Revising Star and Planet Formation Timescales

Cameron P. M. Bell^{1,*}, Tim Naylor¹, N. J. Mayne¹, R. D. Jeffries², S. P. Littlefair³

1 – University of Exeter, 2 – Keele University, 3 – University of Sheffield <u>* bell@astro.ex.ac.uk</u>

<u>Abstract</u>

We have derived ages for 13 young (< 30 Myr) star-forming regions (SFRs) and find they are up to a factor two older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (\sim 10–12 Myr) and that the average Class I lifetime is greater (\sim 1 Myr) than currently believed.

A revised age scale for pre-main-sequence stars

For each SFR we have derived two ages from colour-magnitude diagrams (CMDs); the first from the main-sequence (MS) population and the second from the pre-MS population. Comparing these two ages we find broad agreement (see Fig. 1). As pre-MS ages are used to study the lifetime of YSO evolutionary phases, this result implies that such lifetimes are currently **underestimated by up to a factor of two**. Combining our revised ages with near-IR observations suggests that circumstellar discs **survive approximately twice as long** as previously thought (see Fig. 2). Interestingly the three youngest SFRs have MS ages which are notably older (factors of 2–3) than their pre-MS ages.

Main-sequence

Models of the evolution between the zero-age main-sequence and terminal-age main-sequence (Lejeune & Schaerer 2001, A&A, 366, 538) were used in conjunction with the τ^2 fitting statistic (Naylor & Jeffries 2006, MNRAS, 373, 1251) to derive a homogeneous set of MS ages, distances and reddenings.

• *U-B, B-V* colour-colour diagram => reddening (see Fig. 3).

• *V*, *B*-*V* CMD => age and distance simultaneously (see Fig. 4).

Fig. 3. Examples of photometric data fitted for reddening. Left: NGC 2362 data (Johnson & Morgan 1953, ApJ, 117, 313) fitted for a mean reddening. Right: J. Ori data (Murdin & Penston 1977, MNRA5, 181, 657) individually dereddened.

age and distance simultaneously. Left: NGC 23 data. Right: De-reddened λ Ori data.

Pre main-sequence

We created new semi-empirical pre-MS model isochrones using existing interior models, but adopted empirical colour- $T_{\rm eff}$ and bolometric corrections for stars cooler than 4000 K. Equally important, we transformed the isochrones to the natural photometric system of the observations (see Bell et al. 2012, MNRAS, 424, 3178).

• Observed luminosity spread commensurate with the twodimensional model distribution => τ^2 fitting statistic (see Fig. 5).

• Luminosity spread too large => nominal ages; compare a 0.75 $\rm M_{\odot}$ star with the approximate middle of the pre-MS locus (see Fig. 6).

Fig. 6. Stars selected as members of IC 348 (left) and IC 5146 (right). A 6 Myr DCJ08 (Dotter et al. 2008, ApJ5, 178, 89) single-star model isochrone is overlaid in each panel at the best-fit MS distance and reddened assuming the median value derived from the MS population.