet. We assume that the
planet lies on a fixed circular orbit and neglect effects of mi-
gration. In this model, we separate the gap region from the
main disk region. We assume that the tidal torques on the
disk exerted by the planet are confined to the gap region.
In reality, waves generated by the planet propagate into the
main disk and exert additional torques, which we ignore. But,
shocks and other processes limit the extent of wave propaga-
tion (Bate et al. 2002).

We adopt the alpha disk model for the disk turbulence
throughout. If the disk turbulence is due to magnetic fields,
then the presence of a planet can affect the nature of the
turbulence (Nelson & Papaloizou 2003; Winters, Balbus, &
Hawley 2003). We do not account for such effects.

We model the effect of the planet on the main disk as
a mass sink that lies on the planet’s orbit. The mass sink
description utilizes the accretion efficiency parameter

E =
Ṁp

3πνpΣp
, (1)

where Ṁp is the accretion rate onto the planet and νp is the
turbulent kinematic viscosity. Density Σp is the disk density
at the location of the planet, based on a smooth continuation
(interpolation) of the density profile outside the gap to the
location of the planet (Lubow, Seibert, & Artymowicz 1999).
For a narrow gap, this density is the density just outside the
gap. The denominator is recognized as the standard from for
the steady state rate of accretion through a viscous disk, far
from the disk inner boundary (Lynden-Bell & Pringle 1974).
Since the accretion rates scale with ν, we expect and find
that E is fairly independent of ν (and Σp) for fixed H/r, as
is consistent with the results of Kley (1999). The efficiency
depends mainly on the planet mass Mp. One worrisome result
of the numerical simulations is that E is found to be greater

than unity. One might think that this suggests the planet
is accreting more mass than the disk can supply in a steady
state. We show later that steady state accretion flows can
and usually do have E greater than unity.

The density structure of a circumstellar accretion disk
evolves in time from some initial state. The initial disk state
of a protostellar disk is not known. Disks tend to evolve
towards a steady state in which the accretion rate is indepen-
dent of radius (Lynden-Bell & Pringle 1974; Pringle 1981).
The disk evolutionary timescale in the vicinity of planets
that lie within a 10 AU of the central star is shorter than
the global evolutionary timescale for a 100 AU disk, and so a
steady state will be even more likely achieved on these smaller
scales. Consequently, we seek steady state solutions for the
disk structure.

2.1. One-Dimensional Equations

With the above model, the one-dimensional equations of mass
conservation and azimuthal force balance for a disk with ra-
dial velocity u, angular velocity Ω, and surface density Σ in
a steady state (∂Σ/∂t = 0, ∂u/∂t = 0, ∂v/∂t = 0) Keplerian
disk are

1

r

d (rΣu)

dr
= −3 ν Σ E

2r
δ(r − rp) (2)

and

r2ΩΣu = −d (3 µ Ω r2)

dr
+ 2rΣΛ(r), (3)

where µ = νΣ with kinematic turbulent viscosity ν, and δ is
the Dirac delta function. Λ(r) is the torque density per unit
mass produced by the tidal field of the planet

Λ(r) = Sign(r − rp)
fq2GM∗

2r

(

r

∆p

)4

(4)

where f is a constant of order unity and ∆p is the maximum
of H and |r − rp|. These equations are identical to those in
Lin & Papaloizou (1986), except that we have added to sink
term in the equation of continuity (2).

The determination of the accretion efficiency E in equa-
tion (2) requires a model for the capture of gas by the planet.
We shall rely on two-dimensional simulations to determine
its value. We use the one-dimensional model to provide ini-
tial conditions for the two-dimensional simulations. To com-
pose the one-dimensional model, we divide space into two re-
gions: the gap region and the main disk (nongap) region. We
combine the solutions in the two regions of space to obtain
approximate steady state global solutions. In the process,
we self-consistently determine the accretion efficiency, which
links the solutions in these two regions.

2.2. Gap Region

From previous two and three-dimensional studies discussed in
the Introduction, we know that the gap region is complicated
by the presence of nonKeplerian flow and shocks. We do
not expect that a one-dimensional model would work well in
describing the detailed gas flow there. But, we estimate the
density structure Σg in the gap region by assuming d/dr �
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1/r (WKB approximation) and 1/∆p � 1/r in equation (3)
to obtain

Σg(r) = Σp exp

[

−f

9

q2r2
pΩp

νp

(

rp

∆p

)3
]

, (5)

where Σp is the density that would occur at r = rp in the ab-
sence of a gap, as defined in equation (1). We generally take
constant f equal to 2. We have used initial density profiles like
this in our previous work because they provide good initial
conditions for planet-disk simulations. They undergo moder-
ate changes and appear to reach a dynamically steady state
in the gap after a few hundred planetary orbits. The achieve-
ment of a dynamically steady state is expedited through the
development of shocks.

On longer, viscous timescales, the gap region could un-
dergo further structural changes. They arise in part because
of the interaction of the gap region with the main disk region.
The coupling between these two regions occurs through the
accretion efficiency parameter E , which is determined in the
gap region by the outcome of the simulations. For a consistent
solution, we require that the value of the accretion efficiency
parameter match in the two regions, as described in the next
subsection.

2.3. Main Disk Region

Outside the gap region, we ignore the presence of waves which
we assume damp most of their energy near the planet and
neglect the planetary torque Λ. The planetary accretion af-
fects the large scale accretion flow as a mass sink. We expect
that main disk region is described well by the one-dimensional
model.

From equation (2), we have that

Ṁi = −2πruiΣi (6)

Ṁe = −2πrueΣe (7)

Ṁe = Ṁi + 3πνpΣpE , (8)

where Ṁi and Ṁe denote the mass accretion rate respectively
interior and exterior to the orbit of the planet, and νp and Σp

are as used in equation (1).

We solve equation (3) subject to the zero-stress boundary
condition at the inner edge to account for the effects of a
boundary layer, where the disk meets the central star, as
described by Lynden-Bell & Pringle (1974). To model this
effect, one typically applies a zero density boundary condition
at the inner edge (e.g., Pringle, Verbunt & Wade 1986), so
that µ(r∗) = 0, where r∗ is the location of the stellar radius.
The solution is given by

3πµi(x) = Ṁi

(

1 − x

x∗

)

(9)

and

3πµe(x) = Ṁo +
C

x
, (10)

where x =
√

r, µp = µ(xp), and µi (µe) is the value of µ inte-
rior (exterior) to the orbit of the planet, and C is a constant
of integration.

For a narrow gap, it follows that

µi(xp) = µe(xp), (11)

since µi(xp) and µe(xp) are nearly equal to the µ-values on
both sides of the planet just outside the gap. We combine
equations (8), (9), and (10) to obtain

µi(x) = µp
xp(x − x∗)

x(xp − x∗)
(12)

and

µe(x) = µp

[

1 +
(

1 − xp

x

)

(

E +
x∗

xp − x∗

)]

, (13)

where µp is the value of µ smoothly extended from the main
disk to the planet, excluding the gap, µp = µi(xp) = µe(xp).

Notice that for E = 0 (no planet) and x∗ = 0, the solution
implies that µ(x) is constant, which is equivalent to the con-
dition that Ṁ = 3πνΣ is independent of r in a steady state,
as discussed above.

Far outside the orbit of the planet at some xo � xp, the
disk is hardly aware of the planet. We have from equations (3)
and (13) that

Ṁe = 3πµo = 3πµp

(

E +
xp

xp − x∗

)

. (14)

Exterior accretion rate Ṁe is independent of x for all x >
xp. The accretion rate onto the planet is given by

Ṁp = 3πµpE , (15)

and the accretion rate interior to the planet’s orbit (and onto
the star) is then

Ṁi = Ṁe − Ṁp =
3π µp xp

xp − x∗

, (16)

which is constant for x < xp.

The mass flow rate ratio of accretion past the planet to
accretion onto the planet is then

Ṁi

Ṁp

=
1

(1 −
√

r∗/rp)E
. (17)

The ratio of the accretion rate interior to the orbit of the
planet to the rate exterior is given by

Ṁi

Ṁe

=
1

1 + (1 −
√

r∗/rp)E
. (18)

Ratios (17) and (18) are independent of µp.

The star and planet compete for accretion flow. The above
accretion rate ratios indicate that the closer the stellar sur-
face comes to the planet, the more the star accretes and the
less the planet accretes. This prediction is confirmed in the
numerical simulations discussed later (model b versus model
g). This result is a consequence of the influence of the star
in diverting flow from the planet. For a given kinematic vis-
cosity ν(r) and accretion efficiency E , we can determine the
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disk density profile outside the gap Σ(r) = µ(r)/ν(r) from
equations (12) and (13). The accretion efficiency depends on
the flow details within the gap, which we determine in Sec-
tion 3 based on two-dimensional hydrodynamical simulations.
Equation (17) determines the ratio of the accretion rate onto
the central star to the accretion rate onto the planet. This ra-
tio can be compared against results of numerical simulations.

For high mass planets (typically several Jupiter masses),
the analytic model breaks down because gravitational torques
cannot be ignored in the main disk (outside the gap). This
breakdown can be seen in equation (18). For a high planet
mass, the gap is very clean and the accretion efficiency E is
very small. In the limit of a (nonmigrating) high planet mass,
the disk will evolve towards a decretion disk, rather than an
accretion disk (Pringle 1981). A decretion disk has a very
different description than the accretion disk description used
here. In the high planet mass limit, equation (18) predicts
that mass accretes uninhibitedly past the planet, which is in-
correct. Instead, equation (18) applies to systems containing
lower mass planets. In that case, E is small when the planet
mass is small and equation (18) provides a proper description.

Notice that there is no problem with having E greater than
unity in a steady state. The accretion rate of material outside
the orbit of the planet, Ṁe, is greater than 3πµp. The dy-
namic viscosity µp and typically the surface density near the
planet (and outside the gap) are reduced due to the presence
of the planet, in accordance with equation (14).

3. Numerical Hydrodynamical Simulations

3.1. Description of Code

We carried out a series of numerical disk simulations in two
dimensions using the code described in D’Angelo, Henning,
& Kley (2002); D’Angelo, Kley, & Henning (2003). The code
calculates the time-evolution Navier-Stokes equations for a
gaseous disk that or bits a central star. The disk is subject to
gravitational forces from a planet that lies on a fixed circular
orbit. The code allows for high resolution near the planet
by using set of nested grids. We adopt a locally isother-
mal equation of state with sound speed equal to the disk
aspect ratio, H/r, times the local Keplerian velocity. We
used a constant disk aspect ratio H/r = 0.05 throughout,
implying that the temperature distribution scales as the in-
verse of the distance from the disk axis. Unless otherwise
stated, the kinematic viscosity at the radius of the planet
is νp = 10−5r2

pΩp, which is equivalent to Shakura & Sun-
yaev parameter α = 4 × 10−3 at the location of the planet.
We consider a range of planet masses, having a mass ratio
with the central star of q = 5 × 10−5 to 2 × 10−3. Be-
low about q = 4 × 10−4 with a 1M� star, the size of the
planet’s Hill sphere is smaller than the disk thickness and
three-dimensional effects can be important (Bate et al. 2003).
Due to computational resource limitations, the simulations
were carried out in two dimensions. In low end of the planet
mass range we consider, numerical estimates of the accre-
tion rate in two and three dimensions differ by only 30%
(D’Angelo, Kley, & Henning 2003). So we do not expect that

three-dimensional effects will substantially alter our conclu-
sions.

The grid size used for these calculations consisted of a
three-level nested-grid system with the basic level having
374 × 422 grid zones in the radial and azimuthal direction,
respectively. The first and the second subgrid level had
113× 103 and 133× 123 grid zones, respectively. The highest
resolution achieved in the gap region around the planet was
∆r = 3.7×10−3rp. The resolution in the azimuthal direction
was equal to ∆r/rp.

The origin of the coordinate system is located on the star
and the reference frame rotates about the disk axis at a rate
equal to the angular velocity of the planet. The acceleration of
the coordinate system origin relative to center-of-mass of the
star-planet system is accounted for in the gravitational po-
tential of the disk. As discussed in Section 3.3, we performed
a convergence test on one of our models which indicates that
this resolution is adequate. Self-gravity of the disk material
is ignored.

The smoothing length of the planet potential was chosen
to be 0.1 times the planet’s Hill radius. Two and three-
dimensional models with that smoothing length yield similar
accretion rates around a Jupiter mass planet (D’Angelo, Kley,
& Henning 2003). Some recent models show that variations
of this smoothing by a factor of about 1.4 affects the accretion
rate by about 1%.

Accretion boundary conditions were generally applied to
the planet. Such boundary conditions are currently thought
to be appropriate to the range of planet masses considered in
this paper because such planets are believed to undergo run-
away gas accretion (e.g., Pollack et al. 1996). The accretion
was simulated by removing mass within a radius of 0.2 Hill
radii from the planet. We fix a removal time-scale, which is
on the order of 0.1 orbital periods. Tests on how the accretion
rate depends on these two parameters are given in D’Angelo,
Henning, & Kley (2002). The tests show that the accretion
rate does not depend sensitively on the details of the mass re-
moval parameter values, provided the removal prevents mass
build-up near the planet. The formulation of planetary mass
accretion in Lubow, Seibert, & Artymowicz (1999) and Bate
et al. (2003) is completely different from that adopted here.
Nonetheless, they obtain accretion rates that are very simi-
lar to those obtained by (D’Angelo, Henning, & Kley 2002;
D’Angelo, Kley, & Henning 2003). Consequently, the evi-
dence all suggests that the accretion rate is the rate that a
planet would accrete under runaway accretion conditions. It
is not an artifact of the mass removal process.

The inner boundary was usually set at 0.4rp, while the
outer boundary was located at 6rp. At the inner boundary,
outflow boundary conditions were applied. This means that
if ur < 0 at the first active zone, this value is transferred
to the zones off the active grid (ghost zones). If ur > 0 at
the first active zone, then ur of the ghost cells is set to zero.
At the outer boundary, inflow and outflow of material are
permitted. The outflow is implemented as in Godon (1996,
1997). During the course of the simulation, the values of all
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physical variables are free to change at the inner and outer
boundaries. They are not fixed by the initial analytic model.

3.2. Density Determination

For a fixed choice of ν(r) and an initial guess of accretion ef-
ficiency E , we determine the initial density profile from equa-
tions (12) and (13) with a superimposed gap profile (5). This
profile is given by

Σ(r) =
µ(r)Σg(r)

ν(r)Σp
, (19)

where µ(r) refers to µi for r < rp and µe for r > rp.

We generally set r∗ according to the location of the inner
boundary. The initial gap profile is determined by an ap-
proximate balance of viscous torques with tidal torques, as
described in Section 2.2. The value of E in the simulations
is determined by the accretion rate onto the planet through
equation (15). We run the simulation for typically 700-800
orbits at which point a nearly time-independent value of E
is determined (see Figure 1). However, this value in general
disagrees with the value assumed in constructing the den-
sity profile. We then guess another value of E , construct the
corresponding density profile, and rerun the simulation. We
continue iterating until the assumed value of E used for the
density profile matches the measured value from equation (15)
to within 10%. This process typically requires 3 or 4 itera-
tions.

Although we find a nearly stationary value of E (Figure 1),
the determination of a strict steady state profile in the gap
from arbitrary initial conditions would require running the
code beyond a local viscous timescale of order 104 orbits,
much longer than 700 orbits. However, the gap structure
is also determined by nonlinear effects (shocks) that act on
shorter timescales and are likely responsible for the near-
stationarity of E . Furthermore, from Figure 1 we see that
E converges in time to the same value, independent of initial
conditions. This gives us confidence that the value of E we de-
termine from simulations is the steady state value. Nonethe-
less, we cannot prove that the value of E that we determine
is rigorously the steady state value without integrating over
longer timescales.

3.3. Description of Results

The results of the simulations are contained in Table 1.
The default parameters consist of a kinematic viscosity ν =
10−5r2

pΩp which is taken to be independent of radius, to-
gether with the other parameters described in Section 3.1.
The first column in Table 1 contains the model label. The
second column contains the planet mass ratio. The third
column contains the variant, if any, on the default parame-
ters. The fourth and fifth columns contain respectively the
accretion efficiency E applied to the final iteration and the
accretion efficiency E obtained from the final simulation. As
discussed in Section 3.2, for each model we iterated on E un-
til the applied and simulated E agreed to within 10%. The
sixth column contains the ratio of the accretion rate past the

planet (and onto the central star) to the accretion rate onto
the planet as obtained from the simulation. The seventh col-
umn contains the same quantity as the sixth, but obtained
from equation (17) of the semi-analytic model. The eighth
column contains a correction, described in Section 3.6, that
is applied to the values in the seventh column, in order to
account for the location of the inner boundary.

Model b is the default q = 1×10−3 model. The next seven
models are variants of model b having a different initial den-
sity profiles (models c and d), twice the kinematic viscosity
(model e), a viscosity that increases as r1/2 with the same
H/r = 0.05 (model f), a smaller inner boundary (model g), a
lower temperature H/r = 0.03 disk (model h), and a planet
that does not accrete gas (model i).

A convergence test was performed on model b by using
a degraded resolution throughout the computational domain.
The resolution was reduced by 25%, in each direction, relative
to that presented in Section 3.1. Both in terms of accretion
efficiency and accretion rate past the planet, the outcomes
agree within 2% with those in the Table.

Fig. 1.— Plot of the averaged accretion efficiency 〈E〉, aver-
aged over the previous 10 planet orbits, versus time in planet
orbit periods for a disk containing a q = 1 × 10−3 planet.
The models in the three cases have different initial density
distributions in the gap region. The curves from lowest to
highest correspond to models b, c, and d of Table 1, which
have values of f = 2, 1, and 0.5, respectively for the initial
gap density distribution of equation (5).
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Table 1: Results from simulations (see Section 3.3)

Model q variant Applied Simulated Simulated Predicted Corrected

E E Ṁi/Ṁp Ṁi/Ṁp Ṁi/Ṁp

a 2 × 10−3 3 2.9 0.52 0.91
b 1 × 10−3 8 8.3 0.38 0.34 0.13
c 1 × 10−3 f = 1 8 8.3 0.38 0.34 0.13
d 1 × 10−3 f = 0.5 8 8.4 0.39 0.34 0.13
e 1 × 10−3 2 × ν 8 8.8 0.35 0.34 0.13

f 1 × 10−3 ν ∝ r1/2 8 8.2 0.40 0.34 0.13
g 1 × 10−3 ri = 0.22rp 9 9.4 0.14 0.11 0.11
h 1 × 10−3 H/r = 0.03 6 6.3 0.29 0.46

i 1 × 10−3 Ṁp = 0 0 0
j 5 × 10−4 12 12.4 0.35 0.23 0.08
k 1 × 10−4 7 7.3 0.50 0.39 0.14
l 5 × 10−5 3 3.2 1.10 0.91 0.33

3.4. Accretion Efficiency

As can be seen from the Table, the accretion efficiency is
largely a function of planet mass and is insensitive to the ini-
tial density profile (models c and d). It is also insensitive to
the viscosity and its variation in r, and inner boundary loca-
tion which are varied in models e through g, relative to model
b. The efficiency varies from a low value of 3 for the highest
and lowest mass planets considered, to a high value of 12 at
an intermediate mass. This behavior is easily understood. At
the high mass end, q = 2 × 10−3 (model a), the tidal field of
the planet is so strong that material is inhibited from accret-
ing onto the planet, resulting in a lower E value relative to
model b of q = 1 × 10−3.

However, the accretion across the gap is somewhat less
effected, since Ṁi/Ṁp is larger for q = 2 × 10−3 than for
1 × 10−3. While at the low mass end (model l), the planet’s
gravitational field has less ability to attract and accrete mat-
ter. For comparison, the Jupiter-mass models (q = 1× 10−3)
in D’Angelo, Kley, & Henning (2003) and Bate et al. (2003)
have an efficiency of about 4. As discussed in the Introduc-
tion, a planet’s accretion rate is influenced by the density
structure outside the gap (r > rp), which in the present
steady state case is different from that used in the above
papers.

3.5. Accretion Past Planet

The last three columns in Table 1 describe the rate at which
material flows past the orbit of the planet as a fraction of
the accretion rate onto the planet. The values predicted by
equation (17) generally agree with the values obtained by the
simulations at the 25% level.

We believe model a (q = 2 × 10−3) is in the high mass
regime where the semi-analytic model breaks down because

gravitational torques in the main disk cannot be ignored, as
discussed in Section 2.3 for decretion disks. The disk in this
case is not a true decretion disk because there is some ac-
cretion through the gap. However, the accretion efficiency is
markedly lower than that in model b which has q = 1×10−3.
We regard model a as a transitional disk between accretion
and decretion. We believe this explains the discrepancy be-
tween the simulated and predicted accretion ratios.

For model b (q = 1 × 10−3) the simulated and predicted
accretion rate ratios are in very good agreement, suggesting
that the disk with such a planet behaves as an accretion disk.
Agreement is also very good for model e in which the disk vis-
cosity has been doubled and model f, in which the ν increases
with radius.

Model g has a smaller inner boundary located at 0.22rp,
instead of the default 0.4rp, and used an initial density profile
that has r∗ = 0. It attempts to provide more realistic coverage
of the interior disk, but its computational domain does not
cover the assumed profile extent, as do all the other models
(which have r∗ = 0.4rp). Both the simulated and predicted
flow rates indicate that the flow rate past the planet decreases
significantly for a smaller inner boundary radius.

Model h has a colder disk and consequently the tidal effects
of the planet on the disk which open the gap are relatively
stronger than pressure and viscosity. This case is intermediate
between models a and b, with accretion efficiency lower than
for model b. The simulated and predicted mass flow ratios
in columns 6 and 7 do not agree well, probably for similar
reasons given for model a. The flow onto the planet and
across the gap are both reduced by about 25% relative to
model b.

Model i has nonaccreting boundary conditions onto a
planet having q = 1×10−3. Consequently, we have applied an
initial model having E = 0 to the simulation. The accretion
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rate obtained from the simulation agrees with the predicated
steady state accretion rate, equation (16), to within 5%. The
accretion rate onto the star should be unaffected by the pres-
ence of the planet.

The agreement on flow rates for model j is the least sat-
isfactory of all models having H/r = 0.05 and q ≤ 1 × 10−3.
It is not clear why this is the case. It may have to do with
the high accretion efficiency, which is also observed in three-
dimensional calculations (D’Angelo, Kley, & Henning 2003).
Fairly good agreement (∼ 20%) between the simulated and
predicted accretion rates is found for the lowest mass models
k and l.

3.6. Correction Due To Inner Boundary

For planets whose orbital radii are of order AU, the inner
boundary radius is relatively small, r∗ . 0.01rp. It is difficult
to directly simulate a disk with a small inner boundary, due
to the shortness of timesteps required. We estimate a cor-
rection factor for the boundary location to be applied to the
accretion rates. We saw in the previous subsection that the
accretion efficiency E depends mainly on planet mass and is
insensitive to the inner boundary location. Using the default
inner boundary location of 0.4rp and applying equation (17),
we suggest that a correction factor to the flow rate ratio for a
small radius inner boundary is about 1 −

√
0.4 ≈ 0.37. This

factor is applied to the predicted accretion rate ratios (except
for models a and h for which the analytic model does not ap-
ply, model i which does not allow accretion onto the planet,
and model g which already has r∗ = 0). The result is in the
eighth column of Table 1.

The ratio of accretion rate onto the star to the rate onto
the planet varies with mass ratio. The ratio is about 13% for
a q = 1 × 10−3 planet and 33% for a q = 5 × 10−5 planet.
From equation (18) with r∗ = 0, the ratio of the accretion
rate onto the star to the accretion rate outside the orbit of
the planet is 11% for a q = 1 × 10−3 planet and 25% for a
q = 5 × 10−5 planet.

3.7. Density Profiles

We examine the effect of a planet on the density distribution
of a steady state viscous disk. Figure 2 shows the assumed
density profile and evolved density profile for several models
which are converged in E . For all the cases, the code uses
the same boundary conditions, as discussed in Section 3.1.
There are some differences in the profiles as a consequence
of evolution, including some narrowing of the gap. Overall,
however, the agreement between the analytic (initial) profile
and the evolved one is very good.

Global density profiles with a more realistic inner bound-
ary location (r∗ = 0) were constructed for a q = 1 × 10−3

planet using E = 8 (see Table 1). A global analytic density
distribution is obtained from equation (19) for some assumed
viscosity function ν(r). In addition, density profiles for cor-
responding disks without a planet were also determined. The
results are shown in Figure 3. These density distributions do
not contain the evolutionary effects that in principle could

be determined by numerical simulations. But as can be seen
from Figure 2, these effects are modest, at least over 700-800
orbits. Furthermore, it would be impossible to carry out nu-
merical simulations with a realistically small inner boundary
due to the shortness of timesteps required. The cases without
planets correspond to steady disks that have the same viscos-
ity distribution at all r and the same density distribution at
r � rp as the corresponding cases with planets. (For the
left plot in Figure 3, the density match occurs at distances
larger than shown). If an accreting planet were placed in a
disk having the non-planet density distribution, indicated by
dashed curves in Figure 3, then over time it would evolve to-
wards the density distributions, indicated by the solid curves
in Figure 3.

The accreting planet effects the disk density distribution
over several rp. For r � rp, the fractional density difference
between the nonplanet and planet cases varies slowly as ∼
√

rp/r. Consequently, the planet’s effects on the disk extend
over several times rp. Also plotted are the cases with an
inner boundary of r∗ = 0.4rp, as was generally adopted in
the numerical simulations. Notice that such cases agree well
with the r∗ = 0 cases for r > rp, but poorly represent the
density at small r.

4. Discussion and Summary

We have investigated two-dimensional steady state configura-
tions of a protostellar disk containing a planet that undergoes
mass accretion, using both an analytic model and numerical
simulations. The planet is assumed to be of fixed mass and
on a fixed circular orbit. Planet migration and mass gain can
be neglected at late stages of evolution where the disk mass
is less than the planet mass. The results also suggest the
outcome for the more general case involving mass gain and
migration.

We speculate on the nonsteady effects of planet mass gain
and migration. The mass doubling timescale for Jupiter un-
dergoing runaway gas accretion from the minimum mass so-
lar nebula is of order the local viscous timescale in our model
(∼ 105 years). Consequently, the nonsteady effects of planet
mass gain are of possible importance in that case. Consider
the case of an initially steady accretion disk in which a planet
of mass ratio q . 1 × 10−3 grows and increases its mass on a
timescale shorter than the viscous timescale. We expect that
the accretion rate onto the central star corresponds to the
steady state rate at an earlier time when the planet mass was
lower. Therefore, we expect that the accretion rate onto the
star to be at least ∼10% of the accretion flow rate outside the
planet’s orbit in this mass range.

For an inwardly migrating planet, the available time to
produce an inner hole is limited by the planet’s migration
timescale. Furthermore, a planet that moves with the accre-
tion flow (Type II migration) would not be expected to have
much effect on the accretion rate onto the central star. Cur-
rent migration models in the planet mass range considered
here (0.05 to 1 MJ ), suggest that migration occurs on about
the local viscous timescale (e.g., Bate et al. 2003). We then
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Fig. 2.— Plots of azimuthally-averaged density in units of Σp versus radius in units of rp for the unevolved (dashed) and
evolved (solid) models b (top-left), g (top-right), f (bottom-left), and l (bottom-right) in Table 1.

expect that an inwardly migrating planet at some orbit ra-
dius would have a more substantial interior disk and higher
accretion rate onto the star than a planet on a fixed orbit at
the same radius. Both the effects of planet mass gain and
migration appear to lead to less depleted inner disks than the
steady state models suggest.

Present-day multi-dimensional hydrodynamical simula-
tions are incapable of following a typical protostellar disk
to a steady state with spatial coverage down to the cen-
tral star. To circumvent this problem, we have developed
a one-parameter (namely the accretion efficiency) family of
semi-analytic steady state solutions for the main disk, ex-
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Fig. 3.— Density (in units described below) for a steady state disk containing an accreting planet, whose mass ratio is
q = 1 × 10−3, is plotted as a function of radius in units of rp. The left plot (model b of Table 1) is for a constant disk viscosity
and the right plot is for a viscosity that increases in radius as

√
r (model f of Table 1). The bold solid line corresponds to a disk

whose inner boundary lies on a star whose radius is very small compared to the orbital radius of the planet (r∗ = 0). The faint
solid line is for an inner boundary r∗ = 0.4rp, typically applied in multidimensional hydrodynamical simulations. The dashed
line is for the same disk without a planet. The unit of density in each plot is the density of the corresponding disk without a
planet at r = rp.

cluding the gap region. These solutions are combined with
numerical simulations that include the gap region to provide
approximate steady state global models.

There is evidence in favor of the models being a reasonable
representation of a steady state configuration. In particular,
there is little indication of significant changes to the density
profiles over the course of the numerical simulations (see Fig-
ure 2). The density values at the inner boundary in the nu-
merical simulations (which are free to change) change little.
The steady state semi-analytic model makes a parameter-free
prediction for the ratio of accretion onto the planet to the rate
of accretion past the planet. The numerical simulations are
in reasonable agreement with the predicted steady state ra-
tio, generally within 25%. The effects of changing the radius
of the star on the accretion rate obtained by the numerical
models are also in accord with the predictions of the steady
state analytic model.

For a disk with thickness ratio H/r = 0.05 and planet to
star mass ratios q of order 1×10−3 or less, about 10% or more
of the accretion flow continues past the orbit of the planet
and onto the central star. Such reductions would probably
still typically produce detectable accretion onto the central
star. Most of the accretion matter flows onto the planet. As
mentioned earlier, we have generally assumed that the planet
can accrete the material that reaches it, in accord with the
expectations of current planet formation theory by Pollack et
al. (1996) for the mass range we consider. If that assumption
were incorrect to the extent that the planet does not accrete
any mass, then the star should accrete at the rate expected
in the absence of a q . 1 × 10−3 planet.

The effect of an accreting planet is to decrease the disk
density over several times the planet’s orbital radius (see Fig-
ure 3). The presence of an accreting planet can change the

large-scale disk density distribution from a simple power law
in radius. Inner circumstellar disks (interior to the orbit of
the planet) occur in a steady state, even in the presence of a
Jupiter-mass planet. The disk density inside the orbit of the
planet (but outside the gap) is decreased as much as about
an order of magnitude, due to the presence of a planet. Such
inner disks may be missed or underestimated in numerical
simulations whose inner boundaries are not sufficiently close
to the star (see Figure 3).

Producing cleaner inner holes with lower accretion rates
onto the central star may be possible with mass ratios in
excess of q = 1 × 10−3. For planet to star mass ratios q ∼
5 × 10−3, clean inner holes could result (Lubow, Seibert, &
Artymowicz 1999). But, accretion may still occur at higher
planet masses, if the disk becomes eccentric as a consequence
of a tidal instability (Papaloizou, Nelson, & Masset 2001; Kley
& Dirksen 2005; D’Angelo, Lubow, & Bate 2005).

For fixed disk viscosity and planet mass, a colder disk has
less ability to penetrate the gap around a planet. The results
(model h of Table 1) show that some reduction in flow through
the gap occurs with a colder disk. For a mass ratio q =
1 × 10−3, the flow is reduced by about 25% when H/r is
reduced from 0.05 to 0.03.

In the case of the TW Hya, on the basis of low near-IR ex-
cess, there is evidence of dust depletion inside 4 AU, although
the depletion is not complete (Calvet et al. 2002). Based on
emission, there is evidence of gas accretion that is one or
two orders of magnitude lower than typical for much younger
T Tauri stars (Muzerolle et al. 2000) . Some of the reduc-
tion could be due to overall gas depletion associated with its
∼ 10Myr age due to accretion. It is also possible that the
presence of a planet of one Jupiter mass or less mass could
play a role in decreasing, but not terminating, the accretion
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in the inner region, by an order of magnitude. Similar con-
siderations apply to the case of CoKu Tau/4, where there is
evidence for dust depletion inside of 10 AU and no evidence of
accretion (D’Alessio et al. 2005). We do not find that inner
disk accretion can be suppressed by several orders of mag-
nitude for the planet mass range considered (. 1MJ ). Such
suppression may be possible with a planet of several MJ . But
as mentioned above, even this possibility is uncertain and re-
quires further investigation.
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