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ABSTRACT

We investigate the evolution of protoplanets with different masses embedded in an accretion disk,
via global fully three-dimensional hydrodynamical simulations. We consider a range of planetary
masses extending from one and a half Earth’s masses up to one Jupiter’s mass, and we take into
account physically realistic gravitational potentials of forming planets. In order to calculate accu-
rately the gravitational torques exerted by disk material and to investigate the accretion process
onto the planet, the flow dynamics has to be thoroughly resolved on long as well as short length
scales. We achieve this strict resolution requirement by applying a nested-grid refinement technique
which allows to greatly enhance the local resolution. Our results from altogether 51 simulations
show that for large planetary masses, approximately above a tenth of the Jupiter’s mass, migration
rates are relatively constant, as expected in type II migration regime and in good agreement with
previous two-dimensional calculations. In a range between seven and fifteen Earth’s masses, we find
a dependency of the migration speed on the planetary mass that yields time scales considerably
longer than those predicted by linear analytical theories. This property may be important in de-
termining the overall orbital evolution of protoplanets. The growth time scale is minimum around
twenty Earth-masses, but it rapidly increases for both smaller and larger mass values. Significant
differences between two- and three-dimensional calculations are found in particular for objects with
masses smaller than ten Earth-masses. We also derive an analytical approximation for the numeri-
cally computed mass growth rates.

Subject headings: accretion, accretion disks — hydrodynamics — methods: numerical — planetary systems:
formation

1. Introduction

Over the past few years the interest of the astronomical
community in the enigma of planet formation and evolu-
tion has been rising as the number of observed extrasolar
planets has continued to increase. Today about 100 ex-
trasolar planets are known, mostly orbiting around main-
sequence stars of solar type. An always up-to-date status
of extrasolar planet detections can be found at the Extra-

1To appear in The Astrophysical Journal (v586 n1
March 20, 2003 issue). Also available as ApJ preprint doi:
10.1086/367555.

solar Planet Encyclopedia2, maintained by J. Schneider,
or at the California & Carnegie Planet Search3.

Several of the orbital and physical key properties of
planets (e.g., location, eccentricity, rotation rate, mass)
are believed to originate from the early phases of planet
formation, when the protoplanet is still embedded in the
surrounding protostellar disk from which it generated. In
particular, the small semi-major axis of several (51 Peg-
type) planets is usually interpreted as a migration process
produced by gravitational torques of the disk material act-

2http://www.obspm.fr/planets.
3http://exoplanets.org/.
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2 Migration and Accretion of Protoplanets

ing on the protoplanets. In order to properly take these
effects into account, one has to consider the joint evolution
of the circumstellar disk and the embedded planet.

Following the first and mostly linear analytical stud-
ies (Goldreich & Tremaine 1980; Papaloizou & Lin 1984;
Ward 1986), fully non-linear numerical simulations have
been performed lately (Kley 1999; Lubow, Seibert, &
Artymowicz 1999; Nelson et al. 2000; Papaloizou, Nel-
son, & Masset 2001; Kley, D’Angelo, & Henning 2001;
D’Angelo, Henning, & Kley 2002; Tanigawa & Watanabe
2002) in order to achieve a deeper insight into the phys-
ical processes governing the interactions between a pro-
tostellar disk and an embedded protoplanet. Among the
main discoveries we can cite: i) the creation of spiral den-
sity perturbations in the disk; ii) the formation of a deep
annular gap along the orbit of Jupiter-mass planets; iii)
an inward migration resulting from the net gravitational
torques caused by inner and outer density wave perturba-
tions; iv) the continuation of mass accretion through the
gap.

So far most of the computations have investigated
mainly the effects due to large-scale interactions, much
larger than the size of the Roche lobe of the forming
planet. Furthermore, very little is known about the non-
linear effects that such interactions have when low-mass
planets are involved. The reason for this has been primar-
ily the lack of appropriate numerical tools.

In the majority of the previous studies, the disk is
modeled as a two-dimensional (r–ϕ) system, by using
vertically-averaged quantities. Two main arguments lie
behind this choice. First, on a physical basis, the validity
of a two-dimensional (2D) description is consistent be-
cause the Hill radius of a massive object is larger or com-
parable to the disk semi-thickness. In fact, this basically
means that the sphere of gravitational influence of the
embedded body, i.e., the Hill sphere4, contains the whole
vertical extent of the disk. But this usually implies that
the planet must have a mass on the order of one Jupiter-
mass. Second, a less massive planet has a weaker impact
on the disk, requiring a higher resolution to compute prop-
erly and highlight its effects. Such requirement typically
rules out a full three-dimensional treatment. Although
there is still a lot of information to be gained by per-
forming 2D simulations (e.g., to study radiative effects or
multi-planet systems) in particular in the case of large and
medium mass planets, provided that the local resolution
around the planet is accurate enough, three-dimensional
(3D) effects become more and more important as the mass
of the simulated planet is reduced.

Yet, in many instances, the use of the two-dimensional
approximation is merely dictated by the computational
costs of 3D calculations which are generally not afford-

4The Hill sphere is a measure of the volume of the Roche lobe.
In a purely restricted three-body problem, parcels of matter in-
side the Roche lobe are gravitationally bound to the secondary.
Hence, they are confined to that volume of space.

able. Depending on the resolution one is interested in, 3D
runs still take more than an order of magnitude of CPU
time with respect to 2D runs. As a proof of the severe
limitations posed by fully three-dimensional calculations,
only very few papers have been published on this issue.

Miyoshi et al. (1999) made a comparison study of 2D
and 3D disks within the framework of the shearing sheet
model. Hence, rather than considering the whole disk,
they were restricted to local simulations. Global three-
dimensional simulations were performed for the first time
by Kley, D’Angelo, & Henning (2001, hereafter Paper I)
who also measured the gas accretion rate onto the planet
and the gravitational torques which cause the planet to al-
ter its orbit. They found that for planetary masses below
one half of Jupiter’s mass, the outcomes of 3D calcula-
tions start to differ from those of 2D ones. They also
pointed out that to obtain more reliable results, the flow
within the Roche lobe needs to be accurately resolved.
This was done recently, for an infinitesimally thin disk,
by D’Angelo, Henning, & Kley (2002, hereafter Paper II)
who introduced, for the first time in this context, a nested-

grid technique in order to model in detail a variety of plan-
etary masses, spanning from Earth’s to Jupiter’s. The
authors proved such approach to adapt comfortably to
these computations because global-scale structures as well
as small- and very small-scale features of the flow can be
captured simultaneously. They demonstrated that disks
form around high- and low-mass planets and that circum-
planetary material can exert very strong torques on the
planet, usually slowing down their inward drifting motion.

In the present paper we intend to combine the fully
three-dimensional and global treatment of disk-planet in-
teractions with a nested-grid refinement technique in or-
der to carry out an extensive study on migration, accre-
tion, and flow features around large- and small-size pro-
toplanets. Thus, the paper comes as an extension to Pa-

per I and Paper II. In addition, here we abandon the
standard approach of treating the planet as a point-mass
but rather assume that it has an extended structure.

The outline of the paper is as follows. Section 2 deals
with those aspects of the physical description that we
adopt and which were not already specified in Paper I.
We explain how we approximate the protoplanet’s struc-
ture by using different solutions for the gravitational po-
tential. Section 3 presents a brief overview about the nu-
merical procedures employed in this work and describes
the technical details of the models. As for the implemen-
tation of the nested grids in three dimensions, for brevity
we mainly refer to the two-dimensional strategy traced in
Paper II. The various results of our simulations are ad-
dressed in § 4. Fluid circulation, gravitational torques, or-
bital migration, mass accretion rates, and how all of them
depend on the perturber mass are examined. A compar-
ison between 2D and 3D models is also carried out, to-
gether with an analysis of some numerical effects. In § 5
two issues related to 2D and 3D geometry effects are dis-
cussed in more detail. We finally present our conclusions
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in § 6.

2. Physical Description

The nature of most astrophysical objects is such that
their behavior can be approximated to that of fluids. This
is indeed the case for circumstellar disks, hence we can
rely on the hydrodynamic formalism to describe them.
The equations of motion that govern the evolution of a
disk in a spherical polar coordinate system {O;R, θ, ϕ}
are presented in Paper I and therefore, for the sake of
brevity, we refer the interested reader to it. We assume
the disk to be a viscous medium and include the viscos-
ity terms explicitly by employing a complete stress tensor
for Newtonian fluids (see e.g., Mihalas & Mihalas 1999,
Chapter 3).

The set of equations for the hydrodynamic variables
(ρ, uR, uθ, uϕ) is written with respect to a reference frame
rotating at a constant rate Ω, around the polar axis θ = 0,
and whose origin O resides in the center of mass of the
star–planet system. The planet is maintained on a fixed
circular orbit, lying in the midplane of the disk (θ = π/2).
If we let Ω coincide with the angular velocity of the planet
Ωp, the planet does not move within the reference frame.
The assumption that a single protoplanet, not heavier
than Jupiter, moves on a circular orbit is reasonable be-
cause the global effect of the resonances, arising from disk–
planet interactions, in most of the cases favors an eccen-
tricity damping (Papaloizou, Nelson, & Masset 2001; Ag-
nor & Ward 2002).

Disk material evolves under the combined gravitational
action of a star and a massive body. In fact, as long as the
inner parts of low-mass protostellar disks are concerned,
self-gravity can be neglected. Indicating with RF the ra-
dius vector pointing to the position of the star, the gravi-
tational potential Φ of the whole system is represented by

Φ = − GMF

|R − RF| + Φp, (1)

where MF is the stellar mass. In equation (1), the func-
tion Φp identifies the perturbing potential of the planet,
which we leave unspecified for the moment.

Since the energy equation is not considered in the
present work, we join an established trend (e.g., Kley
1999; Lubow, Seibert, & Artymowicz 1999; Miyoshi et
al. 1999; Nelson et al. 2000; Papaloizou, Nelson, & Mas-
set 2001; Tanaka, Takeuchi, & Ward 2002; Masset 2002;
Tanigawa & Watanabe 2002) and use a locally isothermal
equation of state as closure of the hydrodynamic equations

p = c2s ρ, (2)

where the sound speed cs equals the Keplerian velocity vK
times the disk aspect ratio h = H/(R sin θ). The lengthH
is the pressure scale-height of the disk, that also represent
its semi-thickness. As the ratio h is assumed to be con-
stant, the disk is azimuthally and vertically isothermal,
whereas radially T ∝ h2MF/(R sin θ). This simplified

approach permits to circumvent the difficulties posed by
the solution of a complete energy equation which nobody
has tackled yet. In fact this kind of computations would
require a length of time which is presently not affordable.
As reference, even without including energetic aspects, the
CPU-time consumed by our three-dimensional global sim-
ulations is already between ten and twenty times as long
as that spent by two-dimensional ones. An investigation
into the effects that may arise in two-dimensional disks
when an energy equation is also taken into account, will
be presented in a forthcoming paper.

However, an important issue to improve the physical
description of the system in the vicinity of the protoplanet
is to adopt an appropriate equation of state which can ac-
count for the protoplanetary envelope. Yet, in our case
this would imply that either p or ρ should be specified in
some volume around the planet. In order to avoid this, we
choose to constrain the local structure by means of suit-
able analytic expressions for Φp. We assume that the pro-
toplanet has a measurable size, i.e., it can be resolved by
the employed computational mesh. Within the planetary
volume, we approximately take into account the effects
due to self-gravity by imposing a certain gravitational
field. Since we aim at covering various possible scenar-
ios, we utilize four different forms of planet gravitational
potential, each representing a protoplanet with different
characteristics. It is worthwhile to point out that with this
choice none of the hydrodynamic variables (ρ, uR, uθ, uϕ)
is prescribed in any case. They simply evolve in a partic-
ular gravitational field. Therefore, planetary material is
allowed to interact with the surrounding environment so
that their mutual evolutions are still connected.

2.1. Planet Gravitational Potential

With no exception, both numerical and analytical work
that have so far investigated the interactions between mas-
sive bodies and protostellar disks have made the point-

mass assumption, i.e., the protoplanet has a finite mass
Mp but no physical size, as was done in Paper I and
II. This property is expressed through the gravitational
potential

ΦPM
p = − GMp

|R − Rp|
, (3)

where Rp is the radius vector indicating the position of
the planet.

Because of the singularity at R = Rp, a parameter ε is
introduced in order to smooth the function over a certain
region. If we denote S = R − Rp the position vector
relative to the planet, the smoothed point-mass potential
can be written in the following form

ΦPM
p = −GMp

ε

[
1 +

(
S

ε

)2
]− 1

2

. (4)

A physical meaning of the smoothing length can be de-
duced from equation (4). The potential Φp enters the
Navier-Stokes equations through its derivatives, which can
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be reduced to ∂Φp/∂S because of the spherical symmetry
of the gravitational field. Restricting to distances S < ε,
a binomial expansion of that derivative yields

∂ΦPM
p

∂S
' GMp

ε2

(
S

ε

) [
1 − 3

2

(
S

ε

)2
]

≈ GMp

ε2

(
S

ε

)
. (5)

As we will see in § 2.1.1, equation (5) can be inter-
preted as the sign-reversed gravitational force, per unit
mass, exerted by a spherically homogeneous medium of
radius ε. Thus, the smoothing may act as an indicator of
the size of the planet.

Equation (4) may be appropriate to describe the solid
core of a protoplanet which does not possess any signifi-
cant envelope. Indicating with q the planet-to-star mass
ratio Mp/MF, in these computations we apply the po-
tential ΦPM

p in models with q > 3 × 10−5, i.e., ten times
the Earth’s mass (M⊕) when MF = 1 M�. In all cases
the smoothing parameter ε is set to 10% of the Hill ra-
dius RH

5. Along with equation (4), we introduce three
alternative expressions for Φp, namely the potential of a
homogeneous sphere (ΦHS

p ); that describing a fully radia-
tive and static envelope (ΦST

p ); and finally that proper for
a fully convective and static envelope (ΦKW

p ). A compar-
ative example of their behavior is reported in Figure 1.

Among the last three solutions, only the gravitational
potential generated by a homogeneous sphere has a com-
pletely different behavior from that given in equation (4),
while ΦST

p as well as ΦKW
p compare better to a smoothed

point-mass potential. This is clearly seen in Figure 1 and
formally shown in § 2.1.2 and § 2.1.3. Thereupon, one
should expect that computation results should depend
only marginally on the adopted gravitational potential,
except when Φp = ΦHS

p .

2.1.1. Homogeneous Sphere Solution

The gravitational potential generated by a homoge-
neous spherical distribution of matter can be calculated
in a straightforward way by a direct integration of the
gravitational force. Thereby, one finds

ΦHS
p =





−GMp

2Sp

[
3 −

(
S
Sp

)2
]

if S ≤ Sp

−GMp

S
if S > Sp

, (6)

where Sp is the radius of the sphere, i.e., the planet’s
radius. No smoothing is needed in this case since the force

5The radius of the Hill sphere is RH = a (q/3)1/3, where a is
the distance of the star from the planet. Considering only the
linear terms in q, this length is equal to the distance from the
inner Lagrangian point (L1) to the secondary. Although we
named S the distance from the planet, we preferred to keep a
more familiar notation to indicate the Hill radius.

converges linearly to zero as the distance S approaches
zero. Thus, there is no risk of numerical instabilities.

Strictly speaking, equation (6) is valid inside very ex-
tended and nearly homogeneous envelopes without consid-
erable cores. Then, one may think of the functions ΦPM

p

and ΦHS
p as rendering two opposite extreme situations.

Though ΦHS
p does not represent a very realistic scenario

of planet formation, for the sake of comparison and com-
pleteness, we will apply this potential to high- as well as
low-mass bodies.

2.1.2. Stevenson’s Solution

Stevenson (1982) proposed a simplified analytical
model of protoplanets having envelopes with constant
opacity and surrounding an accreting solid core. He de-
veloped a radiative zero solution for hydrostatic and fully
radiative spherical envelopes, which implies that both hy-
drostatic and thermal equilibrium are assumed inside the
planet’s atmosphere. Under these hypotheses, the core
can grow up to a critical mass whose value is that beyond
which at least one of the two equilibriums ceases to exist
(see discussion in Wuchterl 1991) and the structure can-
not be strictly static any longer. The critical core mass
also sets an upper limit to the envelope and total mass of
the planet. It can be proved that, at this critical point,
Mc/Mp = 3/4, where the mass of the coreMc is influenced
by neither the nebula density nor its temperature.

The potential of the gravitational field established by a
fully radiative envelope can be obtained from the density
profile (see Stevenson 1982) by applying the Poisson equa-
tion. Since the solid core size is by far below the resolution
limit of these computations, the form of the Stevenson’s
potential can be cast in the form

ΦST
p =





− GMc√
S2+δ2

− GM†
e√

S2+δ2

×
[
1 −

(
S
Sp

)
+ ln

(
S
Sc

)]
if S ≤ Sp

− GMp√
S2+δ2

if S > Sp

. (7)

In equation (7) we have indicated with Sc the core
radius. The quantity M †

e is equal to the planet’s envelope
mass Me = Mp −Mc divided by ln(Sp/Sc). The presence
of the parameter δ, also in the solution valid outside the
envelope, is necessary for continuity reasons at S = Sp.
In these simulations we set δ = 0.05RH.

If the core has a density ρc = 5.5 g cm−3 and accretes
at the rate of 5 × 10−7 M⊕ yr−1, assuming an envelope
opacity equal to 1 cm2 g−1 and a mean molecular weight
of 2.2, the critical total mass is 36 M⊕. Hence we will use
equation (7) only for protoplanets whose total mass Mp

is less than that value. Furthermore, we will suppose that
the ratio of the total planetary mass to the core mass is
the critical one. Therefore the core mass is always known
once the mass Mp is assigned a value. Then, supplying
ρc, the radius Sc can be fixed.
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Fig. 1.— Left panel. Gravitational acceleration (−∂Φp/∂S) inside a 20M⊕ planet as generated by the three
potential functions ΦPM

p , ΦHS
p , and ΦST

p (eqs. [4], [6], and [7], respectively). Accelerations are normalized to
−GMp/S2

p, where Sp is the envelope radius. The core mass (see § 2.1.2) is 15M⊕ while Sp = 0.52RH. The core
is supposed to have a density of 5.5 g cm−3. The point-mass potential is smoothed over a length ε = 0.1RH

whereas in the Stevenson’s potential δ = 5 × 10−2 RH. Right panel. The same quantity is displayed inside a
90M⊕ planet but this time involving the potential solution ΦKW

p (eq. [9]). The adiabatic exponent is Γ = 1.43
while the core mass is 60M⊕. In all circumstances, the gravitational potential outside the envelope radius is of
the type given in equation (4).

The effects caused by equation (7) are actually similar
to those caused by equation (4), as seen in Figure 1. In a
more formal way, inside of the sphere S = Sp, the normal-
ized difference RST between the two gravitational fields
can be quantified by the ratio of

∣∣∂ΦST
p /∂S − ∂ΦPM

p /∂S
∣∣

to ∂ΦPM
p /∂S, that is

RST =
1

4 ln(Sp/Sc)

×
[(

δ

S

)2

−
(
δ

Sp

)(
δ

S

)
+ ln

(
Sp

S

)]
. (8)

In the above relation, the equality ε = δ was imposed.
RST is a decreasing function of S. Referring to the models
addressed in the left panel of Figure 1, RST ' 5% at
S/Sp = 1/3. This result is only slightly affected by the
mass of the planet because Sp is a slowly varying function
of Mp.

2.1.3. Wuchterl’s Solution

Along with the fully radiative envelope, other static so-
lutions were found. Following the track of Stevenson’s ar-
guments, Wuchterl (1993) developed an analytical model
for protoplanets with spherically symmetric and fully con-
vective envelopes. In this case the hydrostatic structure
is determined by the constant entropy requirement that is
appropriate when convection is very efficient. Supposing

that the adiabatic exponent Γ = d ln p/d ln ρ is constant
throughout the envelope, integrating the envelope density
one finds that a solution for the planet gravitational po-
tential is

ΦKW
p =





− GMc√
S2+δ2

− GM‡
e√

S2+δ2

×
[(

ζ
ζ−1

)(
S
SΓ
p

)
−

(
1
ζ−1

)(
S
SΓ
p

)ζ
− Π

]

if S ≤ SΓ
p

− GMp√
S2+δ2

if S > SΓ
p

,

(9)
where we set ζ = (3 Γ − 4)/(Γ − 1) and Π = (Sc/S

Γ
p )ζ .

Moreover, the envelope mass is written as Me = (1 −
Π)M‡

e . The condition for stability of gas spheres (Γ >
4/3) implies that ζ is positive. This particular form of
ΦKW

p is obtained by choosing an envelope radius equal to
SΓ

p = (Γ − 1)Rac. The length Rac = GMp/c
2
s is called

“planetary accretion radius”. Outside the sphere S = Rac

the thermal energy of the gas is higher than the gravita-
tional energy binding it to the planet.

As in Stevenson’s solution, critical mass values exist for
the envelope structure to be static. However, unlike the
fully radiative envelope case, now the critical core mass
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depends on both the temperature and the density of am-
bient material. Furthermore, the critical mass ratio is
Mc/Mp = 2/3 (for details see Wuchterl 1993). Setting Γ
to 1.43 and the mean molecular weight to 2.2, if nebula
conditions are TNeb = 100 K and ρNeb = 10−10 g cm−3,
the critical total mass is Mp = 274 M⊕.

Wuchterl’s solution well applies to massive protoplan-
ets since they are likely to bear convective envelopes.

Concerning the differences between equation (9) and
equation (4), the situation is alike to that met in § 2.1.2
(see right panel of Fig. 1). In this circumstance, for S ≤
Sp, the normalized difference can be written as

RKW =

(
1

3

)
1

1 − Π

{
1+

(
ζ

ζ − 1

)(
δ

Sp

)(
δ

S

)

×
[
1 −

(
S

Sp

)ζ−1
]
−

(
S

Sp

)ζ}
. (10)

As before, the equality ε = δ is assumed and RKW de-
creases with S. Using the parameters adopted for the
models illustrated in the right panel of Figure 1, RKW '
18% at S/Sp = 1/3. In the considered range of masses,
this number is nearly constant. In fact, equation (10) can
be approximated to

RKW ≈
(

1

3

) [
1 −

(
S

Sp

)ζ]
. (11)

2.2. Physical Parameters

We consider a protostellar disk orbiting a one solar-
mass star. The simulated region extends for 2π around
the polar axis and, radially, from 2.08 to 13 AU. The
aspect ratio is fixed to h = 0.05 throughout these compu-
tations. As in Paper I, the disk is assumed to be symmet-
ric with respect to its midplane. This allows us to reduce
the latitude range to the northern hemisphere only, where
θ varies between 80◦ and 90◦. The co-latitude interval
includes 3.5 disk scale-heights and therefore it assures a
vertical density drop of more than six orders of magni-
tude (see § 3.3). The mass enclosed within this domain
is MD = 3.5 × 10−3 M�, which implies, in our case, that
a mass equal to 0.01 M� is confined inside 26 AU. Disk
material is supposed to have a constant kinematic viscos-
ity ν = 1015 cm2 s−1, corresponding to α = 4 × 10−3 at
the planet’s location.

The orbital radius of the planet is Rp = 5.2 AU and its
azimuthal position is fixed to ϕ = ϕp = π. We concentrate
on a mass range stretching from 1.5 M⊕ to one Jupiter-
mass (M

X
), implying that the mass ratio q = Mp/MF ∈

[4.5 × 10−6, 10−3], if MF = 1 M�. A detailed list of
the examined planetary masses, along with the adopted
potential form is given in Table 1.

The choice of few of the above parameters represents
one typical example during the early phase of plant for-
mation. Additionally, these simulations offer the good

Fig. 2.— Envelope radius Sp, as provided by P. Bo-
denheimer (2001, private communication), compared
to the Hill radius RH and the accretion radius Racc.
In a locally isothermal disk with aspect ratio h, RH

is larger than Rac when q < h3/
√

3. While the scale
of the left vertical axis is referred to orbital radius
Rp = 5.2 AU, the scale on the right one is compared
to the radius of Jupiter R

X
= 7.1 × 104 km.

advantage that the system of equations is cast in a non-
dimensional form, thus all of the outcomes are “scale-free”
with respect to MF, MD, and Rp.

According to studies of the early evolution of proto-
planets, the Roche lobe is usually filled during the growth
phase. In such calculations the envelope is allowed to ex-
tend to either the Hill radius RH or the accretion radius
Rac (Bodenheimer & Pollack 1986; Wuchterl 1991; Tajima
& Nakagawa 1997). Except for Wuchterl’s solution, where
we set Sp = SΓ

p = (Γ−1)Rac, the estimates of planet radii
used in the simulations were provided by P. Bodenheimer
(2001, private communication). They originate from a
combination of RH and Rac at an ambient temperature of
T = 100 K (see Fig. 2). The values of Sp, employed in
each model, are also reported in Table 1.

It is worthwhile to stress that the planetary (or more
properly, the envelope) radius Sp does not represent any
real physical boundary but only the distance beyond
which the planet’s potential reduces to the one given in
equation (4), i.e., to a point-mass potential.

3. Numerical Issues

The set of hydrodynamic equations that characterizes
the temporal evolution of a disk-planet system is solved
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Table 1

Planetary Masses and Adopted Gravitational Potential.

Mp
a/M⊕ q Sp/RH RH/a Potential

333 1.00 × 10−3 0.87 6.9 × 10−2 PM, HS
253 7.56 × 10−4 2.30b 6.3 × 10−2 KW
166 5.00 × 10−4 0.78, 1.70b 5.5 × 10−2 PM, KW, HS
93 2.83 × 10−4 1.20b 4.5 × 10−2 KW
67 2.00 × 10−4 0.70, 0.96b 4.0 × 10−2 PM, KW
33 1.00 × 10−4 0.60 3.2 × 10−2 PM, HS
29 8.80 × 10−5 0.58 3.1 × 10−2 ST
20 6.00 × 10−5 0.52 2.7 × 10−2 HS, ST
15 4.50 × 10−5 0.46 2.5 × 10−2 ST
12.5 3.75 × 10−5 0.44 2.3 × 10−2 ST
10 3.00 × 10−5 0.38 2.1 × 10−2 PM, HS, ST
7 2.10 × 10−5 0.34 1.9 × 10−2 ST
5 1.50 × 10−5 0.29 1.7 × 10−2 HS, ST
3 1.00 × 10−5 0.23 1.5 × 10−2 ST
1.5 4.50 × 10−6 0.16 1.1 × 10−2 ST

aValues are rounded to the nearest integer numbers.

bPlanetary radius used in the Wuchterl’s solution: Sp = SΓ
p =

(Γ − 1)Rac (see § 9).

Note.—List of all the simulated planet masses: q = Mp/MF is
the non-dimensional quantity that enters the simulation. Note that

Mp = 333 M⊕ = 1.05 M
X

. The ratio RH/a is equal to (q/3)
1/3

(see § 2.1). Unless stated otherwise, envelope radii Sp are expressed
through a combination of the Hill (RH) and the accretion (Rac) radius
of the planet, as plotted in Figure 2 (courtesy of P. Bodenheimer).
When required, we set Mc = (2/3)Mp for a fully convective envelope
and Mc = (3/4)Mp for a fully radiative one. The core radius is
computed assuming a constant density ρc = 5.5 g cm−3 in both cases.
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numerically by means of a finite difference scheme pro-
vided by an early FORTRAN-coded version of Nirvana

(Ziegler & Yorke 1997; Ziegler 1998). The code has been
modified and adapted to our purposes as described in Pa-

per I, Paper II, and references therein. In order to inves-
tigate thoroughly the flow dynamics in the neighborhood
of the planet, a sufficient numerical resolution is required.
We accomplish that by employing a nested-grid strategy.
This can be pictured as either a set of grids, each hosting
an inner one, or a pyramid of levels: the main grid (level
one) includes the whole computational domain, while in-
ner grids (higher levels) enclose smaller volumes around
the planet, with increasing resolution. Levels greater than
one are also called subgrids since they are usually smaller
in size. The linear resolution, in each direction, doubles
when passing from a grid to the inner one.

The basic principles upon which the nested-grid tech-
nique relies and how it is applied to disk-planet simu-
lations in two dimensions is explained in detail in Pa-

per II and references therein. The extension to the three-
dimensional geometry, though requiring some more com-
plexity in the exchange of information from one grid level
to the neighboring ones, is nearly straightforward. Coarse-
fine grid interaction (which sets the boundary conditions
necessary for the integration of subgrids) is accomplished
via a direction-splitting procedure. Thus, with respect
to the discussion in Paper II, the addition of a third
dimension just requires the implementation of the third
direction-splitting step in the algorithm. Fine-coarse grid
interaction (which upgrades the solution on finer resolu-
tion regions) involves, in 3D, volume-weighted averages in
a spherical polar topology. These are given in the Ap-
pendix.

3.1. General Setup

For the study of the variety of planetary masses in-
dicated in Table 1, meeting both the requirements of
high resolution and affordable computing times, we re-
alized a series of six grid hierarchies, whose character-
istics are given in Table 2. With mass ratios q larger
than 2× 10−4 (67 M⊕) only grids G0 and G1 are utilized
whereas smaller bodies are investigated with the other
grid hierarchies. Thereupon, the finest resolution we ob-
tain in the whole set of simulations varies form 0.03 to
0.06RH. In all of the models presented here, the planet is
centered at the corner of a main grid cell, which property
is retained on any higher hosted subgrid. As the planet
radial distance is Rp = a/(1 + q), we adjust it by tun-
ing the value of the star-planet distance a. Adjustments
never exceed 0.7% over the nominal value of Rp given in
§ 2.2. Every model is evolved at least till 200 orbits. The
evolution of massive planets (Mp ≥ 67 M⊕) is followed
for 300 to 400 orbital periods because they take longer to
settle on a quasi-stationary state.

Gas accretion is estimated following the procedure
sketched in Paper II. For better accuracy, mass is re-
moved only from the finest grid level according to an ac-

cretion sphere radius κac and an evacuation parameter
κev. The former defines the spherical volume which con-
tributes to the accretion process whereas the latter can
be regarded as a measure of the removal time scale in
such volume. Two-dimensional simulations showed that
the procedure is fairly stable against these two parame-
ters. We constrain the amount of removed mass per unit
volume not to exceed 1% of that available, as was done in
Paper II. Regarding the extension of the sphere of accre-
tion κac, we performed simulations using different values,
as stated in Table 3. Since the planet actually works as a
sink, our procedure only furnishes upper limits to realis-
tic planetary accretion rates (see discussion in Tanigawa
& Watanabe 2002).

However, we also inquire how mass removal can pos-
sibly affect gravitational torques and, more generally, the
dynamics of the flow in the planet neighborhood by means
of models in which accretion is prohibited.

3.2. Boundary Conditions

In order to mimic the accretion of the flow towards the
central star, an outflow boundary condition is applied at
the inner radial border of the computational domain. The
outer radial border is closed, i.e., no material can flow in
or out of it. The same condition exists at the highest lati-
tude θ = 80◦. Since the disk is symmetric with respect to
its midplane as mentioned in § 2.2, symmetry conditions
are set at θ = 90◦. On subgrids, except for the midplane
where symmetry conditions are applied, boundary values
are interpolated from hosting grids, by means of a mono-
tonised second-order algorithm (see Paper II for details).

The open inner radial boundary causes the disk to
slowly deplete during its evolution. For all the models
under study, we observe a depletion rate ṀD = −ṀF

measuring ≈ 10−8 M� yr−1, in agreement with the ex-
pectations of stationary Keplerian disks: ṀF = 3π ν Σ
(Lynden-Bell & Pringle 1974).

In cases of gap formation, material residing inside the
planet’s orbit tends to drain out of the computational do-
main. Since this material transfers angular momentum to
the planet, the lack of it may contribute to reduce both
the migration time scale and the planet’s accretion rate.
To evaluate these effects, a Jupiter-mass model was run
with a closed (i.e., reflective) inner radial border.

3.3. Initial Conditions

The initial density distribution is a power-law of the
distance from the rotational axis r = R sin θ times a Gaus-
sian in the vertical direction

ρ(t = 0) = ρ0(r) exp

[
−

(
cot θ

h

)2
]
, (12)

which is appropriate for a thin disk in thermal and hydro-
static vertical equilibrium. The dependency of the mid-
plane value ρ0 with respect to r is such that the initial
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Table 2

Grid Hierarchies Utilized in the Simulations.

Grid Main Grid Size ng Subgrid Size No. of models

G0 121 × 13 × 319 4 54 × 12 × 48 10
G1 143 × 13 × 423 4 64 × 12 × 64 5
G2 121 × 13 × 319 5 54 × 12 × 48 19
G3 143 × 13 × 423 5 64 × 12 × 64 12
G4 121 × 23 × 319 5 54 × 22 × 48 4
G5 133 × 13 × 395 5 84 × 16 × 84 1

Note.—Grid sizes are reported as the number of grid points per
direction: NR×Nθ×Nϕ. The third column (ng) indicates the num-
ber of levels within the hierarchy. In order to achieve sufficient res-
olution within the Roche lobe of the planet, grids G0 and G1 have
been used only for planetary masses in the range [67 M⊕, 1 M

X
].

Grids are ordered according to their computing time requirements,
which grow from top to bottom. The hierarchy G5 has been em-
ployed to execute the model with Mp = 12.5 M⊕ (see discussion at
the end of § 4.2).

surface density profile Σ decays as 1/
√
r, as required by

the constant kinematic viscosity. However, we also ran
a few models where the relation ρ0(r) is such to account
for an axisymmetric gap, as often done to speed up the
computations at early evolutionary times.

The initial velocity field of the fluid is a purely, counter-
clockwise, Keplerian one corrected by the grid rotation:
u(t = 0) ≡ (0, 0, vK − Ωp r). Thus, the partial support
due to the radial pressure gradient is neglected in the be-
ginning.

4. Simulation Results

4.1. Flow Dynamics near Protoplanets

Two-dimensional computations have shown that a cir-
cumplanetary disk forms around Jupiter-type planets,
extending over the size of its Roche lobe (Kley 1999;
Lubow, Seibert, & Artymowicz 1999; Tanigawa & Watan-
abe 2002). The numerical experiments conducted in Pa-

per II proved this characteristic to belong not only to
massive bodies but also to protoplanets as small as 3 M⊕.
The authors demonstrated that the flow of such disks is
approximately Keplerian down to distances ∼ 0.1RH from
the planet. One of the main features of these disks is a
two-arm spiral shock wave whose opening angle (that be-
tween the wave front and the direction toward the planet)
is an increasing function of the mass ratio q and, below
Mp = 67 M⊕, it is roughly given by arctan(M), in which
M = |u|/cs is the Mach number of the circumplanetary

flow (D’Angelo, Kley, & Henning 2002). The spiral pat-
terns shorten and straighten as the perturber mass de-
creases. Eventually, for even smaller masses they disap-
pear and are not observable anymore when one Earth-
mass is reached.

Three-dimensional simulations shed new light on
these circumplanetary disks, demonstrating that they
can behave somehow differently from what depicted by
two-dimensional descriptions. Differences become more
marked as the mass of the embedded protoplanet is low-
ered. A major point is that spiral waves are not so pre-
dominant as they are in the 2D geometry. This is clearly
seen in the top rows of Figure 3 and 4, where the midplane
(θ = π/2) density is displayed for four different planetary
masses. The double pattern of the spiral is still visible
around a 67 M⊕ protoplanet (Fig. 3, top right panel).
However, when considering a planet half of that size, spi-
ral traces are too feeble to be seen on the image (Fig. 4,
top left panel). Such an occurrence was to be expected
since the energy of the flow is not only converted into the
equatorial motion but can be also transferred to the ver-
tical motion of the fluid. It was already known from wave
theories for circumstellar disks (Lubow 1981; Lubow &
Pringle 1993; Ogilvie & Lubow 1999) and related numeri-
cal calculations (Makita, Miyawaki, & Matsuda 2000) that
the three-dimensional propagation of spiral perturbations
may be significantly different from that obtained in two
dimensions because of the existence of vertical resonances.
Furthermore, Miyoshi et al. (1999) already noticed in their
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Table 3

Mass Accretion Parameter κac.

Mp/M⊕ q κac/RH Accreting Onlya

333 1.00 × 10−3 0.20, 0.15, 0.10 No
253 7.60 × 10−4 0.10 Yes
166 5.00 × 10−4 0.10 Yes
93 2.80 × 10−4 0.10 Yes
67 2.00 × 10−4 0.20, 0.10 No
33 1.00 × 10−4 0.20, 0.10 No
29 8.80 × 10−5 0.20, 0.10 No
20 6.00 × 10−5 0.15, 0.10 No
15 4.50 × 10−5 0.10 Yes
12.5 3.75 × 10−5 0.10 Yes
10 3.00 × 10−5 0.10 No
7 2.10 × 10−5 0.10 Yes
5 1.50 × 10−5 0.10 No
3 1.00 × 10−5 0.10 Yes
1.5 4.50 × 10−6 0.07 Yes

a“No” entry stands for the existence of a non-accreting
model.

Note.—The parameter κac represents the radius of the ac-
creting region. Within this sphere the mass density is reduced
by roughly 1% after every time step. The length κac = 0.1RH

should be small enough to make the accretion procedure al-
most independent of the evacuation parameter κev (Tanigawa
& Watanabe 2002). At q = 3 × 10−5 (Mp = 10 M⊕) a non-
accreting simulation was performed with Φp = ΦHS

p (eq. [6]) as

well as with Φp = ΦST
p (eq. [7]). In the case of lowest mass

model (Mp = 1.5 M⊕), we allowed the ratio κac/Sp to be less
than 0.5, as in all of the other models. For a better evaluation
of Ṁp, we used a modified version of the grid system G3 which
contains a sixth level, comprising (approximately) the planet’s
Hill sphere.
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Fig. 3.— Density slices with an overplotted two-component velocity field. In order to comprise the whole
density range, the color scale represents the logarithm of the density (log ρ). The evolutionary time is 200
orbital periods. Slices are cut at the planet location: θ = π/2 (top), ϕ = ϕp (middle), and R = Rp (bottom).
Both models are accreting and executed with Wuchterl’s potential. In physical units, ρ = 10−2 is equivalent to
4.22 × 10−11 g cm−3. Left panels. Planet with a total mass Mp = 166 M⊕ and a core mass equal to 2/3Mp

(critical core mass). Right panels. Planet with Mp = 67 M⊕ and a critical core mass. The curve drawn in
each panel indicates the trace of the Roche lobe. In the left and right top panels, the flow reaches velocities equal
to ∼ 3 and ∼ 2 km s−1, respectively. In the other panels, maximum velocities are on the order of ∼ 4 km s−1.
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shearing sheet models the weakening effect of the finite
disk thickness upon the formation of spiral waves around
embedded protoplanets. Hence, we may argue that the
averaging of the pressure and the gravitational poten-
tial, which is accomplished in an infinitesimally thin disk,
enhances spiral features in disks.

The remainder of this section is devoted to a general
description of the vertical circulation of the material in
the vicinity of the planet. We start inspecting what hap-
pens in the slice ϕ = ϕp, i.e., in the R–θ surface contain-
ing the planet (see middle panels in Fig. 3 and 4). The
first thing to note is that the material above the equa-
torial plane moves toward the planet with a negligible
meridional component, in fact |uθ| � u (where u = |u|).
Therefore matter is nearly confined to θ-constant surfaces.
This circumstance favors the use of 2D outcomes as pre-
dictions of 3D expectations (Masset 2002). However this
turns out to be true only far away from the planet. In
fact, as the fluid enters a certain region around the Hill
sphere, its dynamics changes drastically. The beginning
of this zone is marked by two shock fronts, which actually
develop well outside the Roche lobe of the restricted three
body problem. The distance of the shock fronts from the
perturber, if compared to RH, shrinks from 2.61 to 1.16 as
Mp is increased from 10 M⊕ to 1 M

X
. Generally, shocks

are not placed symmetrically with respect to the planet.
Past these shocks, material is deflected upward and then
it recirculates downward, while approaching the radial po-
sition of the planet (see middle panels in Fig. 3 and 4).

At R ≈ Rp, matter suffers an unbalanced gravitational
attraction by the planet and accelerates downward to-
wards it. Velocities are supersonic, reaching a Mach num-
ber M ' 8, when 67 M⊕ . Mp ≤ 1 M

X
, and M ' 2

if Mp = 20 M⊕. They become subsonic for planetary
masses between 10 and 1.5 M⊕, ranging from 30% to 5%
of the local sound speed. Because of the sinking material,
at θ = π/2 the flow field is slightly horizontally divergent
from the planet location.

As one can judge from Figure 4 (middle panels), the
flow gets less and less symmetric, with respect to Rp, as
the planet mass is reduced. Recirculation persists before
the planet (R < Rp) but vanishes behind it (R > Rp).
Any symmetry disappears starting from Mp = 5 M⊕

downwards.

Along the azimuthal direction (slice R = Rp, i.e., in
the surface ϕ–θ containing the planet), the bottom pan-
els of Figure 3 and 4 show an even more complex situa-
tion. Below 166 M⊕, the region of influence of the planet
appears to be more comparable in size with the Roche
lobe. However, apart from that, the general behavior of
the flow differs from case to case, having in common a
rapid descending motion when the material lies above the
planet. Around Jupiter-sized planets some kind of weak,
non-closed, recirculation may be seen. This flow feature
is still present at both sides of a 29 M⊕ planet (bottom
left panel, Fig. 4), whereas it tends to vanish in models
with lower q-ratios.

4.1.1. Non-accreting Protoplanets

Here we should dedicate some attention to the differ-
ences existing between accreting and non-accreting pro-
toplanets. Since the gas is locally isothermal, pressure
is proportional to the density according to equation (2).
Because of the mass removal, density nearby the planet
is lower in accreting models than it is in non-accreting
ones. In Table 4 the mass M̂e enclosed within the enve-
lope radius Sp is quoted for the two sets of models, along
with the mean density ρ̂e. These values demonstrate that
the amount of material contained in the volumes of non-
accreting planets can be considerably larger than in the
other case (even 6 times as much). Since the pressure
must converge in the two cases, when the distance from
the planet S � Sp, a higher mean pressure in the enve-
lope intuitively implies a larger magnitude of the pressure
gradient inside this region.

As an example, we illustrate in Figure 5 the velocity
field in two perpendicular slices θ = π/2 (i.e., the equa-
torial plane) and ϕ = ϕp (i.e., the surface R–θ passing
through the planet), in order to show how the enhanced
density values affect the local circulation. The targeted
body has Mp = 20 M⊕ because, among the eight avail-
able models for which accretion is not considered (see Ta-
ble 3), this is the one that suffers an orbital migration
substantially different from accreting counterpart mod-
els. From the isodensity lines displayed in Figure 5, one
can infer that matter is spherically distributed around the
non-accreting protoplanet (left panels). For this reason
the net torque arising within a region of radius ≈ RH is
nearly zero. This does not happen in the other case be-
cause the symmetry is not so strict.

The upper right panel clearly indicates the existence
of a rough balance between gravitational and centrifugal
force, with the pressure gradient playing a marginal role
in opposing the planet potential gradient. On the other
hand, from the circulation in the upper left panel of Fig-
ure 5 one can deduce that the pressure gradient is no
longer negligible compared to the potential gradient and
can therefore counterbalance its effects.

Moreover, the flow above the disk midplane (center and
lower left panels) suggests that gas is ejected at R < Rp.
Such phenomenon must be ascribed to the pressure gra-
dient as well, since the fluid opposes any further compres-
sion. These qualitative arguments will be quantitatively
corroborated in § 5, where we will show that the increased
amount of matter causes the envelope to be pressure sup-
ported.

We mention in the caption of Figure 5 that the flow
may travel supersonically within the atmospheric region,
though both Stevenson’s and Wuchterl’s gravitational po-
tential rely on the hypothesis of quasi-hydrostatic equilib-
rium. Such discrepancy can be attributed to the rate of
mass removal from the innermost parts of the planet’s en-
velope, which is not considered in the derivation of those
analytic solutions. In fact, while supersonic speeds have
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Fig. 4.— Density slices of the same type as in Figure 3, illustrating low-mass accreting planets after 200 orbits.
In these simulations, Stevenson’s potential is employed. In physical units, the density scale is as in Figure 3.
The density value ρ = 10−2 corresponds to 4.22 × 10−11 g cm−3. Left panels. Planet with Mp = 29 M⊕ and
a critical core mass Mc = 21.7 M⊕. Maximum flow speeds, within S = RH, are ∼ 1 km s−1 in each of the three
panels. Right panels. Planet with Mp = 10 M⊕ and a core mass and Mc = 7.5 M⊕. Inside of the Hill sphere,
maximum velocities are on the order of 0.2 km s−1.
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Fig. 5.— Two-component velocity field on the equatorial plane (top row ) and on the slice ϕ = ϕp (middle
and bottom rows) for a non-accreting, 20 M⊕ planet (left panels), and an accreting planet of the same mass
(right panels) with an accreting sphere radius κac = 0.15RH. Lines of equal log ρ are also drawn. The dashed
line represents the Roche lobe of the restricted three-body problem. In the accreting model, the equatorial flow
(θ = π/2) in the planet’s envelope has a Mach number M . 1.2 whereas, for the meridional flow, M . 2.
In the non-accreting computation the fluid travels subsonically in both the midplane and the meridional slice
(M . 0.2).
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Table 4

Mass enclosed within the Envelope Radius.

No Accretion Accretion

Mp M̂e ρ̂e M̂e
a M̂e

b M̂e
c

67 7.07 × 10−1 9.37 × 10−11 1.07 × 10−1 · · · 7.67 × 10−2

29 2.74 × 10−1 1.45 × 10−10 6.49 × 10−2 · · · · · ·
20 2.26 × 10−1 2.43 × 10−10 3.68 × 10−2 3.18 × 10−2 · · ·
10 1.29 × 10−2 7.12 × 10−11 9.76 × 10−3 · · · · · ·
5 2.24 × 10−3 5.56 × 10−11 2.17 × 10−3 · · · · · ·

aFrom models with κac = 0.10RH.

bFrom models with κac = 0.15RH.

cFrom models with κac = 0.20RH.

Note.—All masses are relative to the Earth’s mass. The mean density ρ̂e within
the planet’s radius is expressed in cgs units. We consider only simulations which were
run with the Stevenson’s potential. The mass M̂e is evaluated assuming a disk mass
MD = 3.5 × 10−3 M�. Hence, the values in the Table do not account for the disk
depletion rate ṀD, which is on the order of 3 × 10−3 M⊕ yr−1.

been measured in some accreting models, the flow is al-
ways subsonic the envelope of non-accreting planets. This
can be also understood with simple arguments. We said
before in this section that mass accretion is responsible for
the Keplerian-like circulation around protoplanets, in the
disk midplane. Hence, the local (equatorial) Mach num-
ber should be on the order of

√
q Rp/S/h. If evaluated

at S ≈ Sp, this quantity yields M ≈ 1.3 for a 20 M⊕

body, which is comparable to the value reported in the
caption of Figure 5. Along the vertical direction, if the
velocity is approximated to that of a spherically accreting
flow then uθ ≈ Ṁp/(4π S

2 ρ). At S = κac = 0.1RH, that
relation gives a (meridional) Mach number M ≈ 1.8 when
applied to the accreting model shown in Figure 5. Also
this number is similar to the measured value.

4.2. Gravitational Torques and Orbital Mi-

gration

Gravitational torques are believed to be responsible for
the migration of protoplanets from their initial formation
sites. In this work torques are directly estimated from
the gravitational force exerted by each fluid element of
the circumstellar disk on the planet. When computing
the gravitational force, we consider the density solution
on the finest available grid level. This procedure permits
to obtain higher accuracy because of the increasing reso-
lution of hierarchy levels.

Since the planet is an extended object, torques act-
ing on each of its portions should be calculated and then
added up to give the total torque vector, whose most gen-
eral expression6 is

TD =

∫

MD

∫

Mp

(Rp + S)

×
GdMD(R) dMp(S)

|R − Rp − S|3 R . (13)

Equation (13) explicitly states that circumstellar mate-
rial can alter both the orbital and rotational spins of a
protoplanet. However, here we shall confine our study
to variations of the planet’s orbital angular momentum
because the evaluation of the rotational spin requires a
rigorous treatment of the envelope self-gravity. This is
not done here, as stated in § 2 (see eq. [1]). Thereby, we
can proceed as if the whole planetary mass were concen-
trated in its geometrical center R = Rp and integrate the
force over the whole disk domain, excluding the volume
Vp occupied by the planetary envelope. Yet, outside of
such volume the gravitational potential is always that of
a point-mass object (see the behavior of eqs. [4], [6], [7],

6We would like to stress that in this form all of the gravitational
contributions (due to star, the planet, and disk self-gravity,
etc.) are implicitly enclosed in the differentials dMD(R) and
dMp(S).



16 Migration and Accretion of Protoplanets

and [9], for S > Sp), therefore equation (13) simplifies and
becomes

TD = Rp ×

∫

R/∈Vp

∇ΦPM
p ρ(R) dV (R). (14)

The orbital angular momentum of a protoplanet can
be affected only by the z-component (that parallel to the
polar axis) of the torque vector TD. To avoid useless dis-
tinctions, we indicate this component as TD. The sign
of TD determines the gain (positive torques) or loss (neg-
ative torques) of orbital spin. Larger spins correspond
to more distant orbits. Since torques generally change on
time scales on the order of ∼ 50 revolutions, we work with
their final magnitudes. We usually observe a slow decay
of |TD| with time (see also the end of § 4.3).

Two-dimensional computations reveal that torques ex-
erted by circumplanetary material may amount to a fair
fraction of the total torque, unless a suitable smoothing
length (usually of the size of the Hill radius) is used in the
planet gravitational potential Φp. This is caused by the
high surface densities reached around the planet and the
lack of a vertical torque decay which naturally occurs in
three dimensions (see § 5). In fact, in 3D, we observe that
torques arising from locations close to the planet do not
play such an important role as they do in 2D.

Analyzing the relative strength of torques exercised by
different disk portions, it turns out that in the mass range
q ∈ [2×10−4, 1×10−3], dominating negative torques arise
from distances S & 1.2hRp, where h is the disk aspect
ratio. Below 33 M⊕, the largest net contributions are
generated by material lying between S ' 0.6hRp and
S ' 2.2hRp. Therefore we can conclude that predomi-
nant torques are exerted at distances from the planet com-
parable with the Hill radius. Not more than 10% of TD is
built up by matter located within S ≈ 0.6hRp.

Apart from the 20 M⊕ protoplanet, the total torque
evaluated in non-accreting models does not deviate con-
siderably from that estimated in accreting ones, indepen-
dently of the used potential. In fact, simulations based
on the potentials ΦPM

p , ΦHS
p , and ΦST

p (eqs. [4], [6], and
[7], respectively) supply values of TD which differ by less
than 40%. This circumstance may signify that, whether
or not a protoplanet is still accreting matter from its
surroundings, this is not generally crucial to the gravi-
tational torques by the circumstellar disk. Thereby, be-
ing an exception, the case Mp = 20 M⊕ deserves some
comments. For such mass, the torque integrated over
the first two grid levels (S & 2.2hRp) yields a positive
value for both accreting and non-accreting planets. When
adding the contributions from the third and forth level
(0.6hRp . S . 2.2hRp), the torque experienced by the
planet lowers but, while it becomes negative in the ac-
creting case, it still remains positive in the non-accreting
counterpart. It is especially matter residing between 1
and 2RH from the planet that builds up the difference.
As material in the uppermost grid level (S . 0.6hRp)
of the non-accreting simulation does not exert any signif-

icant torques (some little negative contribution is indeed
measured in the accreting model), TD keeps the positive
sign although, in magnitude, it is eleven times as small
as that evaluated in the accreting case. This phenomenon
of torque reversal for non-accreting planets with masses
of about 20 M⊕ may be related to the very long migra-
tion time scales obtained for fully accreting models having
masses Mp ≈ 10M⊕ (see below, and Fig. 6).

Conservation of orbital angular momentum implies
that a protoplanet has to adjust its orbital distance from
the central star because of external torques exerted by
the disk. If the orbit remains circular, the time scale over
which this radial drift motion happens is inversely pro-
portional to TD, according to the formula:

τM =
a

|ȧ| =
Mp a

2 Ωp

2 |TD|
. (15)

In equation (15) we indicated with Ωp and a the planet’s
angular velocity and its distance from the star, respec-
tively. Linear, analytical theories (e.g., Ward 1997) pro-
vide two separate regimes governing the migration of low-
(type I ) and high-mass (type II ) protoplanets. Both mi-
gration types predict that the planet moves toward the
star. More recent studies by Masset (2001) and Tanaka,
Takeuchi, & Ward (2002) have reconsidered the role of
co-orbital corotation torques and proved that they can
be very effective in opposing Lindblad torques. Hence,
they can significantly slow down inward migration. Two-
dimensional results presented in Paper II well fit to these
predictions. A further reduction of the migration speed
is expected from a full 3D treatment of torques, as also
derived numerically by Miyoshi et al. (1999) and theoret-
ically predicted by Tanaka, Takeuchi, & Ward (2002).

Figure 6 shows our estimates for the migration time
scale τM as computed for models having different masses
and in which the potential solutions ΦPM

p , ΦKW
p , and ΦST

p

were adopted. We compare these values with the two
analytical theories developed by Ward (1997) (solid line)
and Tanaka, Takeuchi, & Ward (2002) (dashed line). The
first of them comprises both migration regimes, though ac-
counting only for Lindblad torques. The second theory is
limited to type I migration, albeit it treats both Lindblad
and corotation torques. Moreover, the first is explicitly
two-dimensional whereas the second is applicable in two
as well as three dimensions.

As one can see from Figure 6, numerical results are very
similar for Mp ≥ 67 M⊕, yielding τM ≈ 5 × 104 years,
whatever of the four gravitational potential is used (see
also Table 5). While this time scale is consistent with
Ward’s 1997 description if Mp = 67 M⊕, for more mas-
sive planets it is nearly two times as short as the theo-
retical prediction. The depletion of the disk inside the
planet’s orbit is probably responsible for part of the dis-
crepancy (see § 4.5), because Ward’s theory assumes a
disk with a constant unperturbed surface density. In the
type I regime, our numerical experiments with Φp = ΦST

p

(eq. [7]) well reproduce the behavior of the analytical
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Fig. 6.— Migration time scale versus the mass ratio q = Mp/MF. Outcomes from simulations carried out with
the various forms of gravitational potential are marked with different symbols. At q = 10−4 and 6 × 10−5,
calculations carried out with the point-mass potential were initiated with a density gap (see § 3.3). To avoid
confusion, migration rates obtained from models with Φp = ΦHS

p (eq. [6]) are quoted in Table 5. The solid line
represents the theoretical prediction by Ward (1997), which does not include corotation torques and 3D effects.
Both are indeed accounted for in the analytical model by Tanaka, Takeuchi, & Ward (2002) (dashed line). The
parameter π a2 Σp/MD, needed to draw the analytic curves, was retrieved from the initial surface density profile
(see § 3.3). The scale on the right vertical axis gives the migration rates of a protoplanet orbiting at 1 AU from
the primary.

curve when Mp = 30, 20, 5, 3.3, and 1.5 M⊕.

Computations executed with Φp = ΦHS
p (eq. [6]) prob-

ably underestimate the magnitude of differential torques
because of the much weaker gravitational field. Neverthe-
less, for Jupiter-mass and Earth-mass protoplanets, mi-
gration times yielded by these models well compare to
those displayed in Figure 6, as proved by the values re-
ported in Table 5.

Significant deviations from the linear estimate of
Tanaka, Takeuchi, & Ward (2002) are observed in the
mass interval [7, 15] M⊕, where the migration time is
longest at 10 M⊕. For this planet τM, estimated with
Stevenson’s as well as the point-mass potential, is thirty

times as long as the theoretical description by Tanaka,
Takeuchi, & Ward (2002) predicts. This depends on the
strong positive torques arising at S > 2hRp which are
not efficiently contrasted by negative ones generated in-
side S ' hRp. However, for this particular planetary
mass, we obtain discrepant estimates from computations
performed with different resolutions. In fact, the simula-
tion carried out with the grid G2 yields a positive total
torque acting on the planet, i.e., it predicts an outward
migration, whereas models based on the higher resolution
hierarchies G3 and G4 provide a negative total torque.
Yet, the absolute value of TD evaluated with grid G4 is a
seventh of that achieved with grid G3.
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Table 5

Migration Times obtained with the Homogeneous Sphere Potential.

τM [years]

Mp/M⊕ q Accretion No Accretion

333 1.0 × 10−3 5.04 × 104 4.80 × 104

166 5.0 × 10−4 4.76 × 104 · · ·
33 1.0 × 10−4 2.10 × 105 2.54 × 105

20 6.0 × 10−5 5.74 × 105 · · ·
10 3.0 × 10−5 5.26 × 105 4.78 × 105

5 1.5 × 10−5 6.19 × 105 · · ·

Note.—Migration rates from accreting and non-
accreting models in which Φp = ΦHS

p (eq. [6]). Time scales
are sensibly different from those indicated in Figure 6 only
at Mp = 33, 20, and 10 M⊕.

Since we believe that gravitational torques are ac-
counted for in a more accurate fashion by hierarchy G3
than by grid G4 because of the arguments in § 4.5, we
may rely more on the outcome of the hierarchy G3 (shown
Fig. 6) rather than on the other two. We note that such
migration time (τM = 3.3× 106 years) is roughly the dou-
ble of that supplied by the Mp = 10 M⊕, non-accreting
model.

We have further inquired into the matter by running a
simulation with Mp = 12.5 M⊕ and Φp = ΦST

p (see Ta-
ble 1). Based on the experience acquired with models exe-
cuted with grids G3 and G4, we set up the high-resolution
hierarchy G5 (see Table 2). This grid is designed to better
resolve those regions responsible for the strongest torque
contributions in the mass interval [7, 15] M⊕. As seen in
Figure 6, the resulting migration rate follows the trend es-
tablished by the other assessments in this range of masses.

The interesting property that computed migration time
scales are very long for ten Earth-mass planets may be
caused by non-linearity effects. We note, in fact, that in
numerical simulations the first traces of a trough in the
density structure is observed around the same value of
Mp and gap formation starts when disk-planet interac-
tions become non-linear. However, this issue needs to be
addressed more thoroughly with future computations.

4.3. Mass Accretion

Three-dimensional computations of one Jupiter-mass
bodies provide estimates of the mass accretion rate Ṁp

on the same order of magnitude as those obtained by two-
dimensional ones (see Paper I). Two-dimensional calcula-
tions performed by the authors reveal a maximum of the

accretion rate, as function of the mass, around 0.5 M
X

(see Paper II). Yet, those estimates appear surprisingly
high in the very low mass limit. Part of the reasons may
lie in the assumed flat geometry which cannot account for
the vertical density stratification. The present simulations
overcome this restriction, hence they permit to evaluate
also the effects due to the disk thickness.

The values of Ṁp is plotted against the planetary mass
in Figure 7. As comparison, estimates relative to models
with different gravitational potential solutions are shown.
The overall behavior of the data points resembles that re-
ported in Paper II, with a peak around 0.3 M

X
. For

Mp = 1 M
X

the agreement between two and three-
dimensional models is very good and not much discrep-
ancy is seen down to Mp = 20 M⊕, since values are com-
parable within a factor 3 (see § 4.4). Below this mass,
however, the accretion rate rapidly declines, which drop is
not observed in 2D outcomes. In fact, one can infer from
Figure 7 that the dynamical range of Ṁp stretches for
more than two orders of magnitude. By using model re-
sults obtained applying the point-mass, Stevenson’s, and
Wuchterl’s potential (eqs. [4], [7], and [9], respectively)
the following approximate relation can be found:

log

[
Ṁp

M⊕/yr

]
' b0 + b1 log q + b2 (log q)2 , (16)

whose coefficients are b0 = −18.47 ± 0.76, b1 = −9.25 ±
0.38, and b2 = −1.266 ± 0.046. Equation (16) holds as
long as the mass ratio q ∈ [4.5 × 10−6, 10−3] or, for a one
solar-mass star, when 1.5 M⊕ ≤ Mp ≤ 1 M

X
. Such an

equation can be applied to scenarios studying the global
long-term evolution of young planets.
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Fig. 7.— Planet’s accretion rate as function of the normalized planet mass q. Different symbols stand for the
different forms of gravitational potential Φp adopted in the computations. Apart from those models run with
the homogeneous sphere potential ΦHS

p (see eq. [6]), mass is removed from a volume, centered on the planet,
with radius κac = 0.1RH (see Table 3 for some details concerning the simulation with Mp = 1.5 M⊕). Models
for which Φp = ΦHS

p have κac equal to 0.2RH if Mp > 20 M⊕ and to 0.15RH if Mp = 20 M⊕; otherwise κac is
set to 0.1RH.

Calculations in which the homogeneous sphere poten-
tial ΦHS

p (eq. [6]) is adopted yield accretion rates substan-
tially lower (from 3 to 15 times) than those achieved when
the other potential forms are employed. This is due to the
weak gravitational attraction this potential exerts within
the planet’s envelope. As proved by Figure 1, the gravita-
tional field can be 100 times as small as that established
by the other three potential functions for S ≤ Sp. Also
in this circumstance, a relation similar to equation (16)
exists for which the coefficients are b0 = −19.42 ± 2.68,
b1 = −9.96 ± 1.41, and b2 = −1.42 ± 0.18.

While the accretion rate is fairly stable with time for
masses below 30 M⊕, it keeps reducing for higher masses.
Between 67 M⊕ and 0.8 M

X
, Ṁp drops by 10 to 20%

during the last 50 orbits of the simulations. This is an
indication of a deepening gap and a depleting disk. As

for the dependency upon the accretion volume, from our
numerical experiments it is found that doubling the radius
κac, the accretion rate grows at most by 30%. The smaller
the planet mass, the less sensitive Ṁp is to the parameter
κac.

4.4. Comparison with 2D Models

In this Section we aim at comparing the migration time
scale as well as the planet’s accretion rate obtained in this
work with those presented in Paper II. However, while
two-dimensional estimates of Ṁp (Fig. 25 in Paper II)
are directly comparable to those plotted here in Figure 7,
the time scales τM shown in Figure 20 of Paper II are not
completely consistent with those in Figure 6. Therefore,
they need to be corrected.

This is because in the present study torques are in-
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Fig. 8.— Left panel. Migration rates as evaluated in two-dimensional (Paper II) and three-dimensional
models (this paper). Right panel. Using the same sources as in the left panel, a comparison of the growth
time scales τG ≡ Mp/Ṁp, between 2D and 3D outcomes, is shown. Filled triangles, in both panels, indicate
results obtained from three-dimensional models in which the planetary gravitational potential is ΦPM

p , ΦST
p , or

ΦKW
p .

tegrated all over the disk domain excluding the planet
envelope, i.e., the sphere of radius S = Sp. Instead, in
Paper II the excluded region has a radius ≈ 0.1RH (for
details see Paper II, § 5.4). From Table 1 one can see
that, above 33 M⊕, the envelope radius Sp can be much
larger than a tenth of the Hill radius.

Figure 8 illustrates the migration rate τM (left panel)
and the growth time scale τG ≡ Mp/Ṁp (right panel) as
computed in the two geometries. Orbital migration esti-
mated by means of 3D simulations is slower than that eval-
uated in 2D calculations only below 33 M⊕ (q = 10−4).
As for planet’s accretion, the most important difference
is the rapid drop, for Mp < 10 M⊕, observed in disks
with thickness. The larger values of three-dimensional es-
timates, measured in the range 10 M⊕ . Mp . 1 M

X
,

are due to the gap which is not so deep as it is in two-
dimensional models, hence the average density around the
planet is higher. This occurrence can be partly attributed
to gravitational potential effects that, as we mentioned in
§ 4.1, are intensified by the flat geometry approximation.

4.5. Numerical Effects

In Paper II it was found that, upon increasing the
smoothing parameter, there is a reduction of the torques’
mismatch, over a region around the planet whose lin-
ear size is comparable with the double of the smoothing
length. A 33 M⊕ model was run with a point-mass po-
tential without any kind of softening. This is possible be-
cause none of the hydrodynamical variables is placed at a

cell corner, where the planet dwells. A similar simulation
was performed applying a grid dependent smoothing of
the type described in Paper II. Resulting migration time
scale and mass accretion are not significantly affected by
the smoothing choice.

As for the consequences of the circumstellar disk de-
pletion, inside of the planet’s orbit, we ran a Jupiter-mass
model in which both inner and outer radial borders were
closed. Since more material is available in the disk portion
R < Rp (roughly twelve times as much), one should ex-
pect larger values for both Ṁp and τM. Indeed, accretion
is two times as much as that calculated in the model with
open inner border. Positive torques arising from the inner
disk are also stronger and TD is reduced by 50%, i.e., the
migration time scale is two times as long.

When simulating a Jupiter-size body embedded in a
disk with no initial gap, a density indentation is gradu-
ally carved in. In order to skip the gap formation phase,
an approximate analytical gap is sometimes imposed in
the initial density distribution (see Kley 1999). We per-
formed three computations adopting this choice. In these
cases, a partial shrinking and refilling of the analytical
gap is observed. Besides, material drains out of the inner
radial border faster than it does in our standard models
(no initial gap). Hence, the inner disk depletion is in-
tensified. With respect to standard models, we measure
smaller accretion rates and longer migration time scales.
Discrepancies in both quantities stay below 20%, after
200 orbits. However, since the model outcomes indicate
a tendency to converge as the evolution proceeds, a more
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appropriate comparison should be made after a long-term
evolution.

4.5.1. Grid Resolution

Hardly any hydrodynamic calculation is strictly reso-
lution independent. Thus, for completeness we analyze
in this section how our estimates on migration and accre-
tion vary because of different hierarchy resolutions. Two
tests are presented for each of the quantities Ṁp and TD.
They are computed with the aid of grid systems G3 and
G4 and then results are tested against those calculated
with the less resolved hierarchy G2 (see Table 2). In
this way we aim at checking finite resolution effects in
the radial and azimuthal directions and, separately, those
in the meridional direction. In fact, G3 and G2 have the
same number of grid points in the vertical direction but
∆R[G3] = 0.82 ∆R[G2] and ∆ϕ[G3] = 0.75 ∆ϕ[G2]. In
the other test case (G4 against G2), R and ϕ gridding
is unchanged while the number of latitude grid points is
nearly doubled.

With regard to the mass accretion rate (Fig. 9, left
panel) differences are below 20%. Though the number of
grid cells in the accretion sphere is enlarged by a factor
either 1.7 or 2, no systematic tendency seems to arise from
this test. Something different happens to the total torque
(right panel). In fact, while the increased resolution in
the latitude direction θ does not play any considerable
role, the larger number of grid points in R and ϕ causes a
reduction of the total torque magnitude between 20 and
30%. This is not at all unexpected. On one hand circum-
stellar disk spirals are better captured by a finer gridding
in the radial and azimuthal dimensions. Thus, Lindblad
torques are accounted for in a more accurate fashion. The
Figure proves this to be especially true when the ratio q
is small, because of the diminishing wave amplitudes. On
the other hand, due to the vertical exponential drop of
the density and the lack of temperature stratification, disk
layers above the midplane do not contribute very much to
TD. A finer resolution along the vertical dimension cannot
sensitively modify the total torque outcome.

5. Discussion

Here we devote some further comments to the differ-
ences between accreting and non-accreting protoplanets
and then to the effects of the vertical density structure on
the gravitational torques acting on embedded objects.

5.1. Pressure Effects in Protoplanetary En-

velopes

For the purpose of carrying out a local analysis in
the vicinity of accreting and non-accreting protoplanets,
we introduce a cylindrical coordinate reference system
{O′; l, ψ, z} with its origin O′ coinciding with the planet
position and the z-axis perpendicular to the disk mid-
plane. Hence, we will have that S2 = l2 + z2. The lon-

gitude angle ψ is counterclockwise increasing, and ψ = π
points toward the star. Supposing that the flow nearby the
planet is stationary, neglecting fluid advection and viscos-
ity, the Navier-Stokes equation for the radial momentum
reads:

w2
ψ

l
=
∂Φp

∂l
+

1

ρ

∂p

∂l
, (17)

where wψ is the azimuthal velocity component around
the planet. Excluding the particular situation represented
by a homogeneous sphere (eq. [6]), the first term on the
right hand side of equation (17) is positive (see Fig. 1).
Recalling equation (2), we see that the second term is
proportional to the density gradient, which is negative,
and therefore it reduces the centrifugal acceleration w2

ψ/l.
In Figure 10 we show some quantities, at z = 0, aver-
aged over the angle ψ, regarding the same simulations ad-
dressed in § 4.1.1 (Mp = 20 M⊕ with Φp = ΦST

p ). From
the top left panel one can realize that the mean density is
indeed higher in the non-accreting case (solid line) than
it is in the accreting case (dashed line), as it was argued
in § 4.1.1 from the values listed in Table 4. In order to
evaluate how much the pressure gradient affects the left
hand side of equation (17) in both cases, we plot the av-
erage of such quantity (〈w2

ψ〉/l) in the top right panel of
Figure 10. The centrifugal acceleration is much smaller in
the envelope of the non-accreting model (solid line) than
it is in that of the accreting one. Such circumstance is
a clear indication that the envelope is pressure supported
in the first case. The behavior of the averaged velocities
〈wψ〉 and 〈wl〉 is shown in the two bottom panels. As
expected in a pressure dominated flow, the magnitude of
both velocity components is smaller in the non-accreting
model (dashed lines).

5.2. Torque Overestimation in 2D Geometry

Gravitational torques exerted by a three-dimensional
disk onto a medium- or low-mass protoplanet are weaker
than those generated by a two-dimensional disk. Miyoshi
et al. (1999) state that the total torque TD in 3D is 0.43
times as small as that in 2D. Something similar was found
by Tanaka, Takeuchi, & Ward (2002). Our fully non-linear
calculations predict that low-mass protoplanets have a mi-
gration rate, at least, an order of magnitude less in disks
with thickness than they have in infinitesimally thin disks.
One of the main reasons for that relies upon the vertical
decay of the density, as one can demonstrate easily with
a simplified approach.

Let tz be the z-component of the gravitational torque
exerted by a column of mass Σ l dl dψ, located at distance l
from the planet (see § 5.1). The surface density is defined
as Σ =

∫
ρ dz. If fg is the force exerted by such mass

distribution, projected on the equatorial plane, then we
can write

tz = Rp fg sinψ. (18)
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Fig. 9.— Left panel. Comparison of the accretion rate Ṁp as computed on grid systems with different

resolutions. Squares indicate that the ratios Ṁp[G4]/Ṁp[G2] are drawn, whereas triangles refer to the ratios

Ṁp[G3]/Ṁp[G2] (see text). Right panel. The same type of comparison for the total torque TD experienced by
the protoplanet. Squares and triangles have the same meaning as before. At Mp = 10 M⊕, we compare results
from models with the homogeneous sphere potential given in equation (6), when available (for this particular
mass value, see the discussion in § 4.2).

The ratio of tz[3D] to tz[2D] is therefore equal to

χ =
fg[3D]

fg[2D]
=
l3

Σ

∫ +∞

−∞

ρ

(l2 + z2)3/2
dz. (19)

Since fg[3D] and fg[2D] are coherent in sign, χ is also
equal to the ratio of |tz[3D]| to |tz[2D]|. In order to quan-
tify this quantity, we can assume a Gaussian mass density
profile with a scale-height H, which is appropriate as long
as no deep gap has formed. Thus

χ =
l3√
2πH

∫ +∞

−∞

exp
(
− z2

2H2

)

(l2 + z2)3/2
dz. (20)

The ratio χ as function of l is plotted in Figure 11
and it evidences how a two-dimensional geometry overes-
timates the magnitude of gravitational torques acting on
the protoplanet. In the limit l2 � z2, χ converges to 1,
which proves that only torques arising from locations near
to the planet (l . H) are magnified.

Though larger torque magnitudes do not necessarily
imply faster migration speeds, they can favor a larger mis-
match between negative and positive torques and there-
fore shorter τM.

6. Conclusions

On the background of the numerical computations of
disk-planet interaction presented in Paper I and II, in this

paper we combine the full 3D geometry of a circumstellar
disk with a nested-grid technique in order to investigate
in detail flow dynamics, orbital decay, and mass accre-
tion of protoplanets in the mass range [1.5 M⊕, 1 M

X
].

Besides, we overcome the point-mass assumption by em-
ploying analytic expressions of the gravitational potential
derived from simple theoretical models of protoplanetary
envelopes. Each of them applies to distinct physical situ-
ations: when the envelope mass is negligible with respect
to the core mass; when the envelope is homogeneous and
much more massive than the core; when the envelope is
fully radiative, and finally when it is fully convective.

Through a series of 51 simulations, we inspect the
evolution and differences of protoplanets represented by
the aforementioned gravitational potentials. We analyze
the behavior of both accreting and non-accreting objects.
Furthermore, we evaluate physical and numerical effects
due to our standard set-up of the models. The com-
putations clearly show that to accurately determine the
early physical evolution of planets three-dimensional ef-
fects have to be taken into account.

The main results of our studies can be summarized as:

1. Above the disk midplane the flow is nearly laminar
only far away from the planet. The region of in-
fluence of the planet extends well outside the Hill
sphere and its boundaries are marked by vertical
shock fronts. Past the shock, matter is deflected up-
ward and then downward. In some cases, a closed
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Fig. 10.— Midplane quantities (z = 0 or θ = π/2) azimuthally averaged around the protoplanet for two
simulations in which Φp = ΦST

p and Mp = 20 M⊕. The solid line belongs to the a non-accreting model, the
dashed line to an accreting one. Top-left: mass density. Top-right: centrifugal acceleration. Bottom-left:
rotational velocity. Bottom-right: velocity component along the radial distance l (see § 5). All of the four
quantities indicate that the envelope is mostly pressure supported in the non-accreting case, whereas it is mainly
centrifugally supported in the other.

recirculation is also observed. In the disk midplane,
spiral waves around the planet are not as strong and
tight as they appear in two dimensions because of
wave deflection in the vertical direction.

2. In the mass range of their applicability, Steven-
son’s and Wuchterl’s gravitational potentials pro-

duce flow structures, close to the planet, similar to
those determined by a smoothed point-mass poten-
tial. Migration times and accretion rates are alike.
In contrast models with the (unrealistic) potential
of a homogeneous sphere yield different dynamics
though, as for τM and Ṁp, not much difference is
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Fig. 11.— Ratio of the tree-dimensional to the two-
dimensional torque exerted by a column of material
lying at a midplane distance l from the protoplanet
(see § 5). The upper x-axis is in units of the disk
semi-thickness at the planet location: H = hRp.

observed for Jupiter and Earth-size bodies.

3. Since the numerical accretion procedure might be
considered somewhat arbitrary, we ran several mod-
els in which the protoplanet does not accrete at
all. Non-accreting models behave differently from
accreting ones in a volume whose size is roughly
comparable with the Hill sphere. Within this re-
gion matter is pressure supported and thus a spher-
ical envelope builds up. Except for the case Mp =
20 M⊕, the total torque TD exerted by the disk is
on the same order of magnitude as that measured
in accreting models.

4. According to Ward’s theory (Ward 1997), the mi-
gration speed settles to a constant value when the
planet-to-star mass ratio q & 4×10−4. Our numeri-
cal results give a similar trend at a slightly different
magnitude though. Most of these simulations pre-
dict an inward migration except the one where a
20 M⊕, non-accreting, protoplanet is involved. In
the mass range [7 M⊕, 15 M⊕] migration speeds can
be 30 times as slow as those predicted by Tanaka,
Takeuchi, & Ward (2002) although, outside of this
range, the agreement between our computational
data and the type I migration by the same authors
is remarkably good. We suspect that this surprising
outcome may be caused by the onset of non-linear
effects appearing around ten Earth’s masses, which
conspire to give such long migration time scales. If

correct, this much slower inward motion may help
to solve the problem of the too rapid drift of planets
toward their host stars.

5. In agreement with studies on planet formation (Bo-
denheimer & Pollack 1986; Tajima & Nakagawa
1997), the growth time scale shortens as the pro-
toplanet’s mass increases. The minimum is found
at Mp = 20 M⊕. Albeit the feeding process slows
down as soon as angular momentum transferred
by the planet to the surrounding material is large
enough to dig a density gap. Then, at Mp ≈ 1 M

X
,

the accretion rate greatly reduces and the growth
time scale becomes consistently very long. We
present an analytical formula for the growth rate
which may be useful for global studies in planet
formation.

6. As long as migration and mass accretion are con-
cerned, two-dimensional computations still yields
reliable results when the mass ratio q & 10−4 (Mp &

30 M⊕ if MF = 1 M�). In practice, 2D geometry is
applicable whenever the Hill radius RH exceeds the
60% of the local pressure scale-height of the disk
H. But for smaller masses three-dimensional calcu-
lations have to be considered.

The three-dimensional calculations presented here
achieve a new level of accuracy by using a sophisticated
nested-grid technique. This numerical feature allows a
global and local resolution not obtained hitherto. How-
ever, similar to all of the previous calculations, the models
presented here have one principal limitation: the lack of
an appropriate energy equation. Because of this, we could
not couple the thermal and the hydrodynamical evolution
of the system. If one wishes to do that in three dimen-
sions, the energy equation has to include radiation and
convective transfer. Yet, only with massive parallel com-
putations one can hope to pursue this goal. Thereupon,
the direction of future developments and improvements is
already marked.

We are grateful to Udo Ziegler for having made avail-
able to us the FORTRAN Version of his code Nirvana7.
G. D. wishes to thank sincerely Dr. G. Wuchterl for the
time spent on intriguing discussions and for his precious
suggestions about the protoplanet envelope solution by
D. J. Stevenson. We are indebted to P. Bodenheimer who
provided us with the estimates of the protoplanets’ radii.
Remarks by an anonymous referee helped to clarify and
improve many parts of this article. We much appreciated
his job. This work was supported by the German Science
Foundation (DFG) under grant KL 650/1-1. The numeri-
cal computations were carried out at the Computer Center
of the University of Jena and at the Institute of Astron-
omy and Astrophysics of the University of Tübingen.
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A. Interpolation Formulas for the Fine-coarse Grid Interaction

The aim of this appendix is to furnish some algorithms useful for updating the values of scalars and momenta
on a coarse grid with those computed on the hosted (finer) grid, in spherical polar coordinates.

For the purpose, we indicate with ρC the mass density to be interpolated on the coarse level. The interpolating
values, on the finer subgrid level, are indicated simply as ρ(i, j, k). For the density average, the i-index varies
between i and i + 1 and so do the other two indexes.

Accordingly, UC
R , UC

θ and UC
ϕ are the coarse linear, meridional and azimuthal angular momentum. The finer

values from which they are reset will be denoted as UR(i, j, k), Uθ(i, j, k), and Uϕ(i, j, k), respectively. For the
average of the radial vector component, the i-index varies between i − 1 and i + 1, while the other two indexes
vary between j (k) and j + 1 (k + 1). This is related to the locations where velocity components are defined
on the mesh. In case of the meridional angular momentum, the j-index ranges from j − 1 to j + 1, while the
others are i (k) and i + 1 (k + 1). For the azimuthal angular momentum, it is the k-index to extend over the
wider range.

The finer grid coordinates are (Ri, θj , ϕk), and the grid spacing is (∆R,∆θ,∆ϕ) (see Fig. 12), which is
constant. Since the grid has a staggered structure, scalars are volume-centered, i.e., ρ(i, j, k) lies at (Ri +
∆R/2, θj + ∆θ/2, ϕk + ∆ϕ/2), while ρC resides at (Ri + ∆R, θj + ∆θ, ϕk + ∆ϕ), because the linear resolution
doubles from a grid to the hosted one. Instead, vector components are centered each on a different face of the
volume element. For example, the radial component UR(i, j, k) is located at (Ri, θj +∆θ/2, ϕk +∆ϕ/2), whereas
the coarse radial momentum UC

R is defined at (Ri, θj + ∆θ, ϕk + ∆ϕ). The locations of the other components
follow by similarity.

The interpolation is basically a volume-weighted average. Eight volumes are necessary to carry out a scalar
interpolation. Momentum interpolations require that twelve spherical sectors must be employed. Yet, since the
metric in a spherical polar topology is independent of the azimuthal angle ϕ, some of them actually coincide.
In order to distinguish among the four volume sets, we introduce the notations V (ρ), V (R), V (θ) and V (ϕ),
according to the quantity to average (ρC, UC

R , UC
θ , and UC

ϕ ). These four sets differ because of the space metric
and the staggered mesh.

Once the correct elements have been identified, the coarse mass density can be replaced by

ρC =

∑
ijk ρ(i, j, k)V (ρ)(i, j)

2
∑

ij V (ρ)(i, j)
. (A1)

In fact, sectors V (ρ) are ϕ-independent, thus only four volumes enter this average. In a similar fashion, corrected
momenta can be written, in a concise form, as

UC
Ξ =

∑
ijk UΞ(i, j, k)V (Ξ)(i, j, k)

∑
ijk V (Ξ)(i, j, k)

, (A2)

where Ξ = R, θ, and ϕ. For computational purposes, a volume element is preferentially cast into the form

V =
(
∆R3/3

)
(−∆cos θ) (∆ϕ) . (A3)

The four sectors V (ρ) required in equation (A1) are the following

V (ρ)(i, j) =
1

3

(
R3

i+1 − R3
i

)
[cos (θj) − cos (θj+1)] ∆ϕ

V (ρ)(i + 1, j) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]
[cos (θj) − cos (θj+1)] ∆ϕ

V (ρ)(i, j + 1) =
1

3

(
R3

i+1 − R3
i

)
[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ (A4)

V (ρ)(i + 1, j + 1) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ.
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Also for the radial and meridional directions, the denominator of equation (A2) reduces to 2
∑

ij V (Ξ)(i, j),
though the summation includes six terms, this time. Therefore, the set of volume elements necessary for the
interpolation of the radial momentum UC

R is:

V (R)(i − 1, j) =
1

3

[
1

8
(Ri−1 + Ri)

3 − R3
i−1

]

[cos (θj) − cos (θj+1)] ∆ϕ

V (R)(i, j) =
1

24

[
(Ri + Ri+1)

3 − (Ri−1 + Ri)
3
]

[cos (θj) − cos (θj+1)] ∆ϕ

V (R)(i + 1, j) =
1

3

[
R3

i+1 −
1

8
(Ri + Ri+1)

3

]

[cos (θj) − cos (θj+1)] ∆ϕ (A5)

V (R)(i − 1, j + 1) =
1

3

[
1

8
(Ri−1 + Ri)

3 − R3
i−1

]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ

V (R)(i, j + 1) =
1

24

[
(Ri + Ri+1)

3 − (Ri−1 + Ri)
3
]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ

V (R)(i + 1, j + 1) =
1

3

[
R3

i+1 −
1

8
(Ri + Ri+1)

3

]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ.

The group of elements involved in the updating process of the meridional angular momentum UC
θ is:

V (θ)(i, j − 1) =
1

3

(
R3

i+1 − R3
i

)
{cos (θj−1) − cos [(θj−1 + θj)/2]} ∆ϕ

V (θ)(i, j) =
1

3

(
R3

i+1 − R3
i

)

{cos [(θj−1 + θj)/2] − cos [(θj + θj+1)/2]} ∆ϕ

V (θ)(i, j + 1) =
1

3

(
R3

i+1 − R3
i

)
{cos [(θj + θj+1)/2] − cos (θj+1)} ∆ϕ

V (θ)(i + 1, j − 1) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]
(A6)

{cos (θj−1) − cos [(θj−1 + θj)/2]} ∆ϕ

V (θ)(i + 1, j) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]

{cos [(θj−1 + θj)/2] − cos [(θj + θj+1)/2]} ∆ϕ

V (θ)(i + 1, j + 1) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]

{cos [(θj + θj+1)/2] − cos (θj+1)} ∆ϕ.

In order to perform the interpolation of the azimuthal angular momentum UC
ϕ , the following set of volume
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φk

Ri
Ri−1

Ri+1

φk+1

jθ

j+1θ

2∆θ
2∆φ

2∆R

Fig. 12.— Sketch of a spherical sector composed of two coarse grid cells (thick lines) and the set of nested cells
(thin lines). The discretized spherical coordinates (Ri, θj , ϕk) are relative to the fine grid, and so is the resolution
(∆R,∆θ,∆ϕ). Scalars are cell-centered on each grid level, whereas vector components are face-centered, each
on a different face of the volume element.

elements is required:

V (ϕ)(i, j, k − 1) =
1

3

(
R3

i+1 − R3
i

)
[cos (θj) − cos (θj+1)] ∆ϕ/2

V (ϕ)(i + 1, j, k − 1) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]

[cos (θj) − cos (θj+1)] ∆ϕ/2

V (ϕ)(i, j + 1, k − 1) =
1

3

(
R3

i+1 − R3
i

)

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ/2

V (ϕ)(i + 1, j + 1, k − 1) =
1

3

[
(Ri+1 + ∆R)3 − R3

i+1

]

[cos (θj+1) − cos (θj+1 + ∆θ)] ∆ϕ/2

V (ϕ)(i, j, k) = 2V (ϕ)(i, j, k − 1) (A7)

V (ϕ)(i, j + 1, k) = 2V (ϕ)(i, j + 1, k − 1)

V (ϕ)(i + 1, j, k) = 2V (ϕ)(i + 1, j, k − 1)

V (ϕ)(i + 1, j + 1, k) = 2V (ϕ)(i + 1, j + 1, k − 1)

V (ϕ)(i, j, k + 1) = V (ϕ)(i, j, k − 1)

V (ϕ)(i, j + 1, k + 1) = V (ϕ)(i, j + 1, k − 1)

V (ϕ)(i + 1, j, k + 1) = V (ϕ)(i + 1, j, k − 1)

V (ϕ)(i + 1, j + 1, k + 1) = V (ϕ)(i + 1, j + 1, k − 1).

Equations A7 imply that the denominator of equation (A2) is also equivalent to 2
∑

ij V (ϕ)(i, j, k).

Velocities are retrieved from momenta and density. Fine-coarse interaction also involves the correction of
momentum flux components across the boundaries between two neighboring grids. This is accomplished via
time and surface-weighted means (for details, see Paper II).
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