
Evolution of Giant Planets in Eccentric Disks
†

Gennaro D’Angelo1

School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

NASA-ARC, Space Science and Astrobiology Division, MS 245-3, Moffett Field, CA 94035, USA

gdangelo@arc.nasa.gov

and

Stephen H. Lubow
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

lubow@stsci.edu

and

Matthew R. Bate
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

mbate@astro.ex.ac.uk

ABSTRACT

We investigate the interaction between a giant planet and a viscous circumstellar disk by means of
high-resolution, two-dimensional hydrodynamical simulations. We consider planet masses that range from
1 to 3 Jupiter masses (MJ) and initial orbital eccentricities that range from 0 to 0.4. We find that a planet
can cause eccentricity growth in a disk region adjacent to the planet’s orbit, even if the planet’s orbit is
circular. Disk-planet interactions lead to growth in a planet’s orbital eccentricity. The orbital eccentricities
of a 2 MJ and a 3 MJ planet increase from 0 to 0.11 within about 3000 orbits. Over a similar time period,
the orbital eccentricity of a 1 MJ planet grows from 0 to 0.02. For a case of a 1 MJ planet with an initial
eccentricity of 0.01, the orbital eccentricity grows to 0.09 over 4000 orbits. Radial migration is directed
inwards, but slows considerably as a planet’s orbit becomes eccentric. If a planet’s orbital eccentricity
becomes sufficiently large, e & 0.2, migration can reverse and so be directed outwards. The accretion rate
towards a planet depends on both the disk and the planet orbital eccentricity and is pulsed over the orbital
period. Planet mass growth rates increase with planet orbital eccentricity. For e ∼ 0.2 the mass growth
rate of a planet increases by ∼ 30% above the value for e = 0. For e & 0.1, most of the accretion within
the planet’s Roche lobe occurs when the planet is near the apocenter. Similar accretion modulation occurs
for flow at the inner disk boundary which represents accretion toward the star.

Subject headings: accretion, accretion disks — hydrodynamics — methods: numerical — planetary systems: forma-
tion

1. Introduction

A striking property of the extrasolar planets known to
date is the range of their orbital eccentricities, which is far
wider than that of planets in the solar system.2 Eccentrici-
ties are typically ∼ 0.2–0.3, but very low and high values are
also found (e.g., Marcy et al. 2005). A variety of explanations
have been proposed to explain the eccentricities. The high
eccentricity cases may owe their explanation to the presence
of a distant binary companion (Wu & Murray 2003; Takeda
& Rasio 2005). In fact, the large eccentricity (e = 0.93) of
HD 80606b could be the result of a three-body interaction
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process, known as “Kozai cycle” (Wu & Murray 2003). More-
over, numerical experiments show that the observed distribu-
tion of orbital eccentricities for e & 0.6 can be reproduced by
assuming the action of a Kozai-type perturbation (Takeda &
Rasio 2005).

For more typical eccentricities, other processes are likely
to be at work. Planet-planet interactions involving scatter-
ing on dynamical timescales is a possibility (Rasio & Ford
1996). However, numerical experiments indicate that interac-
tions between equal mass planets would produce more isolated
planets on low-eccentricity orbits than those observed (Ford
et al. 2001). Secular interactions between planets is another
possible means of eccentricity excitation (Juric & Tremaine
2005). This mechanism assumes that the planets have ap-
propriate initial separations for evolution to occur on secular
timescales (∼ 1010 years).

Disk-planet interactions can also give rise to planetary ec-
centricities (Goldreich & Tremaine 1980; Artymowicz 1992;
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Goldreich & Sari 2003). The evolution of orbital eccentricity
depends on a delicate balance between Lindblad and corota-
tion resonances. If the planet is massive enough to clear a
gap, Lindblad resonances promote eccentricity growth, while
corotation resonances damp eccentricity. If the corotation res-
onances operate at maximal efficiency, they dominate over
Lindblad resonances by a slight margin, and the result is ec-
centricity damping (Goldreich & Tremaine 1980). Two mech-
anisms have been proposed to weaken the effects of corotation
resonances and thereby provide eccentricity growth. The first
mechanism relies on a large enough gap about a planet’s or-
bit to exclude the corotation resonances from the disk, while
leaving a remaining Lindblad resonance, the 1:3 outer reso-
nance. This mechanism requires a massive enough companion
and/or low enough viscosity to open a wide enough gap. Such
a mechanism has been demonstrated for binary stars (Arty-
mowicz et al. 1991). The second mechanism relies on the
delicate nature of corotational resonances in their ability to
weaken (saturate) when the disk viscosity is sufficiently small
and the planet eccentricity sufficiently large (Ogilvie & Lubow
2003; Goldreich & Sari 2003). A small finite initial eccentric-
ity, typically e ∼ 0.01, is required for the eccentricity to grow
by this mechanism. Moreover, a companion object on a cir-
cular orbit can drive eccentricity in a circumstellar disk. This
process is believed to occur in disks involving 10–20 Jupiter-
mass (MJ) companions (Papaloizou et al. 2001) and binary
stars (Lubow 1991a,b). The disk transfers eccentricity to the
planet’s orbit by exchanging energy and angular momentum.
The disk-planet system undergoes a coupled eccentricity evo-
lution.

One goal of this paper is to determine whether the eccen-
tricity growth by disk-planet interactions occurs. Simulations
by Papaloizou et al. (2001) suggested that orbital eccentric-
ity is excited when the mass of the embedded body is larger
than about 10–20 Jupiter-masses, while lower mass compan-
ions experienced eccentricity damping. By applying higher
resolution and simulating over longer timescales, we aim to see
whether eccentricity growth can occur for lower mass, plane-
tary mass, companions. In addition, we are interested in the
effects of eccentricity on planet migration.

Accretion of gas onto a planet is likely affected by the
planet’s orbit eccentricity. Circumbinary disks surrounding
eccentric orbit binaries undergo pulsed accretion on orbital
timescales (Artymowicz & Lubow 1996). A similar process
could occur with eccentric orbit planets. The mean accretion
rate could also be modified by the orbital eccentricity. An-
other goal of this paper is to investigate this accretion process.

We apply high-resolution hydrodynamical simulations to
investigate disk-planet interactions over several thousand or-
bital periods. In Section 2 we describe the physical model.
The numerical aspects of the calculations are detailed in Sec-
tion 3. Results on the growth of the disk eccentricity for a
fixed planet orbit are presented in Section 4. Similar results
on the growth of disk eccentricity were recently reported by
Kley & Dirksen (2006). We describe results on the planet’s
orbital evolution in Section 5. Results on the pulsed accretion
are described in Section 6. Finally, our conclusions are given
in Section 7

2. Model Description

2.1. Evolution Equations

We assume that the disk matter and planet are in copla-
nar orbits. In order to describe the dynamical interactions be-
tween a circumstellar disk and a giant planet, we approximate
the disk as being two-dimensional, by ignoring dynamical ef-
fects in the direction perpendicular to the orbit plane (vertical
direction). This approximation is justified by the fact that the
disk thickness is smaller than the vertical extent of the plan-
etary Roche lobes for the cases we consider. Comparisons
between two- and three-dimensional models of Jupiter-mass
planets embedded in a disk indicate that the two-dimensional
geometry provides a sufficiently reliable description of the sys-
tem (Kley et al. 2001; D’Angelo et al. 2003; Bate et al. 2003;
D’Angelo et al. 2005).

We employ a cylindrical coordinate frame {O; r, φ, z} in
which the disk lies in the plane z = 0 and the origin, O, is
located on the primary. The reference frame rotates about the
disk axis (i.e., the z-axis) with an angular velocity Ω and an
angular acceleration Ω̇. The set of continuity and momentum
equations, describing the evolution of the disk, is written in a
conservative form (see, e.g, D’Angelo et al. 2002) and is solved
for the surface density, Σ, and the velocity field of the fluid,
u. The turbulent viscosity forces in the disk are assumed to
arise from a standard viscous stress tensor for a Newtonian
fluid with a constant kinematic viscosity, ν, and a zero bulk
viscosity (see Mihalas & Weibel Mihalas 1999,for details).

A locally isothermal equation of state is adopted by requir-
ing that the vertically integrated pressure is equal to p = c2s Σ
and that the sound speed, cs, is equal to the disk aspect ratio,
H/r, times the Keplerian velocity. In this study, we use a
constant aspect ratio throughout the disk.

The gravitational potential of the disk, Φ, is given by

Φ = −
GM∗

|r|
−

GMp
p

|r − rp|2 + ε2
+
GMp

|rp|3
r · rp , (1)

where M∗ is the mass of the central star whereas Mp and
rp are the mass and the vector position of the planet, re-
spectively. The length ε represents a softening length that
is needed to avoid singularities in the gravitational potential
of the planet. The third term on the right-hand side of equa-
tion (1) accounts for the acceleration of the origin of the (non-
inertial) coordinate frame caused by the planet. We ignore
disk self-gravity. For the disks we consider, the Toomre-Q
parameter never drops below 4 during the simulations.

The orbit of the planet evolves under the gravitational
forces exerted by the central star and the disk material. Non-
inertial forces arising from the rotation of the reference frame
also need to be taken into account. Therefore, the equation
of motion of the planet reads

r̈p = −
G(M∗ +Mp)

|rp|3
rp − Ω × (Ω × rp) − 2Ω × ṙp

−Ω̇ × rp + Ap − A∗ , (2)

where the angular velocity and acceleration vectors of the ro-
tating frame are defined as Ω = Ω ẑ and Ω̇ = Ω̇ ẑ, respec-
tively. The second, third, and fourth terms on the right-hand
side of the equation are the centrifugal, Coriolis, and angular
accelerations, respectively.

The angular velocity of the reference frame relative to a
fixed frame, Ω = Ω(t), is chosen so as to compensate for the
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azimuthal motion of the planet. Details of how this is achieved
can be found in D’Angelo et al. (2005). Since the azimuthal
position of the planet is constant, a circular orbit reduces to
a fixed point in the rotating frame. For a planet orbit with
e > 0, the planet radially oscillates between the pericenter
distance, a(1−e), and the apocenter distance, a(1+e). In this
frame, the trajectory is a straight line of length 2ae with center
at r = a. This scheme has the advantage that the planet
does not drift across the grid in the azimuthal direction. It
always maintains a symmetric azimuthal position with respect
to the zone centers (where eqs. [1], [3], and [4] are evaluated)
while it moves radially. This method helps reduce artificially
unbalanced forces that act on the protoplanet (see discussion
in Nelson & Benz 2003a,b).

The last two terms in equation (2), which represent the
forces per unit mass exerted by the disk material on the planet
and the star, are

Ap = G

Z

MD

(r − rp) dMD(r)

(|r − rp|2 + ε2)3/2
(3)

and

A∗ = G

Z

MD

r dMD(r)

r3
. (4)

These two vectors are included in equation (2) only when
the disk back-reaction is accounted for and the protoplanet is
allowed to adjust its trajectory in response to the disk torques.
When these terms are applied, the integration in equations (3)
and (4) is performed over the disk mass comprised in the
simulated domain, MD.

2.2. Physical Parameters

In these calculations, the stellar mass, M∗, is the unit of
mass and the initial semi-major axis of the planet’s orbit,
a0, represents the unit of length. The unit of time, t0, is
defined such that 1/t0 =

p

G (M∗ +Mp)/a3
0. When we refer

to the “orbital period” or “orbit” as length of time, we actually
mean the initial orbital period t0/(2π). To provide estimates
of various quantities in physical units, we adopt M∗ = 1M⊙

and a0 = 5.2 AU, thus one orbit is ≈ 11.9 years.

In order to treat the strong perturbations induced by gi-
ant protoplanets and limit the influence of the imposed ra-
dial boundaries, we considered an extended disk whose radial
borders are at rmin = 0.3 a0 and rmax = 6.5 a0. The disk ex-
tends over the entire 2π radians in azimuth around the star.
In physical units, the disk models cover a region from 1.56 to
33.8 AU. The mass of the disk, in the absence of the planet, is
MD = 1.58×10−2 M∗ within the radial limits of the simulated
region. We used a constant disk aspect ratio, H/r = 0.05.
The unperturbed initial surface density is axisymmetric and
scales as r−1/2, which produces an unperturbed density, at
r = a0, equal to 75.8 g cm−2. However, given the large plane-
tary masses considered in this investigation, we also included
an initial gap along the orbit of the planet that accounts for an
approximate balance between viscous and tidal torques (e.g.,
Lin & Papaloizou 1986). The initial gap profile is based on
equation (5) of Lubow & D’Angelo (2006). The initial gap
width is modified by a factor of 1 + a0e0, in order to account
for the planet’s initial orbital eccentricity, e0.

The initial velocity field in the disk is a Keplerian one that
is centered on the star and corrected for the rotation of the
frame of reference. In order to account for the effects due
to turbulence in the disk, a constant kinematic viscosity, ν,

was used. In terms of the Shakura & Sunyaev parameter
(Shakura & Sunyaev 1973), we have α = α0 (a0/r)

1/2, where
α0 = 4×10−3 (in physical units, ν ≃ 1015 cm2 s−1). Although
spatial variations and time fluctuations consistent with the
MHD turbulence are not included, this relation yields a mag-
nitude of α that is in the range found in MHD simulations
(Papaloizou & Nelson 2003; Winters et al. 2003; Nelson &
Papaloizou 2004). The influence of viscosity was explored by
performing a few calculations with other α0 values (1.2×10−3

and 1.2 × 10−2).

Three planetary masses were considered: 1MJ, 2MJ, and
3MJ (i.e., the mass ratio q = Mp/M∗ ranges from 1×10−3 to
3×10−3). The planets were set on initially circular or eccentric
orbits about one solar mass stars. We examined configurations
with initial eccentricities, e0, up to 0.4. A complete list is
given in Table 1.

At time t = 0 the planet starts from the pericenter posi-
tion, while its azimuth, φp, remains constant (in the rotating
frame) and equal to π throughout the calculation. In order to
allow the disk to adjust to the presence of the planet, we im-
pose two stages to the evolution. During the first phase, the
planet’s orbit is static and terms (3) and (4) are not included
in equation (2). During the second phase, the protoplanet is
“released” from the fixed orbit and is allowed to react to the
disk torques via the full form of equation (2). In the mod-
els presented here the first phase lasts until the release time,
t = trls, which ranges from 1000 to 1200 orbits. The second
phase lasts from several hundred to several thousand orbits.

The value adopted for smoothing radius ε (in eqs. [1] and
[3]) resulted from numerical experiments in each orbital eccen-
tricity configuration. The chosen value of ε was the smallest
that prevented the integration time-step of the hydrodynam-
ics equations from getting shorter than ∼ 10−6 orbits. In
models involving 1MJ and 2MJ planets, we set ε = 0.1RH,
where RH = rp (q/3)1/3 (Bailey 1972) is planet’s Hill radius
(or sometimes called Roche radius). In models involving 3MJ

planets, we applied softening lengths between 0.12RH and
0.2RH. The latter value was used at the highest initial orbital
eccentricities, e0 = 0.3 and 0.4. We found that torques within
the Roche lobe do not dominate the planet orbital evolution.
Moreover, the smoothing radius does not significantly affect
planet accretion. Thus, ε does not likely play an important
role in these calculations.

For simulations that account for the disk torques on the
planet, an additional approximation is made, which is de-
scribed at the beginning of Section 5.

3. Numerical Method

The equations of motion of the disk are solved numerically
by means of a finite-difference scheme that uses a directional
operator splitting procedure. The method is second-order
accurate in space and semi-second-order in time (Ziegler &
Yorke 1997). Hydrodynamic variables are advected by means
of a transport scheme that uses a piecewise linear reconstruc-
tion of the variables with a monotonised slope limiter (van
Leer 1977). High numerical resolution in an extended region
around the planet is achieved by using a nested-grid tech-
nique (see D’Angelo et al. 2002, 2003,for details) with fully
nested subgrid patches, whereby each subgrid level increases
the resolution by a factor 2 in each direction. Tests on the
behavior of the nested-grid technique applied in a reference
frame rotating at a variable rate Ω = Ω(t) are reported in
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Table 1

Initial orbital eccentricities.

Mp e0

(MJ) 0 0.01 0.1 0.2 0.3 0.4

1 • • • • • •

2 •

3 • • • • •

the Appendix of D’Angelo et al. (2005). The equation of mo-
tion of the planet (eq. [2]) is solved by using a high-accuracy
algorithm described in D’Angelo et al. (2005).

3.1. Grid Resolution

The excitation or damping of a protoplanet’s orbital eccen-
tricity depends on a delicate balance between Lindblad and
corotation resonances (Ogilvie & Lubow 2003; Goldreich &
Sari 2003,and references therein). To study this balance, it is
necessary to resolve the width of all the resonances involved
in the process. The locations of first order eccentric Lind-
blad resonances reside in a region that ranges radially from
approximately 0.6 a to 1.6 a. Furthermore, calculations on
the saturation of isolated noncoorbital corotation resonances,
performed by Masset & Ogilvie (2004), suggest that a min-
imum resolution requirement to avoid spurious damping of
eccentricity is that

∆r/a . 4.1
q

C±
k k e q , (5)

where k is the azimuthal wavenumber and C±
k are coefficients

of order unity given in Ogilvie & Lubow (2003). Although
nested grids provide a linear resolution ≤ 0.01 in a region
∼ 2.5 a × 0.8π, the effects of these corotational resonances
are not localized in azimuth, so the nested grids do not sub-
stantially improve their overall resolution. Calculations that
follow the orbital evolution of the planet were executed with
grid systems GS1 and GS2 (see Table 2 for a description of
all grid systems employed in this study). According to equa-
tion (5), the global radial resolution we apply ∆r/a = 0.02
could produce spurious damping in the outer disk for orbital
eccentricities e . 3 × 10−5/(k q), with k > 1. In the 1MJ

case, simulations with 0.01 < e < 0.015 could undergo spuri-
ous eccentricity damping for the most distant outer resonance
k = 2 only. For e > 0.015, there is no spurious damping. In
the 3MJ case, simulations with 0.003 < e < 0.005 could un-
dergo spurious damping for k = 2 only. For e > 0.005, there
is no spurious damping.

3.2. Mass Accretion Procedure

Accretion onto the protoplanet was simulated by remov-
ing material within a distance of racc = 0.3RH. Mass
is removed by means of a two-step procedure according to
which the removal timescale, τacc, is 0.03 orbital periods for
|r − rp| < racc/2 and 0.09 orbital periods in the outer part
of the accretion region, racc/2 < |r − rp| < racc. Notice that
τacc is about equal to the Keplerian period around the proto-
planet (i.e., in the circumplanetary disk) at |r − rp| = racc/2.
Tests were carried out to evaluate the sensitivity of the pro-
cedure to both parameters racc and τacc. These tests indicate

that, if racc is reduced by a factor of 1.5, the average mass
accreted during an orbit varies by less than 10%. Increas-
ing the removal timescale by a factor of 5/3 only affects the
accretion rate by 5% (see also Tanigawa & Watanabe 2002).
We also checked whether the accretion parameters influence
the orbital evolution of the planet. Using the same tests, we
found no significant differences over a few hundred periods of
evolution.

We do not add the removed mass to the planet mass over
the course of the simulations. Doing so would increase the
planet mass by ∼ 1MJ for the simulations reported here.

3.3. Boundary Conditions

Boundary conditions at the radial inner boundary, r =
rmin, allow outflow of material, i.e., the accretion flow toward
the central star. The inner boundary conditions exclude in-
flow away from the star into the computational domain. Two
types of boundary conditions were used at the outer bound-
ary (r = rmax): reflective and non-reflective. With the first
kind, neither inflow nor outflow of material is permitted at the
outer border, which behaves as a rigid wall. Although rmax

is much larger than the apocenter radii of the planets in the
simulations, wave reflection was observed at the outer border
in this case, especially when the planet orbit was eccentric.

In order to lessen the amount of wave reflection at the
outer disk edge, we also applied non-reflective boundary con-
ditions, following the approach of Godon (1996, 1997). In
these circumstances, boundary conditions are not directly im-
posed on the primitive variables (i.e, Σ and u), but rather on
the characteristic variables (i.e., the Riemann invariants of
one-dimensional flows). The basic idea is to let outflowing
(inflowing) characteristics propagate through the grid bound-
ary. The correct propagation of the flow characteristics across
the border depends on how accurately the adopted solution
exterior to the grid approximates the exact solution.

At both disk radial boundaries, the flow is assumed to be
Keplerian around the central star. This choice could lead to
some small-amplitude wave excitation at r = rmax, since the
fluid tends to orbit about the center-of-mass of the system,
rather than around the central star (see also Nelson et al.
2000). The effects of such waves were checked to be unim-
portant as they tend to dissipate within a short distance from
the outer disk boundary

4. Disk Eccentricity

4.1. Global Density Distribution

The global surface density in the disk is plotted in Fig-
ure 1 for different planet’s masses and orbital eccentricities.
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Fig. 1.— Surface density in a disk containing a 1MJ (left) and a 3MJ (right) planet at t = 1000 orbits. The axes are in units
of the planet’s orbital semi-major axis, a0. The grey scale bars are expressed in units of 3.29× 105 g cm−2. From top to bottom,
panels refer to the configurations with orbital eccentricities e = 0, 0.1, and 0.3. In each panel the planet (smaller circle) is at
pericenter and located at (X,Y ) = (e− 1, 0).
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Table 2

Grid systems used in the simulations.

Grid GS1 GS2 GS3 GS4
level Nr × Nφ Nr × Nφ Nr × Nφ Nr × Nφ

1 313 × 317 313 × 317 623 × 629 623 × 629
2 264 × 264 264 × 264 524 × 524
3 404 × 404

Note.—The grid system GS1 achieves the highest res-
olution (∆r/a0,∆φ) = (0.01, 0.01) in the region (r, φ) ∈
[0.4, 3.0] a0×0.83π, which is azimuthally centered on the planet.
The grid system GS3 resolve the same region with a reso-
lution (∆r/a0,∆φ) = (0.005, 0.005). The latter resolution
is obtained with the grid system GS2 in the region (r, φ) ∈
[0.5, 2.5] a0 × 0.65π (also centered on the planet in azimuth).

Fig. 2.— Azimuthally averaged surface density in a disk containing a 1MJ (left) and 3MJ (right) planet for various values
of orbital eccentricity: e = 0 (solid line), e = 0.1 (short-dashed line), e = 0.3 (long-dashed line), and e = 0.4 (dotted-dashed
line). The horizontal axis is in units of the planet’s orbital semi-major axis a0. For the vertical axis, 〈Σ〉 = 10−4 corresponds to
32.9 g cm−2. The time is about 1000 orbits and the planet is at pericenter.
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Fig. 3.— Gap region around the orbit of a 3MJ planet with fixed e = 0.4 at various orbital phases. The axes are in units of
the planet’s orbital semi-major axis a0. The grey scale bars are expressed in units of 3.29 × 105 g cm−2. The planet’s orbit in
the inertial frame is represented by a dashed ellipse. The smaller solid circle indicates the position of the planet around the star
(larger solid circle). The motion of the planet (and the panel sequence) is counter-clockwise.

Left panels refer to configurations with Mp = 1MJ, and right
panels refer to configurations with Mp = 3MJ. The orbital
eccentricity increases from top (e = 0) to bottom (e = 0.3).
In all of the panels, the planet is at pericenter (rp/a = 1− e).
For sufficiently long evolutionary times, the inner disk (disk
interior to the planet) is largely depleted because of the tidal
gap produced by the planet and because the grid does not
have sufficient dynamic range to cover regions close to the
star where an inner disk would reside. The outer disk is tidally
truncated at a radial distance that depends on both Mp and e.
Figure 1 shows that the size of the truncation radius increases
with planet mass and eccentricity, analogous to the case for
circumbinary disks (Artymowicz & Lubow 1994). In addition,
a wave or wake propagates in the outer disk. The disk trun-
cation also be seen in Figure 2, which shows the azimuthally

averaged surface density for various cases. The outer gap
edge becomes less steep as the orbital eccentricity increases
and does not change significantly over an orbital period, as
illustrated in Figure 3.

After a few hundred orbits, the disk region near the planet
becomes eccentric, even if the planet is on a circular orbit.
This effect can be seen in Figure 4, which illustrates the mo-
tion (relative to the star) of the center-of-mass of the disk
interior to r = 3 a0 for different planetary masses and orbital
eccentricities.

4.2. Mode Analysis

We performed a mode decomposition of the surface density
distribution of the disk adopting an approach along the lines
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of Lubow (1991b). We defined a mode component at each
radial location in the disk as

M
(f,g)

(k,l)
=

2

π T 〈Σ〉 (1 + δl,0)

Z

T

Z 2π

0

Σ f(kθ) g(lΩpt) dθdt , (6)

where Ωp =
p

G (M∗ +Mp)/a3
0, the angle θ is the azimuth

relative to an inertial reference frame, and 2π〈Σ〉 =
R 2π

0
Σdθ .

The time interval T is a ten-orbit period interval, beginning at
a pericenter passage of the planet. The time integration is re-
peated every interval T . The functions f and g are either sine
or cosine. This decomposition corresponds to a Fourier trans-
form in both azimuth and time. The amplitude (or strength)
of the mode is

S(k,l) =



h

M
(cos,cos)
(k,l)

i2

+
h

M
(cos,sin)
(k,l)

i2

+

h

M
(sin,cos)

(k,l)

i2

+
h

M
(sin,sin)

(k,l)

i2
ff1/2

. (7)

In order to obtain the strength of a mode integrated over a
radial interval [r1, r2], the mode components M

(f,g)
(k,l) are first

averaged between r1 and r2 and then substituted into Equa-
tion (7). A tidally disturbed non-eccentric disk has modes
present that all have k = l. For a disk ring to be eccentric,
the mode strength associated with the pair (k, l) = (1, 0),
known as eccentric mode, must be non-zero, i.e., S(1,0) > 0.
To follow the eccentricity evolution, we analyze S(1,0) as a
function of the time.

4.3. Eccentricity Growth

The amplitude of the eccentric mode, as defined in equa-
tion (7), is shown in Figure 5 during the evolutionary phase in

Fig. 4.— Motion of the center-of-mass of the disk region
r < 3 a0 relative to the star (located at the origin). The disk
center-of-mass starts at the origin, but is plotted at later times
t & 300 orbits. The long-dashed and solid lines refer to the
cases with Mp = 1MJ and Mp = 3MJ, respectively, with a
fixed circular orbit planet. The short-dashed line is for the
model with Mp = 3MJ and fixed planet eccentricity e = 0.1.

which the planet is kept on a fixed orbit. This Figure refers to
the configurations with Mp = 1MJ, 2MJ, and 3MJ planets
having e = 0. The disk region that undergoes a substan-
tial eccentricity growth is that between r ≃ a0 and r ≃ 2 a0

(Fig. 5, left panel). The relatively small initial value of S(1,0)

is likely due to a transient effect, as the initially circular disk
adjusts to the presence of the planet. Farther away from the
planet’s orbit, the mode strength drastically decreases, and
the disk is nearly circular (Fig. 5, middle and right panels).
The eccentricity growth proceeds very rapidly during the first
200 orbits and oscillates afterwards with some reinforcement
in the 3MJ case.

The eccentricity driven in the region a0 < r < 2 a0 by
the 1MJ planet (e = 0) is rather small compared to that
driven by the other two planetary masses. However, with an
initial orbital eccentricity e = 0.1, a 1MJ planet is able to
sustain eccentricity growth in the disk, as indicated by the
solid line in the left panel of Figure 6. In the 3MJ case, an
initial orbital eccentricity of up to e = 0.3 induces a larger
amplitude eccentricity perturbation only at the beginning of
the evolution. But the long-term evolution of S(1,0) is not
greatly affected (Fig. 6).

The simulations for mode analyses were generally per-
formed with the grid GS4. We also ran simulations and com-
puted modes by using the grid system GS1 and found results
consistent to those obtained with the higher resolution grid.

4.3.1. Influence of Viscosity

The sensitivity of disk eccentricity growth to the disk kine-
matic viscosity was examined for a system containing a 3MJ

planet on an initially circular orbit. Two additional values
of α0 (i.e., α at r = a0) were considered: α0 = 1.2 × 10−3

and α0 = 1.2 × 10−2, which are respectively a factor of 3
smaller and larger than the standard value α0 = 4× 10−3. In
the lowest viscosity model, the overall evolution of the ampli-
tude of the eccentric mode closely resembles that of the model
with standard viscosity (see Fig. 5, solid line), but was roughly
20% larger. In the highest viscosity model, the eccentric mode
strength reached a maximum of 0.3 at t = 200 orbits and then
decays. Around t = 1000 orbits, S(1,0) ≈ 0.1 and continues
to decline. The effects of viscosity were also investigated with
a calculation involving a 1MJ planet on a circular orbit and
α0 = 1.2 × 10−3. In this case, the mode amplitude S(1,0) is
sustained at about 0.15 for t > 200 orbits, unlike the case
of declining eccentricity at higher viscosity that is displayed
as a short-dashed line in the left panel of Figure 5. These
results suggest that disks with α less than a few times 10−3

experience sustained eccentricity, while disks with α in excess
of ≈ 10−2 do not. The weakening of disk eccentricity with
viscosity was also found in simulations by Kley & Dirksen
(2006).

4.4. Analytic Model

In the case of superhump binaries, disk precession is dom-
inated by the gravitational effects of the companion which
causes prograde precession (Osaki 1985). On the other hand,
pressure provides a retrograde contribution which is somewhat
weaker (Lubow 1992; Goodchild & Ogilvie 2006). In the case
of a circular orbit planet, the gravitational contribution to
precession is expected to be weaker than the disk’s pressure
contribution. The magnitude of the pressure induced preces-
sion rate is ∼ (H/r)2 Ω. For the disks simulated in this paper,
the precession timescale is then ∼ 103 orbits. We estimated
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Fig. 5.— Amplitudes of the eccentric mode, associated with the pair (k, l) = (1, 0) (see eq. [7]), versus time for three different
disk regions, as indicated in the top-left corner of each panel, for 1MJ (short-dashed), 2MJ (long-dashed), and 3MJ (solid)
planets. In all cases, the planet resides on a fixed circular orbit. The mode strength progressively weakens as regions farther
from the planet’s orbit are considered.

Fig. 6.— Left. Mode strength S(1,0) as function of time for models with Mp = 1MJ of fixed planetary orbital eccentricity e = 0
(dashed line) and e = 0.1 (solid line). Right. S(1,0) versus time for models with Mp = 3MJ of fixed planetary orbital eccentricity
e = 0 (short-dashed line), e = 0.1 (long-dashed line), and e = 0.3 (solid line).
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the gravitational precession due to a 3MJ planet for the case
plotted in Figure 5 at 1000 orbits and find that this rate is
about 10 times smaller than the pressure precession rate. We
then expect the precession to be pressure-dominated and ret-
rograde, with a timescale of about 103 orbits. This estimate
in accord with the simulation results for a 3MJ planet in a
circular orbit in Figure 4.

The group velocity for an eccentric mode is estimated by
using the dispersion relation for an m = 1 disturbance in
a Keplerian disk perturbed by pressure. The group velocity
is vg ∼ (H/r)2 Ωr, where we assume the radial wavenum-
ber |kr| ∼ 1/r and that the pattern speed is small compared
to Ω. The group velocity leads to eccentricity propagation
timescales of order (r/H)2 ∼ 103 orbits. This timescale is
consistent with the localization of the eccentricity over course
of the simulation of ∼ 103 orbits to within a region of order
2 a, as seen in Figure 6. Over longer timescales the eccentric-
ity would spread further.

We analyze growth of eccentricity in an outer disk that is
perturbed by a planet on a circular orbit. Disk eccentricity
growth via the 3:1 resonance for inner disks of superhump bi-
naries occurs on a timescale ∼ 0.1w/(rq2) binary orbit pe-
riods, where w is the radial width of the eccentric region
(Lubow 1991a). We now consider the case for outer disks
perturbed by planets. For simplicity, we assume that the ec-
centric corotational resonances in the disk are saturated (i.e.,
of zero strength). This situation is likely to hold if the disk
eccentricity is of order 0.01, by analogy with the case of an
eccentric orbit planet interacting with a circular disk (Ogilvie
& Lubow 2003). Following the mode coupling analysis for ec-
centric Lindblad resonances involving a circular orbit planet
(Lubow 1991a), we find that the disk eccentricity growth rate
associated with a particular eccentric outer Lindblad reso-
nance is given by

λm =
πF 2

mΩpr

24mw
, (8)

where

Fm =
2ru′

m − 4rv′m − 2um −mum + 2vm (m− 1)

2rΩp
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(12)
where w denotes the radial extent of the eccentric region and
prime denotes differentiation in r. All quantities are evaluated
at the location of the eccentric Lindblad resonance associated
with azimuthal wavenumber m, having Ω = mΩp/(m+2) and
r = rm = [(m + 2)/m]2/3 a. Quantities um and vm are the
velocity components in a circular disk associated with poten-
tial ψm, and δ is the Kronecker delta function in the indirect
potential term.

The combined effects of all the resonances is determined
by the local disk density at each resonance. The growth rate
of the mass-weighted eccentricity is then

λ =
2πw

Me

mmax
X

m=1

Σmrmλm , (13)

Fig. 7.— Large dots: contributions to the growth rate sum
for Equation (13) in units of Ωp as a function of azimuthal
wavenumber m associated with an eccentric Lindblad reso-
nance. Small dots: normalized azimuthally averaged surface
density at each eccentric Lindblad resonance, 10−4 Σm/Σ1, as
a function of m. The plot is for a 3MJ planet with a density
profile obtained from simulations at 500 orbits.

where Me is the mass of the eccentric region and the sum
is taken over the active eccentric Lindblad resonances, and
mmax ≃ r/H due to torque cut-off effects (Goldreich & Tre-
maine 1980).

The contribution of each resonance in the above sum for λ
for a 3MJ planet is shown in Figure 7. We consider times be-
yond several hundred orbits, when the width of the eccentric
region w ∼ 2 a. Figure 7 shows that there is a weak contribu-
tion from the outermost resonance, the 1:3 resonance, corre-
sponding to m = 1. Even though the density at this resonance
is the largest, a nearly complete cancellation occurs in λ1, due
to effects of the indirect term in potential ψ1. If only the
m = 1 resonance were involved, then the eccentricity growth
timescale would be very long, ∼ 105 orbits. The growth rate
contributions from regions closer to the planet are weakened
by the lower density, but strengthened by the larger values
of λm. At a time of 500 orbits, the density near the planet
is small enough that the outermost resonances (2 < m . 5)
provide most of the growth rate. At a time of 500 orbits, the
eccentricity growth timescale 1/λ is about 600 orbits, which is
in very rough agreement with the average growth rate implied
by Figure 5 for the innermost region, although there are con-
siderable fluctuations in the simulations.3 At earlier times,

3To compare the growth rate defined by λ with simulations, it is
better to adopt a similar mass-weighted eccentricity. This requires
a slightly different definition of S(1,0) than given by Equation (6).
When we apply that definition, we obtain eccentric disk evolution
in the 3 MJ case that is similar to the 3MJ results in Figure 5,
except that the magnitude of S(1,0) in the innermost region is about
a factor of 8 smaller. The average growth rate of S(1,0) in the
innermost region is about the same over 1000 orbits.
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the growth rate is higher because w is smaller. We conclude
that the disk eccentricity growth is possible over ∼ 103 orbits
in the case of planets because of contributions from several
resonances that lie in the disk edge/gap region. This situ-
ation differs from the superhump binary case where only a
single resonance is involved, since the disk extends relatively
closer to the perturber in the planet case, due to its weaker
tidal barrier.

Increased viscosity affects the disk eccentricity in multi-
ple ways. It leads to further disk penetration of the planet’s
tidal barrier, which could lead to stronger eccentricity growth.
On the other hand, viscosity also acts to unsaturate (or
strengthen) the corotation resonances which act to damp ec-
centricity. Furthermore, the viscosity acts to damp the non-
circular motions associated with the eccentricity.

5. Planet Orbital Evolution

At time t = trls (between 1000–1200 orbits) the planet was
allowed to adjust its orbit in response to the gravitational
forces exerted by the surrounding disk material. We generally
neglected torques on the planet due to gas within a distance
of 0.5RH from the planet. However, analyses of the torque
distribution at the release time indicate that torques within
the Roche lobe do not dominate the orbital evolution of the
planet. So we believe this procedure does not likely lead to
major errors in the planet’s orbital evolution. All calcula-
tions presented in this section employed grid GS2, except for
the 3MJ cases on initially circular orbits (e0 = 0), which
employed grid GS1. In order to analyze the orbital evolu-
tion of the planet after release, we calculated the osculating
elements of the orbit each few hydrodynamics time-steps (ap-
proximately every 0.01 orbits). To remove short-period os-
cillations, we computed the mean orbital elements (Beutler
2005) by using an averaging period of one orbit. Throughout
the paper, the planetary orbital eccentricities and semi-major
axes in the simulations refer to the mean orbital elements.

5.1. Orbital Eccentricity

Simulations by Papaloizou et al. (2001) showed that the
interaction between an initially circular disk and a circular
orbit planet with mass & 20MJ can lead to the growth of
disk eccentricity and planetary orbital eccentricity. They also
found that this interaction can be more efficient at augmenting
orbital eccentricity than direct wave excitation at the outer 1:3
Lindblad resonance in a non-eccentric disk (e.g., Artymowicz
1992). We aim at determining whether a similar phenomenon
can occur also in the Jupiter-mass range.

Figure 8 shows that the interaction between a planet and a
disk leads to orbital eccentricity growth for the 2MJ (dashed
line) and 3MJ (solid line) cases. During the initial growth
of e for the 3MJ planet, the rate is ė ≈ 1.3 × 10−4 orbit−1.
This value is ∼ 1.6 times that exhibited by the 2MJ planet.
The eccentricity growth stalls when e ≃ 0.08 for both planet
masses. The planets may be experiencing some variation in
their eccentricity forcing due to the phasing of their eccen-
tricities relative to the disks’. After 1500–1600 orbits from
the release time, the orbital eccentricity starts to increase
again with a growth timescale that is comparable to the ini-
tial growth timescale, τE ≡ e/|ė| ≈ 2.3 × 103 orbits, for both
planetary masses. The average growth timescale is shorter
than the standard Type II migration (or viscous diffusion)
timescale (see § 5.2). Over the last 1000 orbits of the simula-

Fig. 8.— Evolution of the (mean) orbital eccentricity of 2MJ

(dashed line) and 3MJ (solid line) planets after the release
time, trls = 1000 orbits.

tion, the eccentricity of the 3MJ planet increases very slowly,
at a rate ė ≈ 2 × 10−6 orbit−1.

The model with Mp = 1MJ and initial zero-eccentricity
(Fig. 9, dashed line) shows a much slower orbital eccentricity
growth, reaching e = 0.02 after 3000 orbits from the release
time. As described in Section 4.3, the eccentric perturbation
induced by the planet on the disk is also rather weak compared
to that excited by the 2MJ planet. At the average growth rate
ė ≈ 7×10−6 orbit−1, it would take on the order of the viscous
diffusion timescale to reach e ≈ 0.1.

In order to evaluate to the extent of orbital eccentricity
growth, we used configurations with fixed non-zero planet ec-
centricities prior to release, e0. Figure 9 also shows the orbital
eccentricity evolution of a Mp = 1MJ planet with e0 = 0.01.
After release, e oscillates about the initial value. The oscil-
lation grows in amplitude and, during one of these cycles, e
increases from 0 to 0.09 within about 1300 orbits. In this
case, τE is of order the viscous diffusion timescale. We sim-
ulated several models with e0 ≥ 0.1 (not plotted) and found
that there was generally a reduction of the orbital eccentric-
ity, with some exceptions though. For example, in a model
with a 1MJ planet and e0 = 0.1, e underwent small ampli-
tude oscillations about the initial value, with periods of a few
hundred orbits. This occurrence may be related to the rela-
tively large eccentricity driven in the outer disk. Some models
with e0 ≥ 0.2 showed a rate of change of e that diminishes
in time. In these cases the evolution was generally monitored
for less than 1000 orbits. Longer time coverage simulations
are required to assess the long-term behavior of these config-
urations.

5.2. Radial Migration

We describe here some results on the migration of eccentric
orbit planets. We plan to explore this issue further in a future
paper. Radial migration of planets in the mass range consid-
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Fig. 9.— Orbital eccentricity versus time of Jupiter-mass
models with different initial orbital eccentricities: e0 = 0
(dashed line) and e0 = 0.01 (solid line). The release time
is 1100 orbits.

Fig. 10.— Evolution of the semi-major axis of planets: Mp =
1MJ (short-dashed line), Mp = 2MJ (long-dashed line), and
Mp = 3MJ (solid line). The release time is about 1000 orbits.
The initial eccentricity e0 = 0 in the 3 cases. The change in
migration rates for the 2MJ and 3MJ cases at later times is
related to their increased orbital eccentricity (see Figure 8).

ered in this study is expected to be in the standard Type II
regime, which is characterized by an orbital decay timescale
τM ≡ a0/|ȧ| = 2 a2

0/(3 ν) = τ II
M (Ward 1997). The Type II

migration rate depends only on the viscous timescale of the

disk near the location of the planet and is independent of the
disk density, provided the disk is locally more massive than
the planet. Type II migration is based on the assumption that
the gap, which separates the inner and outer disks, is devoid
of material. In this case, the planet torques approximately
balance the viscous torques at the gap edges.

Figure 10 plots the evolution of the semi-major axes, af-
ter the release time, of models with three planetary masses:
Mp = 1MJ (short-dashed line), Mp = 2MJ (long-dashed
line), and Mp = 3MJ (solid line). The Figure shows that the
initial migration rate depends on the planet’s mass, which is
inconsistent with the Type II prediction. We may expect some
dependence of the migration rate on planet mass, because ra-
tio of planet to disk mass is non-zero (Syer & Clarke 1995;
Ivanov et al. 1999). In order to explore this result further, we
have used a one-dimensional disk evolution code, along the
lines of Lin & Papaloizou (1986). We used the torque density
per unit mass given in equation (4) of Lubow & D’Angelo
(2006). We checked that the results are insensitive to the de-
tails of the torque density, provided that it is large enough to
produce a gap. Increasing the torque density everywhere by a
factor of 2 produced a small change in the migration rate (less
than 1%). We adopted the same disk and planet parameters
as in the two-dimensional simulations with zero planet eccen-
tricity. In short, we find that the largest contributing factor
to this non-Type II behavior is the lack of a substantial inner
disk in the two-dimensional calculations. There is also some
effect due to the non-zero planet-to-disk mass ratio.

A comparison of orbital migration between one-dimen-
sional and two-dimensional models is shown in Figure 11.
In this comparison we used the azimuthal averaged surface
density distributions in Figure 2 as initial conditions for the
one-dimensional models. As seen in Figure 11, the one-
dimensional (zero eccentricity) migration rates, for a very
low density inner disk, agree well with the two-dimensional
rates at early times after release, while the planet eccentric-
ity is small. For undepleted initial inner disks, we find that
one-dimensional models have about the same migration rates
for these two planet masses. It is possible that the two-
dimensional simulations have an inner boundary rmin that
is too large to resolve the inner disk. More complete zone
coverage of the inner region in the two-dimensional calcula-
tions might reveal an inner disk that acts to make the mi-
gration rate less dependent on mass, as indicated by the one-
dimensional simulations. In spite of these possible limitations
of our two-dimensional simulations, we describe below some
interesting aspects of the migration of eccentric orbit planets
in two-dimensional disks.

As a planet’s orbital eccentricity grows toward values of
about 0.08, the rate of migration slows significantly (see
Fig. 10). Over the last 1000 orbital periods of the calcu-
lated evolution, the 3MJ planet exhibits a migration speed
ȧ ≈ −2 × 10−6 a0 per orbit, with a tendency towards further
reduction. This migration rate is about a factor of 30 smaller
than the rate at release time. The 2MJ shows an even more
drastic reduction of the migration rate that actually reverses
and becomes positive around t− trls ≈ 4200 orbits. The out-
ward migration speed is ȧ ≈ 1 × 10−5 a0 per orbit at the end
of the simulation. The migration speed of the 1MJ planet
(e0 = 0) is much more constant over the course of the sim-
ulation as its orbital eccentricity remains small (e . 0.02).
The migration of a 1MJ with e0 = 0.01 proceeds as indicated
by the short-dashed line in Figure 10. Over the last ≈ 1000
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Fig. 11.— Orbital migration of a 1MJ and a 3MJ planet
according to one-dimensional simulations (dots) and two-
dimensional simulations (lines) that use the same disk and
planet parameters. The two upper curves are for the
3MJ planet. The one-dimensional simulations have an ini-
tially depleted inner disk, whose density distribution matches
that of the two-dimensional simulations at planet release.
Note the good agreement between one-dimensional and two-
dimensional simulations for the 1MJ planet. The agreement
is also very good for the 3MJ planet, as long as its eccentric-
ity is smaller than about 0.1 (see Fig. 8). Planet orbits are
assumed to always be circular in the one-dimensional models.

orbits of evolution, however, the migration rate undergoes a
decrease by a factor ≈ 2. During that time, the eccentricity
grows to 0.09 (see solid line in Fig. 9).

The effect of non-zero orbital eccentricity on planet migra-
tion can also be seen in Figure 12, where the evolution of the
semi-major axis is plotted for simulations with Mp = 1MJ

and Mp = 3MJ and different initial orbital eccentricities.
There is a clear trend towards slower migration rates for larger
orbital eccentricities. In particular, when e0 & 0.2, the direc-
tion of migration is reversed. In all the calculations that show
outward migration, the angular momentum of the eccentric
orbit planet increases in time.

We have conducted some preliminary investigations on the
cause of this outward torque. One possibility is that it is due
to the outer disk, as suggested in Papaloizou (2002). When
the planet eccentricity is large enough, the angular motion of
the planet at apocenter can be slower than that of the inner
parts of the outer disk, resulting in form of dynamical friction
that increases the angular momentum of the planet. For the
situation we wish to consider, it is not clear how the outer disk
inner edge is maintained, when this model is applied. This
disk material loses angular momentum from viscous torques
and gains angular momentum from the planet, in the usual
torque balance for a gap. The latter implies that the planet
should lose, rather than gain, angular momentum.

A preliminary analysis suggests that the outward torque

may arise in the coorbital region. This region is supplied
by material that flows from the outer disk across the gap, as
discussed in Section 6. In any case, further analysis is required
to understand this situation.

We conducted a convergence test on the model with a 1MJ

planet and e0 = 0.2, which exhibits outward migration. The
test involved a comparison of the migration rates obtained
from the grid system GS2 (see Table 2) to those obtained
from a grid system whose linear resolution was a factor 1.3
larger everywhere (in both directions on each grid level). How-
ever, since computing resources were only available to run the
higher resolution simulation for about 700 orbits, we used the
Gauss perturbation equations (e.g., Beutler 2005) to compute
ȧ resulting from the disk’s gravitational forces, while keeping
the planet’s orbit fixed. The result of the test is that the
migration rates, averaged from 200 to 700 orbits, differed by
only 7% at the two resolution levels. As a check on our use
of the Gauss equation, we also compared the migration rate
determined from the Gauss equation, averaged over the last
100 orbits before release, to the initial ȧ after release, evalu-
ated by integrating the equations of motion of the planet (see
the left panel of Figure 12). The two rates, both determined
on grid system GS2, differed by less than 3%.

5.3. Effects of Viscosity

As we discussed in Section 4.3.1, the disk eccentricity de-
creases with viscosity. For a coupled disk-planet system, we
similarly expect that the planet eccentricity would decrease
with α, since the eccentric corotation resonances become
stronger. The orbital eccentricity evolution of 3MJ planets
in disks with different α values is shown in the top-left panel
of Figure 13. The model with standard viscosity (solid line) is
the same as that in Figure 8. Over a period of 2200 orbits, the
orbital eccentricity of the model with α0 = 1.2× 10−2 (short-
dashed line) remains small and never exceeds e ≈ 0.01. On the
other hand, the models with lowest viscosities, α0 = 1.2×10−3

(long-dashed line) and 4×10−3 exhibit a generally growing ec-
centricity. The trend towards faster growth for smaller viscosi-
ties is confirmed by the model with 1MJ and α0 = 1.2×10−3,
as indicated by the long-dashed line in the bottom-left panel
of Figure 13.

The orbital evolution of the semi-major axis of 3MJ plan-
ets for the three disk viscosities is displayed in the top-right
panel of Figure 13. The radial inward migration is faster for
larger α, as expected in a Type II-like regime. The plot sup-
ports the contention that planet eccentricity slows migration.
Around 4000 orbits after the release time, the two calculations
with smallest viscosities (α0 = 4 × 10−3 and 1.2 × 10−3) pro-
duce migration rates respectively equal to ȧ ≈ −8 × 10−6 a0

(e ≈ 0.11) and ȧ ≈ −3×10−6 a0 (e ≈ 0.14) per orbit. The first
rate is a factor 8 smaller, while the second a factor 13 smaller,
than the initial migration speed (i.e., when e ≈ 0). For these
cases, the average eccentricity growth rate at a time of about
2500 orbits is ė ≈ 2 × 10−5 orbit−1. The migration of a 1MJ

planet (Fig. 13, bottom-right panel) also shows that, as the
orbital eccentricity approaches ∼ 0.08, |ȧ| starts to reduce.
When α0 = 1.2 × 10−3, the average migration rate, over the
last 1000 orbits, is about a factor 5 smaller than it is during
the first 1000 orbits of evolution after release.
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Fig. 12.— Left. Semi-major axis evolution of 1MJ planets for three values of the orbital eccentricity at release: e0 = 0 (short-
dashed line), e0 = 0.1 (long-dashed line), and e0 = 0.2 (solid line). Right. Same as the left panel but for 3MJ planets with
orbital eccentricities at release: e0 = 0 (short-dashed line), e0 = 0.2 (long-dashed line), and e0 = 0.3 (solid line). The release
time is between 1000 and 1200 orbits. Our standard disk parameters were used, including α = 4 × 10−3.

6. Pulsed Accretion

For eccentric orbit binary star systems, the accretion from
a circumbinary disk onto the stars pulsates over the orbital
period of the binary (Artymowicz & Lubow 1996; Günther &
Kley 2002). This effect is related to the pulsating character
of the equipotential surfaces of the elliptical restricted three-
body problem (Todoran 1993).

We measured the mass accretion rate (which we denote as
Ṁp) into the inner portion of the planet’s Roche lobe (within
racc = 0.3RH), following the prescription described in Sec-
tion 3.2, as a function of the planet’s orbit phase. We refer to
this rate as the planet accretion rate although the flow is not
resolved on the scale of the planet’s radius and thus the rate
at which the planet would accrete mass may be modulated
somewhat differently from Ṁp. Quantity Ṁp was determined
by folding the mass accretion rate over planet orbital phase
and averaging over 500 orbital periods (from 500 to 1000).
Figure 14 shows the resulting averaged accretion rate, 〈Ṁp〉,
for 1MJ and 3MJ planets, versus the true anomaly (i.e., the
azimuthal position relative to pericenter) of the planet and as
a function of the orbital eccentricity. The simulations show
pulsed accretion in cases of eccentric orbit planets. The am-
plitude of the variability, and to a lesser extent the phase, of
Ṁp depends on the orbital eccentricity.

6.1. Modulation

The accretion onto a 1MJ planet with e = 0.1 has two
asymmetric peaks, the taller of which is around the apocenter
position (true anomaly equal to π). The secondary peak is
about 70% of the primary peak and is located close to the
pericenter position. For e ≤ 0.2, the modulation of Ṁp in-
creases with e. For larger orbital eccentricities, modulation
decreases. This effect may be a consequence of the gap be-

coming broader and shallower with increasing e (see Fig. 2).

A similar phase variability is found for the mass accretion
onto a 3MJ planet (Figure 14, right panel). Even when the
planet’s orbit is circular, 〈Ṁp〉 smoothly varies between 1.5×
10−4MJ and 4.5×10−4 MJ per orbit. The phasing in this case
is arbitrary, since the planet’s orbit is circular. This behavior
is related to the eccentricity of the disk. The mass accretion
is markedly peaked around the apocenter position when e >
0.1. The mass accretion modulation is again greatest for e =
0.2. When the planet eccentricity is between e = 0.3 and
0.4, the highest accretion rate occurs roughly 0.1 orbits after
apocenter. This delay may be related to the time required by
material to be captured once it has been perturbed near the
apocenter. Due to such a delay, accretion on binaries occurs
near pericenter (Artymowicz & Lubow 1996).

The density distribution in the vicinity of an eccentric orbit
planet varies strongly with its orbital phase. This variation is
illustrated in the panels of Figure 15, which depict the situa-
tion at the pericenter (left) and apocenter (right), for a 1MJ

(top) and a 3MJ planet (bottom) on an eccentric orbit with
e = 0.2. The spiral waves have a regular pattern at pericenter,
when the planet is orbiting in the low-density gap (or cavity).
As the planet approaches the apocenter, the outer spiral wake
penetrates higher density regions, which causes fluid elements
along the wake to lose angular momentum and flow through
the gap. There are streams of material that extend inwards
(at r < a and φ > φp) which appear in the right panels of
Figure 15.

6.2. Mass Growth Timescale

The mass accretion rate onto a planet with a fixed circular
orbit decreases with increasing planet mass when Mp & 1MJ

(Lubow et al. 1999). The average accretion rate in the simu-
lations, at t ≃ 150 orbits, of a 2MJ planet is 0.63 times that
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Fig. 13.— Evolution of planet eccentricity (left) and semi-major axis (right) for 3MJ (top) and 1MJ (bottom) planets in disks
with different values of viscosity parameter α0 (α at r = a0), α0 = 1.2× 10−3 (long-dashed line), α0 = 4× 10−3 (solid line), and
α0 = 1.2 × 10−2 (short-dashed line). The release time is trls = 1000 orbits in the top panels and 1100 orbits bottom panels.

of a 1MJ planet. The ratio decreases to 0.44 for a 3MJ planet
on a circular orbit and at t = 150 orbits. These ratios agree
within 10% with the values given by Lubow et al. (1999), who
used an independent code.

As the disk eccentricity grows, the mass accreted during an
orbit increases. At later times t & 500 orbits, when S(1,0) &

0.2, the accretion rate onto a 2MJ planet is 0.71 times the
rate onto a 1MJ planet and for a 3MJ planet is 0.65 times
the rate onto a 1MJ planet. Notice that, for a 3MJ planet,
this implies a 48% increase over the accretion rate at early
stages, when the disk is circular. These results suggest that
the eccentricity driven in the disk by a massive planet can
augment the mass accretion rate onto the planet and hence
shorten its growth timescale.

Mass accretion over an orbit period can also be enhanced

by the planet’s orbital eccentricity. For a 1MJ planet on a
fixed orbit, the mass growth timescale (defined here as the
ratio of Mp to the average accretion rate between 500 and
1000 orbits) decreased by about 35% when e is increased from
0 to 0.2. The reduction of mass growth timescale from e = 0
to e = 0.4 is only 17%, perhaps as a result of the wider gap
and its smoother outer edge at larger orbital eccentricities (see
Fig. 2). For a 3MJ planet on a fixed orbit with e = 0.3, the
mass growth timescale is reduced relative to the e = 0 case by
27%. While for e = 0.4 there was a 13% reduction. For cases
with e < 0.3, the growth rate was not substantially different
than the e = 0 case.

The mass growth timescale of a 1MJ and a 3MJ planet
on circular orbit was also estimated for different values of
the disk viscosity. For a 3MJ planet an increase in α by a
factor of 3 over the standard value (see § 2.2) reduced the
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Fig. 14.— Mass accretion rate in inner parts of the Roche lobe of a 1MJ (left) and a 3MJ (right) planet as a function of its
true anomaly and orbital eccentricity. When the true anomaly equals π, the planet is located at the apocenter of the orbit.
Orbital eccentricities are listed in the legend of the left panel. The quantity 〈Ṁp〉 is obtained by sampling Ṁp every 0.02 orbits
and averaging the outcome from 500 to 1000 orbits.

growth timescale by about 60%. For both planetary masses,
a decrease in α by a factor of 3.3 below the standard value,
lengthened the growth timescale by a factor 2.

Planetary accretion rates were determined by means of the
grid system GS2. Simulations executed with grid systems
GS1 and GS3 resulted in very similar outcomes (within 6%)
for both the modulation of Ṁp and its average value. The
results are not sensitive to the smoothing length, ε, although
this parameter can affect the small-scale structure of the flow
around the planet. We performed a calculation for an ε value
that was reduced by a 25%, with Mp = 3MJ and e = 0.3, and
obtained essentially the same accretion rates (within 1%).

6.3. Accretion towards the Star

The region interior to a planet’s orbit likely contains an
inner disk which cannot be resolved in the current two-
dimensional simulations (see discussion in § 5.2). We esti-
mate the modulation of mass onto this disk as a function of
orbital phase by considering the mass flow rate across the in-
ner boundary. As material accretes through the inner disk,
the modulation would be expected to weaken. It is unclear
whether the modulation would be reflected as a variable accre-
tion at the surface of the star. Perhaps it could be manifested
as variability in emission from the region where the inflow
meets the outer edge of the inner disk.

Figure 16 plots the accretion rate at the inner boundary
〈Ṁ∗〉 versus the true anomaly of the planet for cases with
Mp = 1MJ and 3MJ. The case involving the more massive
planet produces an accretion rate through the inner bound-
ary that is largest when the planet is close to the apocenter.
The maximum of 〈Ṁ∗〉 occurs before the apocenter passage
for the case involving the 1MJ planet. The average mass ac-
creted by the star during one orbital period of the planet is
5.8 × 10−8M∗ and 9.9 × 10−8M∗ for the 1MJ and the 3MJ

Fig. 16.— Mass accretion rate towards the star at the in-
ner boundary r = 0.3 a0 as function the true anomaly of the
planet. The mass accretion rate is averaged over several planet
orbital periods at t ≈ 1000 orbits. The dashed and solid
lines refer to models with Mp = 1MJ and 3MJ, respectively.
The planet’s orbital eccentricity is e = 0.2. When the true
anomaly is π, the planet is located at the apocenter.

cases, respectively. The same models with no orbital eccen-
tricity show relatively constant 〈Ṁ∗〉 values of 1 × 10−7M∗

(Mp = 1MJ) and 6.3 × 10−8 (Mp = 3MJ) per orbit. As a
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Fig. 15.— Density structure around a 1MJ (top) and a 3MJ (bottom) planet at pericenter (left) and apocenter (right). The
vertical axis is the azimuth about the star and the horizontal axis is the distance from the star in units of a0. The orbital
eccentricity is e = 0.2 and t ≃ 1000 orbits. The solid circle indicates the instantaneous location of the planet. A surface density
of 10−5 corresponds to 3.29 g cm−2.

comparison, the mass accretion through a steady-state α-disk
is 3πΣ ν (Lynden-Bell & Pringle 1974; Pringle 1981) which,
using the initial unperturbed surface density and standard
viscosity (α0 = 4 × 10−3), yields 2.5 × 10−7M∗ per orbit or
2 × 10−8 M⊙ yr−1.

The ratio of the accretion on the star to the accretion in
the disk, outside the gap, can be expressed as 〈Ṁ∗〉o/(〈Ṁ∗〉o+
〈Ṁp〉o), where the subscript “o” denotes is the integral of the
respective accretion rate over a planetary orbit. For both
the 1MJ and the 3MJ planets on circular orbit, this ratio is
0.19. When e = 0.2, the ratio is 0.09 and 0.26 for the 1MJ

and the 3MJ planet, respectively. The reduced mass transfer
across the planet’s orbit, when Mp = 1MJ and e = 0.2, can
be attributed to the increased accretion rate onto the planet,
as reported above. In the 3MJ case, 〈Ṁp〉o does not vary

significantly as e varies from 0 to 0.2. Instead, the mass flux
across the gap is likely enhanced by the radial excursion of
the planet (see § 6).

7. Summary and Discussion

We simulated the orbital evolution of circular and eccen-
tric orbit giant planets embedded in circumstellar disks. The
disks were analyzed using a two-dimensional hydrodynamics
code that utilizes nested grids to achieve high resolution in a
large region (2 a × 2π/3) around the planet. The disks were
modeled as an α-disk and a few values of α were considered.
We investigated planet masses of 1MJ, 2MJ, and 3MJ and
initial orbital eccentricities that ranged from 0 to 0.4.

Disk gaps become broader and shallower as the planet ec-
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centricity increases (see Fig. 1 and 2). The density near the
orbit of the planet is very small compared with the density in
the disk for all eccentricities considered. A planet on a fixed
circular orbit can cause an initially circular disk to become
eccentric (see Fig. 4). The disk eccentricity is suppressed at
lower planet masses (Mp . 1MJ) and higher disk viscosities
(α & 0.01), as also found by Kley & Dirksen (2006) and by
Papaloizou et al. (2001) at higher planet masses. We attribute
the eccentricity growth to a tidal instability associated with
a series of eccentric outer Lindblad resonances in the inner
parts of the outer disk (Fig. 7). The same type of instability,
involving an inner disk, is thought to be responsible for the
superhump phenomena in binary star systems (Lubow 1991a;
Osaki 2003).

The simulations indicate that planet eccentricity can grow,
as a consequence of disk-planet interactions (Fig. 8 and 9).
The growth is stronger in the 2MJ and 3MJ cases than for
1MJ, and for lower disk viscosity (α . 4 × 10−3). Planet
eccentricities of ∼ 0.1 were found in the simulations over the
course of a few thousand orbits for 2MJ and 3MJ planets.
A similar eccentricity growth is obtained for a 1MJ planet in
a disk with viscosity α ≈ 10−3. The planet and disk both
acquire eccentricity as they interact, which may lead to com-
plicated time-dependent behavior of their eccentricities. The
planet eccentricity growth is likely aided by the disk eccen-
tricity growth. The results suggest that the eccentric growth
found for ∼ 10MJ planets by Papaloizou et al. (2001) also oc-
curs for lower planet masses. The higher resolution achieved
by our calculations may be playing a role in obtaining this
growth.

For circular orbit planets, migration occurs on roughly the
local viscous timescale, as expected for Type II migration.
However, it is slowed for eccentric orbit planets. This result
appears for several configurations with either dynamically de-
termined (Fig. 10 and 13) or imposed planet eccentricities
(Fig. 12). For a 2MJ case, even migration reversal (outward
migration) is found for a dynamically determined eccentricity
(Fig. 10). Migration slowing or reversal would have important
consequences for the planet formation process. The cause is
not yet clear. It may involve torques from outer disk (Pa-
paloizou 2002) or instead from the coorbital region. Some
preliminary evidence suggests the latter.

Mass accretion both within a planet’s Roche lobe and
through a gap can be strongly modulated with orbital phase
for eccentric orbit planets or eccentric disks (Fig. 14, 15,
and 16). The modulation was largest for planet eccentricity
e ≃ 0.2. This pulsating accretion is similar to what is found
for eccentric orbit binary stars embedded in a circumbinary
disk (Artymowicz & Lubow 1996), although the phasing is
different. Both disk and planet eccentricity also lead to en-
hanced accretion onto the planet. This enhancement likely
helps planets achieve higher masses.

The simulations lend support to the idea that disk-planet
interactions cause planet eccentricity growth, along the lines
of Goldreich & Sari (2003). The simulations suggest that
planet eccentricities are easier to achieve for higher mass plan-
ets (Mp & 2MJ). Our results are subject to the usual limita-
tions in approximate initial conditions, simulation time, radial
range for coverage of the disk (likely resulting in the lack of an
inner disk), the α-disk model, and the use of various numer-
ical devices. We also neglected disk self-gravity, which may
affect migration especially for higher mass disks (Nelson &
Benz 2003a).

However, it is not clear that typical extra-solar planet ec-
centricities of 0.2–0.3 can be achieved through disk-planet in-
teractions. The eccentricity growth at later times shows in-
dications of slowing and possibly stalling for e . 0.15 (see
Fig 13.) Perhaps higher eccentricities can be achieved for disks
with different properties (e.g., lower viscosity and smaller
disk’s aspect ratio). Eccentricity may be limited by damping
due to high order eccentric inner Lindblad resonances that lie
outside a planet’s orbit. Simulations of eccentric orbit binary
star systems suggest that little eccentricity growth occurs for
e & 0.5 (Lubow & Artymowicz 1992). Although the simu-
lated planets do not achieve orbital eccentricities in excess of
0.15 over the duration of the simulated evolution (for config-
urations that start from circular orbits), the simulation times
correspond to less than 105 years. Migration slowing and re-
versal may permit the planets to achieve higher eccentricities
on longer timescales while avoiding orbit decay into the disk
center/host star.

We have not yet investigated eccentricity evolution of sub-
Jupiter mass planets. They may also provide important con-
straints. Other simulations suggest that disks with standard
viscosity have only mild gaps for smaller planet masses of
Mp . 0.1MJ (e.g., D’Angelo et al. 2003; Bate et al. 2003).
Under those conditions, disk-planet interactions likely lead to
eccentricity damping, due to the dominance of the coorbital
Lindblad resonance (Ward 1986; Artymowicz 1993). The ob-
servational determination of eccentricities for small mass plan-
ets would help constrain these models. The planet around
HD 49674 is close to this regime. It has a minimum mass of
0.11MJ and a best-fit eccentricity of 0.29 (P. Butler, private
communication). Since it is close to the central star (the pe-
riod is 4.9 days), it is possible that the eccentricity evolution
could be more complicated, especially if it became trapped in
a central disk hole. Examples of isolated planets like this, but
at longer periods would provide useful constraints.
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