Pre-Main-Sequence Stars: Older Than We Thought?

Cameron Bell¹, Tim Naylor¹, N. J. Mayne¹, R. D. Jeffries², S. P. Littlefair³ 1 – University of Exeter, 2 – Keele University, 3 – University of Sheffield

27th July 2012

- Why the poor fit in the pre-MS regime?
 - photometric calibration?
 - transformation from H-R to CMD?
 - problems with models themselves?

Photometric data from Stauffer et al. (2007)

- Why the poor fit in the pre-MS regime?
 - photometric calibration?
 - transformation from H-R to CMD?
 - problems with models themselves?
- ⇒ spread in pre-MS ages for a given region!

Photometric data from Stauffer et al. (2007)

- Why the poor fit in the pre-MS regime?
 - photometric calibration?
 - transformation from H-R to CMD?
 - problems with models themselves?
- ⇒ spread in pre-MS ages
 for a given region!
 ⇒ how reliable are ages
 for young pre-MS stars?

Photometric data from Stauffer et al. (2007)

Photometric calibration

• Like to convert INT-WFC survey to SDSS

• $g_{\text{stand}} = \boldsymbol{\varphi}_g (g - i)_{\text{inst}} - k_g \boldsymbol{\chi} + z_g.$

- Model INT-WFC system responses
 - transformations.

Cep OB3b, χ Per, IC 348, IC 5146, λ Ori, NGC 1960, NGC 2169, NGC 2244, NGC 2362, NGC 6530, NGC 6611, NGC 7160, ONC, Pleiades, σ Ori

Photometric calibration

• Like to convert INT-WFC survey to SDSS

• $g_{\text{stand}} = \boldsymbol{\varphi}_g (g - i)_{\text{inst}} - k_g \boldsymbol{\chi} + z_g.$

- Model INT-WFC system responses
 - transformations.
- Traditional calibration would place pre-MS stars in wrong position in CMD space
 ⇒ leave photometry in natural INT-WFC system.

Cep OB3b, χ Per, IC 348, IC 5146, λ Ori, NGC 1960, NGC 2169, NGC 2244, NGC 2362, NGC 6530, NGC 6611, NGC 7160, ONC, Pleiades, σ Ori

A simple test

• A simple test is to take our Pleiades dataset in the natural photometric system and see if we can match the observed pre-MS.

• Working in the natural system we require atmospheric models to transform isochrones into CMD space.

A simple test Baraffe et al. (1998) red; Siess et al. (2000) blue; D'Antona &

 Models still do not fit the Pleiades pre-MS population

- missing sources of opacity?
- treatment of convection?
- missing physics?
- Can we then quantify this mismatch?

Utilising binaries

• To be quantitative, we must measure the mismatch in each photometric bandpass, *not* as a function of colour.

• Find a bandpass where the discrepancy is the smallest and create colours with respect to that band.

• Equivalent to using this band as a $T_{\rm eff}$ indicator.

• Study mass-luminosity relation in individual bandpasses using binaries.

• These data do not exist for the Pleiades, so we use main-sequence binaries.

27th July 2012

Main-sequence binaries

- Eclipsing and spectroscopic binaries give system magnitude
 - $q \rightarrow 1$ (same mass)
 - $q \rightarrow 0$ (mass = primary)

Main-sequence binaries

• Eclipsing and spectroscopic binaries give system magnitude

- q \rightarrow 1 (same mass)
- $q \rightarrow 0$ (mass = primary)

• $K_{\rm s}$ -band magnitude is closest to that predicted by the models \Rightarrow use this as our $T_{\rm eff}$ indicator.

27th July 2012

• Empirical spline fitted to observed sequence.

• Empirical spline fitted to observed sequence.

• Assuming $K_{obs} = K_{calc,}$ calculate mismatch at a given T_{eff} .

27th July 2012

• Empirical spline fitted to observed sequence.

• Assuming $K_{obs} = K_{calc,}$ calculate mismatch at a given T_{eff} .

• Repeat for all $T_{\rm eff}$ along isochrone.

27th July 2012

• This process can be repeated for all optical/near-IR photometric bandpasses.

Below 4000K, models overestimate flux by a factor 2 at 0.5µm, becoming negligible at 2.2µm.

• Define an empirical modeldependent adjustment to BCs required to fit Pleiades at 130 Myr.

Bell et al. (2012)

Prior to fitting the pre-MS

• Before fitting the pre-MS with model isochrones we require a distance (due to an age-distance degeneracy) as well as a robust reddening measurement.

• *UBV* photometry of high-mass members can give both of these

- standard main-sequence distance fitting
- reddening from the colour-colour diagram

• Added bonus of deriving an age from stars between the ZAMS and TAMS.

Fitting the main-sequence

 Use a revised Q-method to deredden each object individually.

Sexten Workshop 2012

Fitting the main-sequence

- Use a revised Q-method to deredden each object individually.
- Calculate an age and distance from the dereddened CMD.
- Use the τ² fitting statistic (Naylor & Jeffries 2006)
 - 10⁶ stars (interior models)
 - intrinsic binary fraction 50%

Fitting the pre-MS

• We posit that the *absolute* adjustment as a function of T_{eff} required for the Pleiades is valid for *all* ages.

 Again use the τ² fitting statistic. Allow age to float as a free parameter with mainsequence distance fixed.

Spectroscopically confirmed members of the λ Ori association from Bayo et al. (2011).

Revised pre-MS age scale?

• Consistent main-sequence and pre-MS ages for regions < 50 Myr.

- Adopting the BCAH98 α =1.9 models
 - λ Ori ~ 11 Myr
 - NGC 2169 ~ 11 Myr
 - NGC 2362 ~ 12 Myr
 - NGC 7160 ~ 14 Myr
 - NGC 1960 ~ 20 Myr

Circumstellar disc lifetimes

Two independent age estimates for λ Ori that suggests an age of 10-11 Myr.
Compare with Upper Sco and the recent age estimate of 11 Myr (Pecaut et al. 2012)

Hernandez et al. (2008)

Circumstellar disc lifetimes

 Two independent age estimates for λ Ori that suggests an age of 10-11 Myr. • Compare with Upper Sco and the recent age estimate of 11 Myr (Pecaut et al. 2012) \Rightarrow pre-MS ages could be a factor of 2 too young. \Rightarrow disc dissipation timescales may be underestimated.

Hernandez et al. (2008)

Conclusions

- Transforming data into standard system using mainsequence star observations can place pre-MS in wrong position in CMD
 - compare models to data in natural photometric system.
- Models do not match Pleiades pre-MS in optical regime
 - recalibrate the transformation from H-R to CMD.
- Strong evidence that pre-MS ages are underestimated by up to a factor of 2
 - obvious implications for circumstellar disc lifetimes.

27th July 2012

