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ABSTRACT

The increase of computational resources has recently allowed high resolution, three dimensional
calculations of planets embedded in gaseous protoplanetary disks. They provide estimates of the planet
migration timescale that can be compared to analytical predictions. While these predictions can result
in extremely short migration timescales for cores of a few Earth masses, recent numerical calculations
have given an unexpected outcome: the torque acting on planets with masses between 5 M⊕ and 20 M⊕

is considerably smaller than the analytic, linear estimate. These findings motivated the present work,
which investigates existence and origin of this discrepancy or “offset”, as we shall call it, by means
of two and three dimensional numerical calculations. We show that the offset is indeed physical and
arises from the coorbital corotation torque, since (i) it scales with the disk vortensity gradient, (ii) its
asymptotic value depends on the disk viscosity, (iii) it is associated to an excess of the horseshoe zone
width. We show that the offset corresponds to the onset of non-linearities of the flow around the planet,
which alter the streamline topology as the planet mass increases: at low mass the flow non-linearities
are confined to the planet’s Bondi sphere whereas at larger mass the streamlines display a classical
picture reminiscent of the restricted three body problem, with a prograde circumplanetary disk inside
a “Roche lobe”. This behavior is of particular importance for the sub-critical solid cores (M . 15 M⊕)
in thin (H/r . 0.06) protoplanetary disks. Their migration could be significantly slowed down, or
reversed, in disks with shallow surface density profiles.

Subject headings: Planetary systems: formation — planetary systems: protoplanetary disks — Accretion,
accretion disks — Methods: numerical — Hydrodynamics

1. Introduction

Ever since it was realized that the torque exerted by
a protoplanetary disk onto an orbiting protoplanet could
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vary its semi-major axis on a time scale much shorter than
the disk lifetime (Goldreich & Tremaine 1979), many ef-
forts have been made to determine the direction and rate
of this semi-major axis change, referred to as planetary
migration. During two decades, this problem was essen-
tially tackled through linear analytical estimates of the
disk torque onto a point-like perturber. The torque on
a planet in a circular orbit can be split into two compo-
nents: the differential Lindblad torque and the corotation
torque. Early work on planetary migration consisted in de-
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2 On the Migration of Protogiant Solid Cores

termining the sign and value of the differential Lindblad
torque in a two-dimensional disk (Ward 1986), since this
torque, in the linear regime, typically exceeds the coorbital
corotation torque and therefore dictates the direction and
timescale of planetary migration. This work indicated that
planetary migration in most cases corresponds to an or-
bital decay towards the center, and that it is a fast process,
thus posing a threat for the survival of protoplanets em-
bedded in protoplanetary disks. Later efforts focused on
the corotation torque (Ward 1989) and on the disk’s verti-
cal extent and pressure effects on the differential Lindblad
torque (Artymowicz 1993). The analytical predictions in
the linear regime were checked by numerical integration of
the differential equations (Korycansky & Pollack 1993). Fi-
nally, Tanaka et al. (2002) have given an expression of the
tidal torque, in the linear regime, that takes into account
both the Lindblad and coorbital corotation torques, and
that fully takes into account the three dimensional struc-
ture of the disk. These analytical or semi-analytical studies
all consider small mass planets, for which a linear approx-
imation of the disk response is valid. Other studies dealt
with a strongly non-linear case, that of embedded giant
planets (Lin & Papaloizou 1986a,b). They showed that a
giant planet tidally truncates the disk by opening a gap
around its orbit, and that it is then locked in the viscous
disk evolution, a process that was much later referred to
as type II migration (Ward 1997). A more recent work
(Masset & Papaloizou 2003) considers the case of sub-giant
planets (planets which have a mass of the order of a Saturn
mass, if the central object has a solar mass) embedded in
massive disks. This work shows that the coorbital coro-
tation torque may have a strong impact on the migration,
and can lead to a runaway of the latter, either inwards or
outwards. As this mechanism heavily relies upon the finite
width of the horseshoe region, it also corresponds to a non-
linear mechanism. The onset of non-linear effects should
therefore occur below a sub-giant planet mass, but the first
manifestation of these effects and their impact on planetary
migration have not been investigated thus far. Korycansky
& Papaloizou (1996), by writing the flow equations in di-
mensionless units, have shown that the flow non-linearity is
controlled by a parameter M = q1/3/h, where q = Mp/M∗

is the planet mass to star mass ratio and h = H/r is the
disk aspect ratio. The linear limit corresponds to M → 0,
while the condition M > 1 has been considered as a neces-
sary condition for gap clearance, and has sometimes been
referred to as the gap opening thermal criterion, although
a recent work by Crida & al. (2006) has revisited the con-
ditions for gap opening.

In the last few years, the increase of computational re-
sources has made possible the evaluation of the disk torque
exerted on an embedded planet by means of hydrodynami-
cal calculations, both in two dimensions (Lubow et al. 1999;
Nelson et al. 2000; D’Angelo et al. 2002; Masset 2002; Nel-
son & Benz 2003a,b) and three dimensions (D’Angelo et
al. 2003; Bate et al. 2003), both for small mass planets
and for giant planets. In particular, the case of small mass
planets allows comparison with analytical linear estimates.

This was done by D’Angelo et al. (2002, 2003) and Bate et
al. (2003), who compared the torques they measured with
the estimate by Tanaka et al. (2002). Although D’Angelo
et al. (2002) and Bate et al. (2003) found results in good
agreement with linear expectations, D’Angelo et al. (2003)
found a significant discrepancy for planet masses in the
range 5–20 M⊕. Namely, they found that migration in this
planet mass range may be more than one order of magni-
tude slower than expected from linear estimates. In the
same vein, Masset (2002) found that planetary migration
for the same planet masses can be much slower, or even re-
versed, compared to linear estimates. Since the migration
of protoplanetary cores of this mass constitutes a bottle-
neck for the build up of giant planets cores (as this build
up is slow, while the migration of these cores is fast), it is
fundamental to establish whether this effect is real and, if
confirmed, to investigate the reasons of this behavior. We
shall hereafter refer to this discrepancy as the offset.

We adopt for the presentation of our results a heuristic
approach that consists first in presenting the set of prop-
erties that we could infer from our calculations, and then
in interpreting and illustrating them through the appropri-
ate analysis. Besides its pedagogical interest, this approach
also closely follows our own approach to this problem.

In § 2.4, we describe the two independent codes that we
used to check the properties of the offset, and we give the
numerical setup used by each of these codes. In § 3 we
list the set of properties of the offset that our numerical
experiments allowed us to identify, namely:

• The offset scales with the vortensity gradient (the
vortensity being defined as the vertical component of
the vorticity divided by the surface density).

• The offset value varies over the horseshoe libration
timescale, and tends to small values at small viscos-
ity, whereas it remains large at high viscosity.

• The maximum relative offset occurs for a planet mass
that scales as h3.

We then interpret these properties as due to a non-linear
behavior of the coorbital corotation torque that exceeds
its linearly estimated value. Using the link between coor-
bital corotation torque and horseshoe zone drag (Ward
1991, 1992; Masset 2001, 2002; Masset & Papaloizou 2003),
we perform in § 4 a streamline analysis in order to check
whether the coorbital corotation torque excess is associ-
ated to a horseshoe zone width excess. We find that this
is indeed the case. In § 5, we relate this width excess of
the horseshoe region to a transition of the flow properties
in the planet vicinity, from the linear regime to the large
mass case in which a circumplanetary disk surrounds the
planet. We finally discuss in § 6 the importance of these
properties for the migration of sub-critical solid cores. We
sum up our results in § 7.
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2. Hydrodynamical codes and numerical set

up

We used two independent hydro-codes to perform our
tidal torque estimates. One of these codes is the 3D nested
grid code NIRVANA, the other one is the 2D polar code
FARGO. The use of these codes was complementary: while
FARGO suffers from the 2D restriction and its outcome is
plagued by the use of a gravitational softening length, it
enables one to perform a wide exploration of the parameter
space (mainly, in our case, in term of planet mass, surface
density slope, disk thickness and viscosity). The properties
suggested by the FARGO runs can later be confirmed by
much more CPU-demanding 3D runs with NIRVANA.

2.1. The NIRVANA code

This code is a descendant of an early version of the MHD
code NIRVANA (Ziegler & Yorke 1997), hence the name.
For the current application, the magnetic terms in the MHD
equations are excluded. The code features a covariant Eule-
rian formalism that allows to work in Cartesian, cylindrical,
or spherical polar coordinates in one, two, or three dimen-
sions. The MHD equations are solved on a staggered mesh,
with a constant spacing in each coordinate direction via a
directional splitting procedure, whereby the advection part
and the source terms are dealt with separately. The advec-
tion of the hydrodynamic variables is performed by means
of a second-order accurate scheme that uses a monotonic
slope limiter (van Leer 1977), enforcing global conservation
of mass and angular momentum. Viscous forces are imple-
mented in a covariant tensor formalism. The code allows
a static mesh refinement through a hierarchical nested-grid
structure (D’Angelo et al. 2002, 2003). The resolution in-
creases by a factor 2 in each direction from a sub-grid level
to the next nested level. When employed in a 3D geometry,
this technique produces an effective refinement of a factor
8 from one grid level to the next one.

2.2. The FARGO code

The FARGO code is a staggered mesh hydro-code on a
polar grid, with upwind transport and a harmonic, second
order slope limiter (van Leer 1977). It solves the Navier-
Stokes and continuity equations for a Keplerian disk subject
to the gravity of the central object and that of embedded
protoplanets. It uses a change of rotating frame on each
ring that enables one to increase significantly the time step
(Masset 2000a,b). The hydrodynamical solver of FARGO
resembles the widely known one of the ZEUS code (Stone
& Norman 1992), except for the handling of momenta ad-
vection. The Coriolis force is treated so as to enforce an-
gular momentum conservation (Kley 1998). The mesh is
centered on the primary. It is therefore non-inertial. The
frame acceleration is incorporated in a so-called potential
indirect term. The full viscous stress tensor in cylindrical
coordinates of the Navier-Stokes equations is implemented
in FARGO. A more detailed list of its properties can be

found on its website1.

2.3. Units

As is customary in numerical calculations of disk-planet
tidal interactions, we use the planet orbital radius a as the
length unit, the mass of the central object M∗ as the mass
unit, and (a3/GM∗)

1/2 as the time unit, where G is the
gravitational constant, which is G = 1 in our unit system.
Whenever we quote a planet mass in Earth masses, we as-
sume the central object to have a solar mass. We note Mp

the planet mass and q = Mp/M∗ the planet to star mass
ratio.

2.4. Numerical Set up

Both codes use an isothermal equation of state with a
given radial temperature (or sound speed) profile. If P
is the (vertically integrated for FARGO) pressure and ρ
the (vertically integrated for FARGO) gas density, then the
equation of state is P = c2

sρ. The disk vertical scale-height
is H(r) = cs(r)/Ω(r), where Ω(r) is the disk angular fre-
quency at radius r. The disk aspect ratio, h(r) = H(r)/r,
is taken uniform in the disks that we simulate, and it varies
from h = 0.03 to h = 0.06 depending on the runs.

The softening length is applied to the planet potential
in the following manner:

Φp = − GMp
p

r2
p + ǫ2

, (1)

where Φp is the planet potential, rp the distance to the
planet, and ǫ is the softening length.

In all the runs presented in this work, the planet is held
on a fixed circular orbit. Moreover, there is no gas accretion
onto the planet. This is quite different from the prescrip-
tion of D’Angelo et al. (2003) and Bate et al. (2003). How-
ever, we shall see that the effect we investigate is related
to the coorbital corotation torque, which itself is related
to the horseshoe dynamics. In the case in which accretion
is allowed, the flow topology in the planet vicinity is more
complex than in a non-accreting case, with an impact on
the horseshoe zone and on the coorbital corotation torque
value. In order to retain only the physics relevant to the
effect we are interested in, we discard gas accretion onto
the planet. It should however be kept in mind that this
is not realistic for planet masses Mp & 15 M⊕. Nonethe-
less, the phenomenon we describe does persist, and indeed
was originally observed, when planetary cores are allowed
to accrete.

In our runs the disk surface density is initially axisym-
metric and has a power-law profile: Σ(r) = Σ0(r/r0)

−α,
where r0 = 1 is the radius at which the surface density is
Σ0. The kinematic viscosity has a uniform value over the
disk. We have adopted a reference set up which closely
resembles the one of D’Angelo et al. (2003) or Bate et al.
(2003). Its characteristics are listed in Table 1. Whenever

1See: http://www.maths.qmul.ac.uk/∼masset/fargo
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Table 1

Disk parameters for the reference calculations. There is no accretion onto the planets.

Parameter Notation Reference value

Aspect ratio h 0.05
Surface density slope α 1/2
Viscosity ν 10−5

we vary one disk parameter (e.g. aspect ratio or viscosity),
we adopt for the other parameters the reference values. For
a given set of disk parameters, we perform several calcula-
tions with different planet masses.

We list below the details specific to each code:

• In the 3D-NIRVANA runs, the computational do-
main is a spherical sector [Rmin, Rmax]×[θmin, θmax]×
2π, whose radial boundaries are Rmin = 0.4, Rmax =
2.5. Symmetry is assumed relative to the disk mid-
plane and only the upper half of the disk is simu-
lated, hence θmax = 90◦. The minimum co-latitude,
θmin, varies from 80◦ to 82.5◦, according to the
value of the aspect ratio h. The vertical extent of
the disk comprises at least 3 pressure scale-heights.
Outgoing-wave (or non-reflecting) boundary condi-
tions are used at the inner radial border (Godon
1996). In order to exploit the mirror symmetry of
the problem with respect to the disk equatorial plane
(the disk and the planet orbit are coplanar), a sym-
metry boundary condition was used at the disk mid-
plane, which enables us to simulate only the upper
half of the disk. Finally, reflecting boundary con-
ditions were used at the outer radial border, which
is located sufficiently far from the orbit so that the
wake reflection will not alter our torque evaluation,
and at θ = θmin, where the matter is so rarefied
that the choice of the boundary condition has vir-
tually no impact on the flow properties on the bulk
of the disk. The reference frame has its origin on the
center of mass of the star-planet system and coro-
tates with the planet. The grid hierarchy consists
of a basic mesh with (NR, Nθ , Nφ) = (143, 13, 423)
grid zones and 4 additional sub-grid levels centered
at the planet’s position, each with (64, 12, 64) grid
zones. The initial vertical density distribution is
that of an unperturbed disk in hydrostatic equilib-
rium, which in spherical coordinates reads ρ(t =
0) = ρ0(R) exp [(sin θ − 1)/h2]/(sin θ)(α+1), where
ρ0 ∝ 1/R(α+1) and the sound speed is assumed to
scale as cs ∝ h/

√
R sin θ. Such density profile is sta-

tionary in the limit Mp → 0. The initial surface
density, obtained by integrating the mass density in
θ, is Σ = Σ0(a/R)α, where Σ0 = 2.9 × 10−4. Calcu-
lations were performed for many values of the planet
to star mass ratio, from q = 10−6 to q = 2 × 10−4,
in disks with various values of the initial density

slope α, aspect ratio h, and kinematic viscosity ν.
Simulations were run for up to 140 orbital periods
to measure (partially) saturated coorbital corotation
torques. Shorter runs (10 orbits) were used to mon-
itor (partially) unsaturated corotation torques. In
3D calculations, torques arising from the Roche lobe
are not very sensitive to the choice of the softening
parameter, ǫ, in the planet gravitational potential,
as long as it is a small fraction of the Hill radius
RH = a(q/3)1/3. We used ǫ = 0.1RH . However,
some models were also run with a smaller softening
length and produced no significant differences.

• In the 2D-FARGO runs, the mesh inner boundary
is at Rmin = 0.5 and the mesh outer boundary is
at Rmax = 2.1. A non-reflecting boundary condi-
tion was used at each boundary. The resolution is
of Nrad = 153 zones in radius and Nφ = 600 zones
in azimuth. The mesh spacing is uniform both in
radius and in azimuth. The frame corotates with
the planet. The value of Σ0 is 6 × 10−4. The po-
tential softening length is ǫ = 0.3H . This value is
quite low. Preliminary calculations have shown that
the offset is much larger at small potential softening
length value, which is why we adopted this value. For
a given set of disk parameters, we performed 35 calcu-
lations with 35 different planet masses, in geometric
sequence and ranging from q = 10−6 to q = 10−3.5:
qi = 10−6+2.5i/34, 0 ≤ i ≤ 34. Most of the calcula-
tions are run for 100 orbits, in order for the coorbital
corotation torque to saturate if the disk parameters
imply its saturation. We have also performed series
of short runs for 10 orbits, in order to have an unsat-
urated corotation torque.

2.5. Torque evaluation

• In the 3D runs, the gravitational torques acting on
the planet are evaluated either every 5 orbits (long-
run simulations) or every orbit (short-run simula-
tions). In the first case, the total torque is aver-
aged over the last 30 orbital periods of the calcula-
tion whereas, in the second case, it is averaged from
t = 7 and t = 10 orbits. As mentioned in § 2.4,
accretion onto the planetary core is not allowed. In
the low mass limit, this leads to the formation of
a gas envelope around the planet. The size of the
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envelope depends on the core mass and is a frac-
tion of RH . To avoid the envelope region, torque
contributions from within the Hill sphere were dis-
carded. This choice may occasionally result in some
corotation torques being unaccounted for. When this
happens, the departure from the linear regime may
be underestimated. However, tests performed by ex-
cluding torques from a region of radius 0.5RH

2 indi-
cate that the effects would not significantly change
the results of this study. Therefore, this choice is
conservative since it may occasionally underestimate
the excess of coorbital corotation torques but assures
that our analysis is not affected by spurious torques
from material possibly bound to the core.

• In FARGO, the torque exerted by the disk onto the
planet is evaluated every 1/20th of orbit. In the long
runs case (100 orbits), the torque value is averaged
from t = 40 to t = 100 orbits, in order to discard
any transient behavior at the beginning of the cal-
culation, due to corotation torque (possibly partial)
saturation on the libration timescale. In the short
runs case, we generally take (unless otherwise stated)
the torque average between t = 6 and t = 7 orbits.
We also entertained the issue whether the Roche lobe
material must be taken into account. The FARGO
code, in its standard version, outputs both the torque
exerted by the totality of the disk onto the planet,
without a special treatment of the Roche lobe mate-
rial, and the torque obtained by tapering the torque
arising from the Roche lobe and its surroundings by
1− exp[−(rp/RH)2], where rp is the zone center dis-
tance to the planet. We show in § 3 that taking or
not the Roche lobe content into account does make
a difference, but that qualitatively one obtains the
offset properties in both cases. We have chosen to in-
clude the Roche lobe content in the torque evaluation
for the FARGO calculations presented in this work.
There is another reason for this choice, namely that
the material that should be discarded in the torque
calculation should be the one pertaining to the cir-
cumplanetary disk: one would define the system of
interest as {the planet + the circumplanetary disk}.
If the circumplanetary disk has a radius that scales
with RH and that amounts to several 0.1RH for large
planet masses, this is not true for the small planet
masses that represent most of the mass interval over
which we perform the calculations. For these small
masses, the circumplanetary disk has a radius much
smaller than a few 0.1RH , or may not even exist, as
we shall see in § 5.

2The net torque exerted by material deep inside the Hill sphere
of a non-accreting planet is negligible if density gradients are
appropriately resolved (D’Angelo et al. 2005).

Fig. 1.— Negative specific torque acting on the planet, as
a function of its mass, in the reference disk for the 2D case.
The solid line with diamonds shows the torque computed
with Roche lobe tapering, while the dashed line shows the
torque computed without special treatment of the Roche
lobe zones. The solid line with stars shows the results of
the three dimensional calculations, scaled by Σ2D

0 /Σ3D
0 =

60/29. We note that the offset depth is larger in the 3D
case.

3. Offset properties

3.1. Reference run

3.1.1. 2D results

Figure 1 shows the results of the reference run, corre-
sponding to the parameters of Table 1, both with and with-
out Roche lobe tapering. Both curves show the offset near
q = 10−4. However the curves do not coincide, and the
offsets have slightly different shapes, which indicates that
it is due to material located inside of the Hill sphere or in
its immediate vicinity.

As mentioned in the Introduction, previous two-dimen-
sional simulations by D’Angelo et al. (2002) have appar-
ently missed the offset feature shown in Figure 1. The most
likely reason why this happened is the use of an extremely
small softening parameters (on the order of 0.02RH ), asso-
ciated with the action of torques deep inside the planet’s
Hill sphere (at distances from the planet rp . 0.2RH ). We
shall see in § 5 that for such a small softening length we
should expect the offset feature to peak at q < 10−6, which
is not in the mass range covered by D’Angelo et al. (2002).
Furthermore, their analysis is complicated by the inclusion
of accretion and the presence of a gap or dip in the initial
surface density profile. We also performed a set of calcula-
tions with NIRVANA in 2D mode, using the reference pa-
rameters and adopting a setup similar to that of FARGO.
The resulting specific torque versus the planetary mass is
consistent with the solid line with diamonds in Figure 1.
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3.1.2. 3D results

The behavior of the total specific torque exerted by the
planet on a three-dimensional disk, for the parameters given
in Table 1, is illustrated in Figure 1. The departure from
the total torque predicted by the linear theory is largest at
q = 5×10−5. A comparison between Figure 1 and Figure 6
in D’Angelo et al. (2003) allows to evaluate the impact of
core accretion on the excess of corotation torques. This rep-
resents an important issue since around 10 M⊕ the runaway
gas accretion phase is most likely to occur (e.g., Wuchterl
1993; Pollack et al. 1996; Hubickyj, Bodenheimer, & Lis-
sauer 2005). Accretion on the planet seems to enhance the
excess of coorbital corotation torques, over the predictions
based on the linear regime, since it affects the width of the
horseshoe region. The location where the offset is maximal
recedes from q = 5 × 10−5, when cores are non-accreting,
to q = 3 × 10−5, when cores accrete at maximum rate.

3.2. Dependence on the vortensity gradient

3.2.1. 2D results

Figure 2a shows the results of a set of calculations with
four different disks, having different surface density slopes.
The set that exhibits the smallest departure to a linear
trend (straight line) corresponds to α = 3/2, i.e. to a flat
vortensity profile, since d log(Σ/B)/dr = 3/2 − α.

Figure 2b shows the quantity

Eα(q) = 1 − Tα(q)

q2

q2
min

Tα(qmin)
, (2)

where Tα(q) is the disk torque on the planet with planet
to star mass ratio q when the disk surface density slope
is α, and qmin is the minimal mass ratio in our sample
(here qmin = 10−6). Whenever the disk response is linear,
the torque scales with q2 and Eα vanishes. The quantity
Eα(q) is therefore a measure of the departure from linear-
ity3 of the torque. It reaches unity when the total torque
cancels out, and exceeds one when migration is reversed.
From Figure 2b we can see that for q > 10−4, the torque
value differs from its linearly extrapolated value, regard-
less of the vortensity slope. For smaller masses, the depar-
ture from the linearly predicted value is larger for larger
vortensity slopes. Although the flat surface vortensity pro-
file (α = 3/2) does not have a vanishing Eα, it is neverthe-
less the profile that exhibits the smallest departure to linear
prediction (by at most 10 % up to q ∼ 1.5 × 10−4). The
dashed and dotted line show the curve of E0 for the flat sur-
face density profile (maximal vortensity slope) respectively
scaled by 2/3 and 1/3. These curves show that the depar-
ture to linearity approximately scales with the vortensity
slope.

3By this we mean the departure from the torque value predicted
by a linear analysis of the disk-planet interaction. Naturally, it
is also the departure from the linear scaling of the torque with
q2.

3.2.2. 3D results

The left panel of Figure 3 shows the specific torque ex-
erted by the disk on the planet, obtained from 3D calcula-
tions with different surface density slopes, α. Torques are
(partially) saturated, which means that they have reached
their steady state value, which is a fraction of their initial
(unsaturated) value. The behavior of the quantity Eα is
illustrated in right panel for the same models. As observed
in the 2D results, the departure from the linear (type I)
regime, increases with increasing vortensity gradient.

3.3. Dependence on the viscosity

The previous section suggests that the offset is linked
to the coorbital corotation torque, since it scales with the
vortensity gradient across the orbit. For the vortensity
slopes considered, the coorbital corotation torque acting on
the planet is positive. Note that as the offset corresponds
to a positive value added to the linearly expected torque
value, this would suggest that the offset corresponds to a
corotation torque larger than predicted by the linear analy-
sis. If the offset is indeed due to the corotation torque, then
it should depend on the disk viscosity, since the corotation
torque depends on it (Ward 1992; Masset 2001, 2002; Balm-
forth & Korycansky 2001; Ogilvie & Lubow 2003). We have
undertaken additional sets of calculations, in which we take
the reference values of Table 1, except that we vary the disk
viscosity ν.

3.3.1. 2D results

We have taken twice the viscosity reference value (ν =
2×10−5), and half the reference value (ν = 5×10−6). The
results are presented in Figure 4. The trend observed on
this figure is compatible with the saturation properties of
the corotation torque. The largest offset is observed for the
early torque value, i.e. the unsaturated one, while as the
viscosity decreases the departure from linearity decreases
as well. Quantitatively, the behavior observed is also in
agreement with a corotation torque saturation. The latter
depends on the ratio of the libration timescale in the horse-
shoe region and the viscous timescale across it (Ward 1992;
Masset 2001, 2002). We can for instance evaluate how sat-
urated the corotation torque should be for q = 10−4. The
horseshoe zone half width xs for such planet mass in a disk
with h = H/r = 0.05 can be estimated by equating the lin-
ear estimate of the coorbital corotation torque (Tanaka et
al. 2002) and the horseshoe drag (Ward 1991, 1992; Masset
2001). One is led, in a two-dimensional disk, to:

xs = 1.16a

r

q

h
. (3)

This yields here xs = 0.052. The ratio R defined by Masset
(2001) is therefore R = 0.07 for the reference run, R = 0.14
for the larger viscosity run, and R = 0.035 for the lower
viscosity run. To within a numerical factor, R represents
the ratio of the libration timescale to the viscous timescale
across the horseshoe region, and therefore indicates whether
the corotation torque should saturate (at low R) or remain
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Fig. 2.— 2D results. Left: Negative of specific torque acting on the planet, as a function of its mass, for four values of the
surface density slope: α = 0 (diamonds), α = 1/2 (reference calculation, triangles), α = 1 (squares) and α = 3/2 (crosses).
The hole in the data for the flat surface density profile corresponds to a torque reversal. Right: departure from linearity
for the same surface density slopes (same symbols). The meaning of the additional lines is explained in the text.

Fig. 3.— 3D results. Left. Negative of the specific torque exerted on the planet, as a function of its mass, for different
values of the surface density slope: α = 0 (asterisks), α = 1/2 (diamonds), α = 3/4 (triangles), and α = 3/2 (pentagons).
The gap in the data for the α = 0 case corresponds to situations where the total torque is positive. Right. Departure from
linearity (eq. [2]) for the same values of α (same symbols identify same models).
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Fig. 4.— Left: Specific torque acting on the planet as a function of the planet mass for different disk viscosities: ν = 5×10−6

(triangles), ν = 10−5 (reference calculations, diamonds), ν = 2 × 10−5 (squares). The curve with crosses shows the torque
of the reference calculations averaged between t = 6 and t = 7 orbits, i.e. the early value of the torque, before it possibly
saturates. Right: The value of Eα (given by eq. [2]) for these calculations (same symbols).

unsaturated (at higher R). From Figure 2 of Masset (2002),
one can infer that the coorbital corotation torque should be
about 40 % of its unsaturated value for the smaller viscosity
calculation, 60 % for the reference calculation, and 80 % for
the larger viscosity calculation. The scatter of the curves
of Figure 4b is roughly compatible with these expectations.
We note in passing that (i) this estimate is only an order of
magnitude estimate, since we inferred the value of xs from
linear calculations, whereas we suspect the offset to be due
to a corotation torque value that differs from the linear esti-
mate and (ii) it is by chance that the reference calculation,
which takes the parameters of D’Angelo et al. (2003) and
Bate et al. (2003), corresponds precisely to a corotation
torque that is half saturated, so that varying slightly the
viscosity with respect to the reference one yields a strong
variation of the offset amplitude. We finally note that the
saturation of the corotation torque depends on the planet
mass, for a fixed viscosity. The smaller the planet mass, the
less saturated is the corotation torque. We observe this be-
havior in Figure 4b. Quite surprisingly however, the torque
is found to depend (weakly) on the viscosity at very small
q, whereas one would expect the corotation torque to be
unsaturated. The evolution of the surface density profile
is too weak to account for this observation. We have not
investigated further this behavior, which we believe to be of
minor importance for the work presented here. Neverthe-
less, we suggest that it is linked to a drop of the coorbital
corotation observed by Masset (2002), when the viscosity
is larger than the so-called cut-off viscosity, which corre-
sponds to the viscosity for which the time needed by a fluid
element to drift from the separatrix to the corotation is
also half the libration time of this fluid element. This limit
viscosity νl is given by νl ∼ x2

sΩp/4π (Masset 2001, 2002).
Using eq. [3], this translates into νl ∼ 0.1a2Ωpq/h. We
should observe a drop of the corotation torque (and there-
fore a dependence of the torque on the viscosity) for ν & νl,

i.e. for q . ql ∼ 10hν/(a2Ωp). For the reference calcula-
tion, we have ql ∼ 5×10−6, while we get twice and half this
value for the higher and lower viscosity runs, respectively.
The curves of Figure 4a are roughly compatible with these
expectations, although around q ∼ 10−5 it is difficult to
disentangle this effect from the onset of the departure from
linearity of the torque.

3.3.2. 3D results

As explained above, torques evaluated at early times
contain coorbital corotation torques that are unsaturated
and thus their effect is the strongest. At later evolution-
ary times, the effects of corotation torques may tend to
weaken. Figure 5 illustrates the behavior of saturation on
the total specific torque, as a function of the planet mass,
obtained from calculations with a flat initial surface density
(α = 0). The asterisks represent torques measured around
100 orbits, when corotation torques are partially saturated
whereas diamonds refer to torques measured between 7 and
10 orbits, before saturation occurs. The offset reduces as
corotation torques saturate. The planet mass for which the
offset is maximum shifts towards larger values and the range
of masses in which the total torque is positive shrinks (see
Fig. 5). However, a finite mass interval persists in which
the departure from the linear regime can still be very large.

3.4. Dependence on the disk thickness

The two previous sections strongly suggest that the off-
set is indeed a physical effect, independent on the code used,
and that it is linked to an excess of the coorbital corotation
torque with respect to its linearly estimated value. This
therefore implies that the offset corresponds to the onset
of non-linear effects in the flow. The flow non-linearity
depends on the parameter M = q1/3/h (Korycansky & Pa-
paloizou 1996). The onset of this behavior should therefore
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Fig. 5.— Negative of the specific torque acting on the
planet, as a function of its mass, for models with α = 0.
Asterisks indicate torques, from long-run simulations, for
which corotation torques are saturated. Diamonds repre-
sent torques at early times (between 7 and 10 orbits), hence
corotation torques are unsaturated.

be observed for a planet to primary mass ratio q ∝ h3. We
have undertaken additional series of calculations in which
we take the reference parameters of Table 1, except that we
vary the disk aspect ratio.

3.4.1. 2D results

We ran series of calculations with h = 0.035, h = 0.04,
h = 0.045, h = 0.055 and h = 0.06, in addition to the
reference calculation with h = 0.05. For each series, we es-
timate the mass for which the departure to linearity given
by equation (2) is maximal. We refer to this mass as the
critical mass, and we denote qc its ratio to the primary
mass. This mass is determined from a parabolic interpola-
tion of the data point which has the largest departure and
its two neighbors. Since the disk viscosity is kept constant
and equal to its reference value in all these calculations, and
since the critical mass varies between two sets of calcula-
tions, we expect different saturation levels of the coorbital
corotation torque at the critical mass, on the long term.
This could mangle our analysis, and it is therefore impor-
tant to take the unsaturated torque value. This is why
the Eα(q) values in the analysis of this section are evalu-
ated using the torque value averaged between t = 3 and
t = 5 orbits. The results are presented in Figure 6. We see
on this figure that there is an excellent agreement between
the results of the calculations and the expectation qc ∝ h3.
This is a strong point in favor of our hypothesis that this
behavior is due to the onset of non-linear effects.

Fig. 6.— Critical mass qc for maximal offset as a func-
tion of the disk thickness, for the 2D runs. The dotted,
dashed and dot-dashed lines show respectively the relation-
ships qc ∝ h2, qc ∝ h4 and qc ∝ h3 that pass through the
leftmost data point. The error bars indicate the sampling
of data points around the critical mass.

Fig. 7.— Negative of the specific torque acting on the
planet as a function of the planet to primary mass ratio,
for different values of h: 0.06 (asterisks), 0.05 (triangles),
0.04 (diamonds), and 0.03 (circles). Torques are measured
at early times (between 7 and 10 orbits) so that corotation
torques are unsaturated. Gaps in the curves identify the
ranges of planetary masses for which the total torque is
positive.
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Fig. 8.— Critical mass versus the relative disk thickness
obtained from 3D calculations. At q = qc, the offset is the
largest. The error bars indicate the sampling of the data
points around the critical mass. The dashed line identifies
the relationship qc ∝ h3 passing through the data point
with minimum h.

3.4.2. 3D results

In order to examine the dependence of the offset on the
disk aspect ratio, we set up 3D models with an initial sur-
face density slope equal to α = 0 and a relative disk thick-
ness h ranging from 0.03 to 0.06. For each value of h, a
series was built by varying the planet to star mass ratio,
q, from 10−6 to 2 × 10−4. The specific torque as a func-
tion of the planet mass, for selected disk aspect ratios, is
shown in Figure 7. In thinner (i.e., colder) disks, the off-
set of corotation torques moves towards smaller planetary
cores. When h = 0.03, the effects of the offset are domi-
nant between q ≈ 10−5 (or about 3 M⊕) and q ≈ 2 × 10−5

(or about 6 M⊕), regardless of the saturation level of coro-
tation torques. From each series, the critical mass ratio
qc was estimated by means of a parabolic interpolation, as
done for the 2D calculations. For this analysis we used to-
tal torques averaged between t = 7 and t = 10 orbits, i.e.
before the corotation torque possibly saturate, for the rea-
sons clarified in the previous section. The dependence of
the critical mass ratio on the disk thickness is illustrated in
Figure 8, along with the curve qc/qc(h = 0.03) = (h/0.03)3

(dashed line). The error bars indicate the sampling of the
data points around the critical mass and thus represent
the largest possible error on the estimates of qc. It is ev-
ident that 3D numerical results accurately reproduce the
h3-scaling expected to arise from non-linear effects in the
corotation region.

4. Streamline analysis

The calculations shown at the previous section strongly
suggest that the offset is a physical effect, and that non-
linear effects boost the corotation torque value with respect
to its linearly estimated value. There is a link between
the coorbital corotation torque and the so-called horseshoe
drag (Ward 1991, 1992; Masset 2001, 2002), which is the
torque arising from all the fluid elements of the horseshoe
region. Although the corotation torque and the horseshoe
drag have same dependency on the disk and planet param-
eters, and although the horseshoe drag may result in a very
effective concept for some aspects of planetary migration
related to coorbital material (Masset & Papaloizou 2003),
there is no reason why these two quantities should be ex-
actly the same. In particular, in the low mass regime, the
horseshoe region can be arbitrarily radially narrow, while
the corotation torque always arises, in the linear limit, from
a region of width ∼ H , which corresponds to the length-
scale over which the disturbances in the corotation vicin-
ity are damped. Nevertheless, it is instructive to investi-
gate whether the behavior found is linked to a boost of the
horseshoe region width w.r.t. its linearly estimated width.
We recall the horseshoe drag expression (Ward 1991, 1992;
Masset 2001):

ΓHS =
3

4
x4

sΩ
2
pΣ

d log(Σ/B)

d log r
, (4)

where xs is the half width of the horseshoe region, Ωp

is the planet orbital frequency and Σ is the disk surface
density at the orbit. Since, in the linear limit, the torque
scales with the square of the planet mass, we expect the
dependency xs ∝ q1/2 (see also Ward (1992)). On the large
mass side we may expect, that the horseshoe region has
a behavior similar to the one of the restricted three body
problem (RTBP) and that we have the scaling xs ∝ q1/3.
We performed an automatic streamline analysis on the flow
of the 2D reference runs4, in the frame corotating with the
planet, after t = 10 orbits (an early stage in order to avoid,
on the large mass side, a radial redistribution of the disk
material that alters the streamlines and hence the horseshoe
zone width, but still sufficiently evolved so that the flow
can be considered steady with a good approximation in
the corotating frame), in order to find the separatrices of
the horseshoe region by a bisection method. We show in
Figure 9 the half width of the horseshoe region as a function
of the planet mass. We see on this figure that:

• the horseshoe zone width indeed scales as q1/2 as long
as the planet mass remains sufficiently small, since
the data points and the dashed line have same slope
for q < 3 × 10−5;

4The runs on which the streamline analysis was performed differ
slightly from the reference runs of § 2.4: (i) the resolution was
increased, with Nrad = 386 and Nφ = 1728, and the radial
interval was narrowed, from Rmin = 0.6 to Rmax = 2.0; (ii)
the sound speed, instead of the aspect ratio, was taken uniform,
so that H(r = 1) = 0.05. Everything else corresponds to the
reference runs.
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Fig. 9.— Horseshoe zone half width as a function of the
planet mass for the 35 planets of the reference calculations.
The dashed line represents the horseshoe zone half width
expected from equation (3). It scales with q1/2. The dotted
line shows the relationship xs ∝ q1/3 that passes through
the large mass data points.

• there is a correct agreement between the coorbital
corotation torque and the horseshoe drag, since the
data points and the dashed curve, obtained from
eq. [3] by assuming a strict equality between horse-
shoe drag and linearly estimated coorbital corotation
torque, nearly coincide on this mass range.

• We also see how the horseshoe zone width scales
with q1/3 on the large mass side, as expected. The
width displayed on the dotted line however differs
from the horseshoe width of the RTBP. The latter
is xs =

√
12a(q/3)1/3, while we find that the data

points are correctly fitted by xs ≃ 2.45a(q/3)1/3 , i.e.
the horseshoe width is ∼ 1.4 times narrower than in
the RTBP.

• In between the linear range and the q1/3 scaling
range, that is for 3×10−5 < q < 1.5×10−4, the horse-
shoe zone width falls between the two regimes, which
makes it larger than its linearly estimated value for
any q > 3 × 10−5. This corresponds precisely to the
mass for which migration becomes slower than lin-
early estimated.

In order to finally assess whether the torque offset can in-
deed be due to the excess of the horseshoe zone width, we
can directly estimate the excess of horseshoe drag (w.r.t.
the linearly extrapolated value):

∆ΓHS(q) = ΓHS(q) − ΓHS(qmin)

„

q

qmin

«2

, (5)

and compare it to the total torque excess:

∆T (q) = T (q)−T (qmin)

„

q

qmin

«2

=
|T (qmin)|

q2
min

Eα(q). (6)

Fig. 10.— Horseshoe drag (dashed line) and total torque
(solid line) normalized excesses as a function of planet mass.
The shaded area shows the uncertainty on the horseshoe
drag, arising from the uncertainty on the horseshoe zone
width. If one calls x−

s (resp. x+
s ) the distance of the inner

(resp. outer) separatrix to the corotation, then the upper
(resp. lower) limit of the shaded zone is given by using
max(x−

s , x+
s ) (resp. min(x−

s , x+
s )) in equation (4), while

the dashed line uses (1/2)(x−
s + x+

s ).

The results are displayed in Figure 10, in which we di-
vide the torque values by q2. We see that the horseshoe
drag excess and the total torque excess exhibit the same
behavior and have a very similar value in the mass range
10−4 < q < 2 × 10−4, which is a quantitative confirma-
tion that the torque excess of the offset maximum is at-
tributable to the horseshoe zone width excess. We note
that although the two curves display a similar behavior for
q < 10−4, they do not coincide on this mass range, and
that the total torque excess is systematically larger than
the horseshoe drag excess. It is precisely for this mass range
(q < 10−4 ∼ h3/1.162, see equation (3) that the horseshoe
zone width is narrower than the disk thickness, so that not
all the coorbital corotation torque arises from the horseshoe
region.

5. Flow transition

The previous section shows that the torque offset is due
to a transition of the corotational flow, which has a horse-
shoe zone width ∝ q1/2 in the linear regime whereas it
scales as q1/3 in the large mass regime. Figure 11 shows the
streamline topology for different masses (A: q = 5.44×10−6;
B: q = 2.96×10−5; C: q = 8.16×10−5; D: q = 2.67×10−4).
The linear case (A) shows two stagnation points5 located

5We restrict ourselves to the case of hyperbolic points (X-type),
as these lie on the separatrices of the libration region. The flow
also features elliptic stagnation points (O-type) such as the ones
that can be found inside the region of closed streamlines in case
(A) or (D). Since those are not connected to separatrices, they
are not relevant to the present discussion.
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almost at corotation, and offset in azimuth from the planet.
These two stagnation points are not symmetric w.r.t. the
planet, and are not located on the same streamline. As
long as we are in the linear regime, they remain essentially
at the same location. Then, as the planet mass increases,
both stagnation points move towards the planet. The cen-
tral libration region defined by the separatrix of the right
stagnation point shrinks until it disappears, in which case
we only have one stagnation point (case B). As the planet
mass still increases, this unique stagnation point moves to-
wards smaller azimuth while it recedes radially from the
orbit (case C), then for larger masses one gets two stagna-
tion points practically on the star-planet axis, which yields
a picture very similar to the RTBP, where the stagnation
points are reminiscent of the Lagrange points L1 and L2,
and a prograde circumplanetary disk appears within the
“Roche lobe” (case D). This corresponds to the regime in
which the horseshoe zone width scales with q1/3.

One could argue that despite the larger resolution
adopted for the streamline analysis, the radial resolution
δr = (Rmax − Rmin)/Nrad = 3.63 × 10−3 is still too coarse
to properly describe the corotational flow of the small
mass planets, as it amounts to a significant fraction of
the horseshoe zone width. Figure 12 shows the flow for
q = 5.44×10−6 (case A) run with ten times higher a radial
resolution (Nrad = 3860, hence δr = 3.63 × 10−4). The
excellent agreement between the streamlines obtained with
the two different radial resolutions confirms a fact already
noted by Masset (2002), that even a low or mild radial
resolution associated with a bilinear interpolation of the
velocity fields allows to capture correctly the features of
the corotation region.

These flow properties are illustrated in Figure 13, which
shows both the azimuth and the distance to corotation of
the stagnation point(s). We see that for q < 2 × 10−5

we have two stagnation points located at corotation and
on each side of the planet (i.e. one at negative azimuth,
and one at positive azimuth). Around q ∼ 2 × 10−5, the
stagnation points coalesce on a narrow mass interval. Up
to q ∼ 10−4, there is a unique stagnation point located
slightly beyond corotation and at a small, negative azimuth.
Finally, at q ≈ 10−4, another bifurcation occurs, and one
recovers two stagnation points on either side of corotation,
and almost aligned with the star (|φs| ≪ |rs − rc|/a).

For a given finite potential softening length, there is a
mass limit under which a 2D flow is linear everywhere, even
at the planet location. A simple estimate of this mass limit
can be found as follows. The effective potential that dic-
tates the motion of fluid elements is Φ̃ = Φ + η, where Φ is
the gravitational potential and η is the gas specific enthalpy.
The latter reads η = η0 + η′, where η0 is the fluid specific
enthalpy of the unperturbed flow, which is a uniform quan-
tity as the disk has initially a uniform sound speed and
a uniform surface density, and where η′ = c2

s log(Σ/Σ0) is
the perturbation of the specific enthalpy introduced by the
planet. Similarly, the gravitational potential can be written
as Φ = Φ∗ + Φp, where Φ∗, the gravitational potential of
the central star, corresponds to the unperturbed flow and

Fig. 11.— Streamline appearance for the four planet
masses quoted in text, at t = 10 orbits. The radial range
is the same for cases A and B, and for cases C and D. It is
ten times larger for the latter than from the former. The
aspect ratio is 1 : 1 for the cases C and D.

where Φp, the gravitational potential of the planet, corre-
sponds to the perturbation. Hence the effective potential
can be decomposed as Φ̃ = Φ̃0 + Φ̃′, where Φ̃0 = Φ∗ + η0 is
its value in the unperturbed flow while Φ̃′ = Φp + η′ is its
perturbed value.

Figure 14 shows that the two quantities Φp and η′ are
of the same order of magnitude and of opposite sign in
the planet vicinity, so that the perturbed effective potential
reduces to a tiny fraction of the absolute value of either
quantity. A condition for the flow linearity is that |Σ −
Σ0|/Σ0 ≪ 1, which therefore translates into |η′|/c2

s ≪ 1,
or, at the planet location, into:

rB ≪ ǫ, (7)

where

rB =
GMp

c2
s

(8)

is the planet’s Bondi radius. The flow linearity in the planet
vicinity in a 2D calculation is therefore controlled by the
ratio of the potential softening length to the Bondi radius.
Figure 15 shows the absolute value of the azimuth of the
left stagnation point as a function of mass, for the runs
described below as well as for a similar set of runs with a
smaller softening length (ǫ = 0.1H = 0.005). In both cases,
we see that as long as the planet’s Bondi radius is much
smaller than the softening length, the stagnation point has
an almost fixed and large value, so that it resides far from
the planet, whereas it lies within the Bondi radius when the
latter is larger than the potential softening length. The de-
parture from linearity therefore occurs at lower mass in the
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smaller softening length case. Assuming that the horse-
shoe zone separatrix does not intersect any shock (a rea-
sonable assumption for small mass planets), one can use
the invariance of the Bernoulli constant in the corotating

Fig. 12.— Streamline appearance for the planet mass A
quoted in text, at t = 10 orbit, with a radial resolution ten
times higher than in Figure 11. The streamlines appearance
and the position of the stagnation points is almost indistin-
guishable from the lower resolution case. The square shows
a zone from the high resolution mesh.

Fig. 13.— Azimuth φs of the stagnation point(s) (solid
line) and radial distance to corotation (rs − rc) of the fixed
point(s) (dashed line) as a function of the planet mass.
The gray shaded zone shows the mass interval over which
there is a unique stagnation point. The four vertical dot-
dashed lines show the masses for which the flow topology
is sketched in Figure 11.

Fig. 14.— This graph shows log(Σ/Σ0) (dotted line),
Φp/c2

s (dashed line) and their sum (Φ̃′/c2
s , solid line) as

a function of azimuth at r = 1 for the case A (planet
mass q = 5.44 × 10−6) with the very high radial resolu-
tion (Nrad = 3860). We note in passing that the close up
shows two relative extrema (shown by vertical dotted lines)
which correspond to the position of the stagnation points
shown in Figure 11. The Bondi radius to softening length
ratio for this planet is rB/ǫ = 0.145 ≪ 1, which implies that
the flow is linear even at the planet location. We see that
indeed the maximum value of |Σ − Σ0|/Σ0 ≈ log(Σ/Σ0) is
of the order of the above ratio.

frame, in the steady state, to relate the perturbed quanti-
ties at the stagnation point to the horseshoe zone width.
The Bernoulli constant reads:

J =
u2 + r2(Ω − Ωp)2

2
+ Φ − r2Ω2

p

2
+ η. (9)

This expression reduces, at a stagnation point located on
the orbit, to:

Jstag = Φ∗(a) + η0 + Φ̃′
S − a2Ω2

p

2
, (10)

while it reads

Jsep =
(a + xs)

2[Ω(a + xs) − Ωp]2

2
+ Φ∗(a + xs)

+η0 −
(a + xs)

2Ω2
p

2
(11)

on the separatrix, far from the planet, where the effec-
tive potential essentially reduces to its unperturbed value
Φ∗ + η0. Equating equations (10) and (11) and expanding
equation (11) to second order in (xs/a) yields:

xs =
1

Ωp

r

−8

3
Φ̃′

S . (12)

The horseshoe zone half width is therefore simply related to
the value of the Bernoulli constant at the stagnation point.
We can understand the boost of the horseshoe region width
in the transition region as follows:
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Fig. 15.— Negative of the azimuth of the left stagnation
point as a function of the planet mass for the standard
softening length case (ǫ = 0.3H , solid line) and for a three
times smaller softening length case (ǫ = 0.1H , dash-dotted
line). The dashed line shows the Bondi radius as a func-
tion of the planet mass. The horizontal dotted line shows
the standard softening length (ǫ = 0.015) while the hor-
izontal three-dot-dashed line shows the shorter softening
length (ǫ = 0.005). The vertical lines show the mass for
which the planet’s Bondi radius is equal to the potential
softening length in both cases. We see that the stagnation
point enters the Bondi sphere when rB ≈ ǫ.

• as long as the flow remains linear, the stagnation
point is located at a fixed position far from the
planet. It therefore samples a value of the perturbed
Bernoulli constant that simply scales with q, hence
the horseshoe zone width scales with q1/2.

• When rB ∼ ǫ, the stagnation point begins to move
towards the planet (see Fig. 15), which implies that
|Φ̃′

S |/q is no longer a constant but increases with q,
as the stagnation point goes deeper into the effective
potential well of the planet. As a consequence the
horseshoe zone width increases faster than q1/2 in
this regime.

The above discussion is valid for a 2D situation with a fi-
nite potential softening length. Under these circumstances,
the dimensionless parameter that controls the flow linearity
is ǫ/rB . In a three dimensional case with a point-like mass,
we can gain some insight on the condition for the flow lin-
earity assuming a horizontal, layered motion for each slice
of disk material. Although we know that this is not strictly
the case (D’Angelo et al. 2003), it is nevertheless a useful
approximation that relates the three dimensional case to
the above discussion. In each slice, the planet potential is
the one of a 2D situation with a potential softening length
|z|, where z is the slice altitude. Therefore, if over most of
the disk’s vertical extent, the flow is linear (that is, if over
most of the disk’s vertical extent, |z| ≫ rB, which amounts
to the condition H ≫ rB) then most of the torque acting
on the planet arises from slices which contribute linearly to

the torque, hence the total torque nearly amounts to its lin-
early estimated value, whereas if the Bondi radius amounts
to a significant fraction of the disk’s vertical extent, the
layers with altitude |z| < rB have an excess of horseshoe
zone width and contribute significantly to the total torque
value, which therefore has a significant offset w.r.t the lin-
ear estimate. The condition for the appearance of the offset
in a 3D case is therefore rB ∼ H , which also reads q ∼ h3,
or using, the notation of Korycansky & Papaloizou (1996),
M ∼ 1. This is consistent with the dimensional analysis of
Korycansky & Papaloizou (1996) and with our findings of
section 3.4. We make the following comments:

• Although the Bondi sphere and the Hill sphere have
different expression and scaling with the planet mass,
they happen to coincide with the disk thickness at
roughly the same planet mass (within a factor of
3), so that characterizing the flow non-linearity by
comparing the Hill radius to the disk thickness also
amounts to comparing the Bondi radius to the disk
thickness.

• Although we probably do not have a sufficient res-
olution to properly characterize the flow within the
Bondi radius (when the softening length is shorter
than this radius), it seems that there is no trapped
region of material librating about the planet within
this radius. Indeed, in Figure 11B or C, we see that
the unique stagnation point, within the Bondi ra-
dius, splits the disk material in its vicinity into four
regions: the inner and outer disk, and the two ends
of the horseshoe region. This may have important
consequences for the numerical simulations of em-
bedded planets in non self-gravitating disks: in such
disks, a common (and still debated) practice consists
in truncating the torque summation so as to reject
the contributions from the circumplanetary material
(e.g. Masset & Papaloizou 2003), which is consid-
ered to form, together with the planet, a relevant
system that migrates as a whole, and the migration
of which is accounted for by the external forces ap-
plied (hence the truncation). In the case of embedded
small mass planets however, should it be confirmed
that no trapped circumplanetary material exists in
the planet vicinity, then no torque truncation should
be performed when evaluating the torque.

• The offset displays a remarkable amplitude in 3D cal-
culations, not even reproduced with the relatively
small softening length that we adopted in our 2D
calculations (ǫ = 0.3H). A possible explanation for
this is the vertical motion of the disk material in the
planet vicinity described by D’Angelo et al. (2003),
which results in a bent of the horseshoe streamlines
towards the planet. As a result, the stagnation point
associated to the horseshoe separatrix with altitude
z far away from the planet has an altitude |zs| < |z|.
Therefore, this stagnation point is closer to the planet
than it would be in a sliced horizontal motion ap-
proximation, hence the perturbed Bernoulli constant
at that point is larger than given by the horizontal
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motion approximation, and the associated horseshoe
separatrix is wider, yielding a larger contribution to
the coorbital corotation torque.

6. Discussion

6.1. Consequences for planetary migration

To analyze the effect of the torque offset from linearity
on the evolution of planets in disks we have performed a
set of test simulations. We start from the linear relation
for the change in semi-major axis of a planet as given by
Tanaka et al. (2002) for the 3D case which can be written
in the following form

ȧLin = − 2(1.364 + 0.541α)
Σa2

M∗

q aΩp/h2, (13)

which, in our system of units, can be recast as

ȧLin = − 2(1.364 + 0.541α) Σ0 q a3/2−α/h2, (14)

where ȧLin is now given in units of AU/yrs, and in which
we used M∗ = 1 M⊙ and r0 = 1 AU. In equation (14), Σ0

denotes the surface density at r0 in units of M∗/r2
0 . To

model deviations from linearity the above ȧLin is modified
by our numerically found offset Eα(q) as defined by equa-
tion (2), while the scaling law for the critical mass qc ∝ h3

(cf. § 3.4) is included, in the following manner:

ȧ = ȧLin

»

1 − Eα

„

qh3
0

h3

«–

, (15)

where h0 = 0.05 is the disk aspect ratio for which we have
sampled the dimensionless offset Eα(q) by 3D calculations.

To make the simulations numerically simpler the hydro-
dynamically found data points are approximated by an-
alytical functions, where we find a combination of two
Lorentzians matched at q = qc very useful. In addition
we use, for demonstration only, a linear growth law for the
planetary mass q = q0 t/tgrow. To integrate the equation a
standard 4th order Runge-Kutta scheme is used.

As an illustrative example we have performed simula-
tions for the intermediate case α = 1/2, and in Figure 16
our results are displayed. The left panel shows the offset
for the 3D case for the unsaturated and partially saturated
torques (ν = 10−5) with h = 0.05, where the symbols re-
fer to the hydrodynamical models described above and the
lines refer to the analytical fit formulae. In the right panel
we display our results on the migration of a planet in the
presence of an offset from linearity, using q0 = 10−5 and
tgrow = 105yrs. For the flaring of the disk we use h ∝ r0.28

with h = 0.07 at r = 5.2AU and a value of Σ = 300g/cm2

at r0 = 1AU, translating to Σ0 = 3.4 × 10−5.

The dashed line refers to the standard linear case, the
dotted line to the partially saturated case, and the solid
line to the unsaturated case. Clearly the offset yields an
extended migration time scale. In the partially saturated
case, where Eα remains always smaller than unity, the total
migration time (to reach r = 0) is increased by roughly
50%. In the unsaturated case, where Eα is larger than

Fig. 17.— Domain of migration reversal, in the (h, q)-
plane, in the unsaturated case (solid curves) and partially
saturated case (dashed curve). For each line style (solid
or dashed), the lower curve represents the minimal mass
for migration reversal while the upper curve represents the
maximal mass for migration reversal. At low h (hence low
q), the partially saturated and unsaturated results almost
coincide, since the corotation is very weakly saturated (we
work with a constant kinematic viscosity), while the rever-
sal domain is more narrow at large h, owing to the increas-
ing corotation torque saturation. The right axis labeling
assumes a solar mass central object.

unity at the critical qc, we find indeed a reversal of the
migration. This is possible if during the migration process
of a planet the local h(r) is such that the actual mass of
the planet is above the minimal mass for migration reversal
[i.e. the mass qmin for which Eα(qmin) = 1].

We have also thoroughly investigated the migration re-
versal domain in the flat surface density case (α = 0), for
the unsaturated case (short runs) and partially saturated
case (long runs with ν = 10−5). The results are displayed
in Figure 17. In this figure one can see that the reversal do-
main, for h = 0.03 − 0.05, typically corresponds to masses
representative of sub-critical solid cores of giant planets.

6.2. Corotation torque saturation issues

As we already mentioned in § 3.3, in the absence of any
process that allows angular momentum exchange between
the horseshoe region and the rest of the disk, the coorbital
corotation torque saturates after a few libration timescales
(Balmforth & Korycansky 2001; Masset 2002). Such ex-
change cannot be provided by pressure waves excited by
the planet, as these wave corotate with the planet and are
evanescent in the coorbital region. The viscous stress at
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Fig. 16.— Left: The departure from linearity for 3D models with α = 1/2 for the unsaturated (stars) and saturated
(squares) case. The solid and dashed lines are the corresponding analytical fit formulae used for evolving the planet. The
dashed line (E1/2 = 0) refers to the linear case. Right: The evolution of an embedded planet in the disk using these
analytical formulae (solid: unsaturated, dotted: saturated, dashed: linear).

the separatrices of the horseshoe region gives rise to a net
flux of angular momentum from this region to the inner
or outer disk. In principle, some amount of disk viscosity
should therefore be able to prevent the corotation torque
saturation. An estimate of the minimum viscosity required
to prevent the torque saturation can be determined as fol-
lows: the saturation results from the libration, which tends
to flatten out the vortensity profile across the horseshoe
region (in an inviscid 2D flow, the vortensity is conserved
along a fluid element path), while viscous diffusion tends
to restore the large scale vortensity gradient, if any. It suc-
ceeds in doing so if the viscous timescale across the horse-
shoe region is shorter than the libration timescale (Ward
1992; Masset 2001, 2002). This yields:

νm = 0.035
“ q

h

”3/2

a2Ωp, (16)

where νm is the minimal viscosity to avoid the coorbital
torque saturation (Masset et al. 2006). As can be seen
in equation (16), it is easier to desaturate the corotation
torque of lower mass planets (the minimal viscosity required
to do so is smaller). The reason for this is twofold: as the
planet mass decreases, the horseshoe zone width decreases,
therefore (i) the libration time increases, (ii) the viscous
timescale across the horseshoe region decreases. Recast in
terms of an α-parameter6, equation (16) reads:

αm = 0.035q3/2h−7/2, (17)

We can use the fact that the mass ratio q at the maximum
of the offset is a linear function of h3, that reads:

q ≈ 0.56h3, (18)

6In this section only, α denotes in a standard manner the effective
kinematic viscosity in units of H2Ω, as introduced by Shakura
& Sunyaev (1973), rather than the surface density slope index,
as previously defined.

as can be easily found from Figure 8. Using equation (18) to
substitute either h or q in equation (17), we obtain either:

αm ≈ 0.018q1/3, (19)

or
αm ≈ 0.015h. (20)

These equivalent expressions give the minimal viscosity re-
quired to prevent the saturation of the corotation torque
for a planet mass for which the offset is maximal, i.e. for
which migration could be significantly slowed down or re-
versed, provided the corotation torque amounts to a sizable
fraction of its unsaturated value. In a disk with h = 0.04,
this yields: αm = 6 × 10−4, which falls in the range of the
α values inferred from observations of T Tauri stars, for
which α = 10−4 − 10−2.

The molecular viscosity of the gas is however orders of
magnitude too low to account for such values of α. It is
generally admitted that a large fraction of a protoplane-
tary disk is subject to the magnetorotational instability or
MRI (Balbus & Hawley 1991), the non-linear outcome of
which is a turbulent state which endows the disk with an
effective kinematic viscosity of the order of magnitude of
the viscosity needed to account for the mass accretion rate
inferred from observations of T Tauri disks. In such disks,
however, the torque exerted by the gas on an embedded
protoplanet displays large temporal fluctuations that tend
to yield a random walk of the planet semi-major axis, rather
than a steady drift of the latter (Nelson & Papaloizou 2004;
Nelson 2005). Nelson (2005) has shown that even for planet
masses of the order of 10-30 M⊕ (in a disk with h = 0.07,
with no vertical stratification), the random fluctuations of
the semi-major axis overcome the effects of type I migration
on timescales of the order of O(102) orbits, while John-
son et al. (2006) argue that such diffusive migration sys-
tematically lowers the planet lifetimes, even if it allows a
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small fraction of protoplanets to “survive” migration over
the disk lifetime. In MHD turbulent disks, the stochastic
nature of the turbulent viscosity, although largely sufficient
to maintain the corotation torque unsaturated, would cer-
tainly hide the effect that we describe in this work, at least
over O(102) orbits. Should the random fluctuations average
out over longer timescales, so that a systematic drift could
be reliably measured, the effect of migration slow down of
sub-critical solid cores should become noticeable7.

There are other situations, yet numerically unexplored,
in which the disk’s turbulent state could prevent the coro-
tation torque saturation and yet be sufficiently mild that
the planet would undergo a systematic rather than stochas-
tic migration. This could be the case of the so-called dead
zone, a region of the disk where the gas ionization fraction
is too low to allow the coupling of the gas to the mag-
netic field and where the MRI does not occur. The disk
upper layers above a dead zone are sufficiently ionized by
external irradiation of cosmic rays or high-energy photons
to be subject to the MRI and therefore to be turbulent
(Gammie 1996). This turbulence generates velocity fluctu-
ations at the disk midplane, within the dead zone, which
is therefore not completely “dead” and has an α value sev-
eral times smaller than that of the active layers (Fleming &
Stone 2003; Reyes-Ruiz et al. 2003; Fromang & Papaloizou
2006). It is likely that within the dead zone, the torque
convergence is reached, over a given timescale, at a smaller
planet mass than in an MHD turbulent disk, which sug-
gests that sub-critical solid cores could undergo a steady
migration, significantly slowed down, or reversed, within
the dead zone.

It is also possible that weaker forms of turbulence may
exist that are still able to prevent the corotation torque
saturation, such as the hydrodynamics turbulence triggered
by the global baroclinic instability (Klahr & Bodenheimer
2003). However, the turbulence resulting from the Kelvin
Helmholtz instability due to the gas vertical shear arising
from the dust sedimentation (Johansen et al. 2005) seems to
be too weak to desaturate the corotation torque for planet
masses larger than ∼ 1 M⊕, as it yields an α-value of the
order of 10−6.

We close this section with the following comment: all
what is needed to avoid the corotation torque saturation is
to bring “fresh” vortensity from the inner or outer disk to
the horseshoe region in less than a libration timescale. The
standard approach based upon the comparison of the libra-
tion and viscous timescales across the horseshoe region is
certainly correct when the largest turbulent scale is smaller
than the horseshoe zone width, so that the vortensity enters
the horseshoe region in a diffusive manner, but it is unlikely
to be adequate when the turbulence scale is larger than the
horseshoe region width. In this case, which occurs among
others in the case of the MHD turbulence, one rather has to

7Provided that the total torque, in a turbulent disk, can be con-
sidered as the sum of the fluctuations arising from turbulence
and of the laminar torque, which remains to date an open ques-
tion.

compare the libration timescale to the advection timescale
across the horseshoe region at the average turbulent speed.
This plays in favor of desaturation, and seems to imply that
preventing the corotation torque saturation is much easier
than suggested by the libration/viscous diffusion timescales
comparison.

7. Conclusion

By means of two and three dimensional calculations we
have found the following:

1. There is a boost of the coorbital corotation torque
for sub-critical solid cores (M . 15 M⊕) in thin
(H/r . 0.06) protoplanetary disks. In disks with
shallow surface density profiles, i.e. Σ(r) ∝ r−α with
α < 3/2, this yields a positive excess of the corota-
tion torque that leads to a slowing down or reversal
of the migration.

2. This boost appears to be the first manifestation of
the flow non-linearity (prior to gap opening, which
occurs at larger planet mass).

3. The horseshoe region has a width that scales as M
1/2
p

at low planet mass (linear regime), whereas it scales

as M
1/3
p at large planet mass. At the transition be-

tween the two regimes the horseshoe region is wider
than linearly predicted, which yields the aforemen-
tioned boost of the corotation torque.

4. Since this is a non-linear effect, its occurrence is con-
trolled by the dimensionless parameter M = RH/H ,
or rB/H = 3M3. For a disk of given aspect ratio h,
the corotation torque enhancement is maximal for a
planet mass Mp given by

Mp ≈ 5

„

M∗

M⊙

« „

h

0.03

«3

M⊕, (21)

which represents a mass typical for solid cores of giant
protoplanets, those for which the (type I) migration
timescale problem is the most acute.

5. The torque reversal, if any, occurs therefore at lower
masses in thinner disks (lower aspect ratio). As a
consequence, the migration of a planet of given mass
would stop, in a flaring disk, at a distance from the
central object that depends on the planet mass. Con-
versely, if an accreting protoplanet, in a flaring disk,
reaches a point where the tidal torque cancels out,
it starts to recede from the central object at a rate
dictated by its mass growth rate.

6. This effect has been unnoticed thus far in 2D calcu-
lations probably owing to the large softening length
adopted or to strong torques arising from within the
Roche lobe of accreting planets. Poor mass sampling
may have also played a role.

7. Small mass planets do not have a Roche lobe (i.e.
a prograde circumplanetary disk extending over a
fraction of the Hill radius). They have a Bondi
sphere, that is smaller than their Roche lobe. There
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is presently an issue about the torque evaluation in
calculations with non self-gravitating disks. In these
calculations, it is still debated whether one must in-
clude the Roche lobe content (D’Angelo et al. 2005)
or not (Masset & Papaloizou 2003) in the sum of the
elementary contributions to the torque of the disk
material. Regardless of the correct answer to this
question, numericists who truncate the torque sum-
mation in the planet vicinity should be aware that the
sum should only exclude at most the (small) Bondi
sphere rather than the Roche lobe when simulating
deeply embedded (rB ≪ H) protoplanets.

8. In 2D calculations, the dimensionless parameter that
determines the flow linearity in the planet vicinity
is rB/ǫ. If ǫ ∝ H (a prescription that we chose for
the 2D runs presented in this work) or ǫ ∝ RH , this
dimensionless parameters scales as a function of q/h3

and the flow non-linearities in such 2D calculations
also appear for mass ratios q ∝ h3.

We suggest that the findings listed above could motivate
future work on the following points:

1. The flow transition exhibited in this work could be
studied in the simplified framework of the shearing
sheet approximation. Then the asymmetry between
the left and right stagnation points (which we believe
to be a feature of minor importance, despite its ro-
bustness) would disappear, and they would lie on the
same separatrix. This study could be undertaken us-
ing the method of Korycansky & Papaloizou (1996).
A quantitative study of the flow transitions (planet
mass for which the left and right stagnation points
coalesce, and planet mass for which a Roche lobe ap-
pears) would provide a very valuable insight on the
dynamics of the flow in the planet vicinity.

2. Although we have seen that in the low mass case
(deeply embedded core, or rB ≪ H) the flow non-
linearities are confined to the Bondi sphere, we do
not have undertaken a study of the flow within this
sphere. Characterizing this flow, possibly by means
of very high (nested grid) numerical simulations,
would be of great interest.

3. The role of accretion has been neglected in the
present analysis, while the mass range for which the
offset is observed, depending on the disk thickness,
may involve accreting cores. It seems that accre-
tion enhances the offset (D’Angelo et al. 2003), but
a quantitative analysis of its impact remains to be
done.

4. We have emphasized the role played by dissipation,
which must be present to prevent the corotation
torque saturation. As the present study deals with
small mass planets, it should be relatively easy to
prevent this saturation. So far the only self consis-
tent calculations of a turbulent disk with embedded
planets deal with a fully turbulent disk subject to
the MRI. A study characterizing the ability of other

forms of turbulence (such as the global baroclinic in-
stability, or the residual turbulence of the dead zone
in a layered accretion disk) to desaturate the coro-
tation torque of small mass planets would be very
valuable.

The computations with NIRVANA reported in this pa-
per were performed using the UK Astrophysical Fluids
Facility (UKAFF). The computations with FARGO were
performed at the Centre de Calcul de l’IN2P3. GD ac-
knowledges support from the Leverhulme Trust through
a UKAFF Fellowship, from the NASA Postdoctoral Pro-
gram, and in part from NASA’s Outer Planets Research
Program through grant 811073.02.01.01.20. The authors
are indebted to Hidekazu Tanaka for bringing to their at-
tention the role played by the Bondi radius.
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