
Chapter 6

Joint modelling of transit and stellar
temperature using a Markov Chain
Monte Carlo approach

When searching for small differences between the transit parameters of different light-
curve de-trending approaches, we noted the presence of strong correlations between
parameters. These were to some extent accounted for by using a residual permutation
algorithm to estimate the uncertainties in the transit parameters. However, a more
robust method to explore these correlations was desirable.

Additionally, as pointed out by many authors (e.g Seager & Mallén-Ornelas 2003),
the detailed shape of the observed transit depends on the stellar density as well as
the planet’s parameters. This means that if we have any external (or prior) constraints
on the stellar density, we should incorporate them in the transit fitting process, in a
Bayesian manner. The spectroscopic measurement of the stellar temperature, dis-
cussed in Chapter 5, constitutes such a prior constraint. The stellar temperature is
directly, although not uniquely, linked to the stellar density as stellar evolution mod-
els predict a particular temperature and density for stars of a given mass, age and
composition.

The Markov Chain Monte Carlo (MCMC) technique uses a random walk approach
to explore a parameter space of arbitrary dimensionality. The MCMC is well suited to
the problem of modelling planetary transits, because a) it avoids getting trapped in
local minima in the figure of merit space; b) it enables prior information to be incorpo-
rated in the figure of merit seamlessly and c) in the process of exploring the parameter
space to find the best fit, it also samples the posterior distribution for each parameter,
and thus yields robust uncertainty estimates.

In this chapter, I implement a Metropolis-Hastings MCMC algorithm for transit fitting,
with specific Bayesian priors on stellar properties. The transits are modelled using the
formalism of Mandel & Agol (2002), but care was taken to re-formulate the MCMC
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such that the jump parameters (the parameters over which the MCMC random walk
occurs) are parameters for which it is reasonable to assume a flat prior distribution. Our
formalism, which is derived from that briefly described in Pont et al. (2009), can also
optionally incorporate an external constraint on a particular stellar parameter, in the
present case the effective stellar temperature, which is implemented as an additional
term in the MCMC merit function. The conversion between stellar temperature and
density is done using the theoretical stellar evolution models of Girardi et al. (2002).

The MCMC formalism is described in Section 6.1 and applied to the case of CoRoT-
2b in Section 6.2. The results are discussed, along with possibilities for future work in this
direction, in Section 6.2.3.

6.1 Markov Chain Monte Carlo

A Markov chain is a succession of states where the next state depends only on the
current state. The term "Monte Carlo" means that the transition between states is ran-
domly determined based on a probabilistic distribution. The strength of the Markov
Chain Monte Carlo method (MCMC) is in the way it samples the grid of parameters,
and in the fact that it can identify the global best fit model in the parameters space,
rather than a locally best fit model. In the chain, when the current model is worse that
the precedent one, instead of systematically disregarding it, the MCMC uses a prob-
abilistic approach to invalidate or validate this step, with lower probability for poorer
models. This property gives the MCMC the capability of exploring areas of the param-
eter space that would not have been explored otherwise. For instance, in a standard
χ2 minimisation technique, only the parameters improving the fit are considered, which
means that the convergence algorithm can get stuck in a local minimum and never
explore the rest of the parameter space to find the global minimum, especially if only
one set of initial conditions are used. Another key advantage of the MCMC is that it
enables the posterior probability distributions of the parameters to be estimated.

6.1.1 MCMC implementation

There are different types of Markov Chain Monte Carlo methods, which differ in their
random walk nature. The one used in this chapter is a Metropolis-Hastings algorithm
which generates a random walk from a proposal distribution of the next step (here,
flat or Gaussian probability distributions are used as explained in Section 6.1.3) and
proscribes a method to reject the proposed move if the new model is worse than the
previous one (here, a function of how much worse the new model is compared to the
previous one, is used).

The input to the MCMC are a) the data to be modelled (here, the IRF-filtered planet
transit light curve), b) the model to be compared to the data (here, the transit formula-
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tion of Mandel & Agol 2002), c) the initial values (which model the data sufficiently well
to start the chain), d) the scale sizes (the typical step size in each parameter), and e)
the constraints on the model (here, a Gaussian prior distribution on the stellar temper-
ature). The output of the MCMC are the posterior probability distribution of the values
of each adjusted parameter. These distributions are used to derive the 1σ uncertainty
ranges on the parameters, as explained in Section 6.1.7.

The steps of the MCMC used in this chapter are as follow. The flow chart of this MCMC
is presented in Figure 6.1.

1. Compute the model for the initial values set.

2. Calculate the merit function of this model. The merit function used here is the
likelihood L = e−

χ2

2 where χ2 =
�

(data−model)2

DOF with the number of degree of free-
dom (DOF ) being the difference between the number of data points and the
number of adjusted parameters.

3. Select a new set of parameters by making a random step in each parameter. The
size of the step in each parameter is drawn from a Gaussian distribution cantered
at 0 with standard deviation equal to scale size inputed for this parameter (see
section 6.1.4). The scale sizes of the steps need to be large enough to allow a wide
exploration of the parameter space, and small enough to keep a reasonable
number of accepted steps, steps which are used to build a statistically robust
posterior distribution.

4. Compute the model associated to this new set of parameters and calculate its
figure of merit (likelihood as explained in step 2).

5. Compute the ratio of the figure of merit of the new set of parameters and the
current ones.

(a) If the ratio is greater than 1, the likelihood of the model has improved and
the step is validated by storing the new values of the parameters and the
likelihood.

(b) If the ratio is smaller than 1, the likelihood of the model has worsened and a
random number is drawn from a uniform distribution between 0 and 1.

i. If the value of the ratio is greater than the randomly pulled value, the
step is validated by storing the new values of the parameters and the
likelihood. The closer to 1 the value of the ratio is, the higher the prob-
ability of the new step to be kept, as there are more values between 0
and 1 smaller than the value of the ratio.

ii. If the value of the ratio is smaller than this number, the new step and
likelihood are disregarded and the current parameters are re-stored.
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6. Go back to step 3, and iterate N times. The number of iterations used in this
chapter is 500000.

Figure 6.1: MCMC flow chart

6.1.2 Jump parameters

When using the MCMC chain to construct posterior probability distributions for the pa-
rameters of the model, a flat prior for the jump parameters are implicitly assumed.
Another prior can be applied by multiplying the distributions with the relevant prior dis-
tribution, but it is easier and more robust to formulate the model in terms of parameters
for which a flat prior is a reasonable assumption.

The input parameters of the Mandel & Agol (2002) formalism is the projected sep-
aration between the stellar and planetary disk centres z, in units of stellar radii, the
planet-to-star radius ratio Rp/R�, and the linear and quadratic limb-darkening coeffi-
cients ua and ub. Kepler’s laws of planetary motion yield z as a function of time for a
given period P , orbital inclination i relative to the plane of the sky, system scale a/R�,
eccentricity e, longitude of periastron w, and time of passage at periastron T0.
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Random inclinations in three dimensions give rise to a flat distribution in cos i rather
than in i. We therefore use the impact parameter b ≡ a

R�
cos i as one of the jump pa-

rameters. At each step of the MCMC, b is converted to an inclination using:

i = arccos

�
b

�
a

R�

�−1
�

(6.1)

Whilst the radial velocity signal of a planet is exclusively sensitive to e sinw, the light
curve can (if a secondary eclipse occurs) constrain e cosw. The jump parameters
adopted in the most general implementation of the MCMC formalism used here are
e cosw and e sinw, rather than e and w, though in any case, we do not deal with radial
velocity data or with eccentric orbits in the present thesis.

As the stellar density is directly constrained by the transit, it is a natural choice of
jump parameters (instead of the system scale). However, in a random population of
stars in the Galactic disk, there is no reason to expect a uniform density distribution
(most stars would be found on the low-mass end of the main sequence). To take this
into account, we use a grid of stellar evolutionary models (Girardi et al., 2002) inter-
polated by Aparicio & Gallart (2004) and resampled by Pont & Eyer (2004), with the
density of models proportional to the number of stars expected at a given mass and
evolutionary stage, assuming the initial mass function (IMF) derived for the Galaxy, and
a uniform age distribution.

This resampled grid, kindly supplied by F. Pont (private communication) was sorted
in density, and sorted in a file which we refer to as Padova2002 in the rest of this chapter.
We use k, the index in the grid of models contained in the file Padova2002, as one of
the jump parameters of the MCMC. To each k corresponds a particular star mass,
luminosity and temperature. We use the luminosity and temperature to calculate a
stellar radius, and obtain a system scale as follows:

a

R�
=

�
P 2G

4π2

�1/3
M1/3

�

R�
(6.2)

The stellar temperature in Padova2002 span from 2300 to 26800 K, the stellar masses
span from 0.668 to 10.716 M⊙, and the stellar radii from 0.628 to 455.361 R⊙.

6.1.3 Incorporating external constraints

A gaussian prior is associated to the effective temperature of the star Teff which can be
derived from the spectroscopic analysis of its atmosphere. The transit model gives an
estimate of the density of the star, from which using stellar evolution tracks, an associ-
ated stellar temperature can be derived. These two temperatures can be compared
in the MCMC with a likelihood function which favours transit models with an associated
temperature close to the effective temperature. This prior on the stellar temperature is
included in the MCMC evaluation of best transit model by calculating the likelihood
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L = e−
χ2

2 of the stellar temperature associated to each transit model compared to the
spectroscopic temperature – where χ2 measures the difference between the two tem-
peratures –, and by multiplying the likelihood in step 2 of the MCMC by the likelihood
on the temperature.

6.1.4 Step size

The size of the step in each parameter needs to be chosen so that in each parame-
ter chain it takes the MCMC several steps to reach the extremes of the explored val-
ues. This gives confidence in the accuracy and coverage of the MCMC exploration,
as small steps mean good sampling. However, if the steps are too small, it will take
the MCMC a larger number of iterations to explore the same region of the parameter
space. The method used to find the optimal scale size for each parameter is as follows:

1. Run a short chain (e.g. 1000 iterations) with initial step sizes equal to the uncer-
tainty on the initial parameters

2. Calculate the standard deviation of the chain for each parameter and the num-
ber of accepted steps

3. Adjust the step size of each parameter so that it is smaller or of the same order
as the standard deviation of the short chain for this parameter, and so that the
number of accepted steps is close to 50%.

6.1.5 Chain length

The number of steps in the MCMC chain needs to be several times the correlation
length of each parameter chain. There are two methods to test if the chain is long
enough: 1) calculate the correlation length as explained below and compare to the
length of the chain, or 2) calculate the Gelman & Rubin statistic of convergence as
explained in Section 6.1.6.

A chain length several times the parameter correlation length means that the chain
has explored the structure of the parameter space several times. There is thus less
chance for the convergence to get stuck in a local minimum and the best model so-
lution is thus more robust. The method used to check if the number of MCMC iterations
used allows to derive statistically robust parameters is as follows:

1. Calculate the autocorrelation of the chain: Aj(θ) =
�

i θi × θi+j for each param-
eter θ. The autocorrelation length is given by the number of iterations needed to
bring the autocorrelation from maximum to zero

2. The length of the chain should be several times (e.g. >10) the value of the au-
tocorrelation length. The longer the chain the more robust the solution found for
the best model.
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When the MCMC has done a sufficient number of iterations, it will have sampled the
posterior distributions of each parameter evenly, so that the distributions of the values
of each parameter along the chain should be relatively smooth, and representative of
the true underlying distributions. But running more iterations requires more computing
time. For instance, running 100000 MCMC steps with four free parameters, on a 150-
day-long and 516s-sampling light curve (CoRoT long run) takes close to 48h on an intel
MAC pro (pre 2008 model) with 32Gb of RAM and 4 processor cores of 2.66GHz each.
Here are two approaches used in this work to reduce the computing time:

1. The MCMC can be sped up by reducing the number of data points: 1) by binning
the light curve, and 2) by using only the light curve around the transits. In the
case of the transit light curve of CoRoT-2b studied here, the number of points
was reduced from ∼19000 to ∼1200, by binning each 8 points in the phase folded
light curve and by keeping only the points within 0.2 phase units of the transits.
This speeds up the MCMC by a factor 10.

2. To increase the number of iterations with limited computing time, several inde-
pendent chains can be run simultaneously. Each chain has a different starting
point, and needs to be longer than the burn-in phase. The burn-in phase of a
chain is the number of steps the chain takes before converging on the area of
the true parameter and starts exploring the uncertainty area of this parameter. In
this chapter, after visual check of the chains, the burn-in phase is taken as 7000
steps. A longer burn-in phase made little difference in the posterior distributions
while shortening the valid length of the chain. The chains can then be combined
together to obtain distributions with a larger number of iterations, i.e more statis-
tically robust distributions with shapes that will not evolve with more iterations.

6.1.6 Gelman & Rubin diagnostic for convergence

To get a long chain, another option is to combine independent chains which have
different starting points but same statistics, i.e. which have converge to their common
distribution.

The Gelman & Rubin statistic test of convergence (Gelman & Rubin, 1992; Brooks
& Gelman, 1997) checks if independent chains of the same length have converged
to the same probability distribution, i.e. have similar statistics. It does so by comparing
the variance between several chains B (Equation 6.5) with separate starting points
and the variance within each chain W (Equation 6.6). If all the chains are sampling
the same distribution and doing it in a complete way, these variances should be the
same, i.e S=1 for S defined in Equation 6.3.

When the chains have converged, the statistic S (equation 6.3) is equal to 1, as
the variations between the chains (V , equation 6.4) should be of the same order as
the variations within the chains (W , equation 6.6). The independent chains can then
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be combined together to form a longer chain with a more statistically robust posterior
distribution. In this chapter, all chains are started within one scale size of the initial
value.

For each parameter, the statistic S comparing several chains (m chains or n itera-
tions each after cutting away the burn-in phase) can be calculated with:

S =

�
V

W
(6.3)

where V is calculated as:

V =

�
1− 1

n

�
W +

1

n
B (6.4)

with B, the variance between the chains, calculates as:

B =
n

m− 1

m�

j=1

(C̄j − C̄)2 (6.5)

where C̄j is the mean of the jth chain, and C̄ is the mean of all the chains.
W , the sum of the variance of each chain, is calculated as:

W =
1

m(1− n)

m�

j=1

n�

l=1

(Cj,l − C̄j)
2 (6.6)

where Cj,l is the parameter value of the lth step of the jth chain.
The MCMC runs are presented by a group of three chains, to evaluate the con-

vergence of the individual chains, before combining them into a longer one. Usually,
groups of five chains are run and compared to each other to check their conver-
gence. Here, three chains were used to start with. Future work will include running the
MCMC on more individual chains.

6.1.7 Posterior distributions

Once the chain has converged, the shape of the posterior distribution is statistically
robust and will not change significantly with more iterations. This distribution is a good
representation of the true posterior distributions of the parameter. The best model pa-
rameters and associated uncertainties can be derived from it as follows. The best
model is taken as the one with the largest likelihood, i.e. the minimum χ2 to the data.
The uncertainty on the best model value is defined by the 1σ spread of the posterior
distribution, which is calculated as the range in value enclosing the 68% of the chain
around the median, i.e. 34% each side of the median value of the chain.

The set of parameters with the largest occurrence in the posterior distributions can
be slightly different from the parameter set with the largest likelihood, but should be
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consistent within the 1σ spread of the distribution. If this is not the case, it is an indication
that the length of the chain is not long enough.

The choice of the “best” value depends on what the value is going to be used
for. The “best-fit” set of parameters maximises the figure of merit. It is an appropriate
choice for the “best” value when creating a transit model to compare to data of the
same nature, or when comparing between different data analysis techniques such as
in Table 6.3. The most probable value of the chain maximises the posterior probability
distribution. This value is a better estimate of the true physical value of that parameter,
which is true despite the fact that the model generated from the median or most
probable values of each parameter may not have a high merit function. The median
or most probable values should be used, for example, when making comparisons with
theory. Usually, the median is used rather than the most probable value because the
median is a better single-number representation of a distribution (e.g. the case of a
distribution with two peaks).

6.1.8 Limitations

The main limitation of the MCMC method is that it requires a lot of computing time to
derive chains which have convergence, especially if the number of data point is large.
However, it is still faster than a systematic exploration of the same parameter space at
similar resolution using a regular grid.

The computing time of the MCMC can be reduced by decreasing the number
of data points. One way of reducing the number of data points in a light curve is by
binning the points. However, too much binning reduces the resolution of the light curve
in the ingress and egress of the transit, which translates into a lower precision on the
derived planet parameters.

In this chapter, the chain is left to start not far from the parameter values in the
discovery paper. The advantage of this choice is that the burn-in phase of the chain
is shorter (fewer iterations) and the valid part of the chain longer. The drawback is that
if the region around the initial value is a local minimum and if the MCMC steps are too
small, the MCMC will spend a lot of time in this area before exploring other regions of
the parameter space. If the step size is too large, more iterations will be rejected on
the basis of being worse than the previous steps, and the chain will need to be longer
to count sufficient accepted steps and build statistically robust posterior distributions.

An MCMC is also only as good as the priors assumed in it. It is a caveat that should
be kept in mind when comparing the method to other fitting techniques.

Another limit to the current MCMC is the sampling of the stellar evolution model
that it uses. The accuracy and precision of the derived parameters can only be as
good as the finest mesh of the grid of models.
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6.2 Application to CoRoT-2b

6.2.1 Method

The IRF-filtered light curve of CoRoT-2 is corrected for the 5.6% contaminant flux due to
a star falling into the CoRoT mask of CoRoT-2. This is done by subtracting 0.056 to the
normalised IRF-filtered light curve and re-normalising the resulting light curve.

The MCMC is applied to fit the transit of CoRoT-2b in the IRF-filtered CoRoT light
curve of CoRoT-2. The IRF-filtered light curve used is filtered with a time scale for stellar
variability of 0.25 days, as this version has less residual stellar variability than the 0.5 day
version while the transit shape is still well recovered (Chapter 3 Section 3.2.3). To speed
up the MCMC and allow us to run a larger number of iterations, the number of data
points are reduced by binning the phase folded filtered light curve with bin size of
0.0006 phase units (0.06% of the planet’s orbit), and keeping only the section within
±0.2 phase units of the transit centre. The uncertainty associated to each bin is taken
as the standard deviation of the points binned together in this bin. In the MCMC, the
uncertainty associated to the data set is taken as the maximum of these uncertainties.
The data points were re-normalised by fitting a 2nd order polynomial function about
the transit and the data points were divided by this fit.

The MCMC is run varying the time of transit T0, the impact parameter b, the planet-
to-star radius ratio Rp/R�, and k the line index of stellar density in Padova2002. P , e and
w are fixed to the value in Alonso et al. (2008). The limb darkening coefficients are fixed
to the quadratic limb darkening coefficients corresponding to the CoRoT bandpass,
derived from Sing (2010). The adjusted parameters are then translated into T0 (T0p+cst)
the epoch of the transit centre, a/R� and i.

When the MCMC is run with the prior on the Teff the stellar atmosphere parameters
of CoRoT-2 are Teff=5516±33 K, log g=4.3±0.2, [M/H]=0.0±0.1. The value of Teff , used here,
is the one derived using the equivalent width ratios, the other parameters have not
been re-calculated and are kept the same as in the discovery paper. The associated
quadratic limb darkening coefficients in the CoRoT bandpass are ua=0.478±0.010 and
ub= 0.205±0.007. These are the coefficient used in all the fitting procedures below ,
including the LMA, to allow a direct comparison of the derived parameters.

First, no prior on the stellar temperature is applied, then a gaussian prior on the Teff

is added later. The stellar temperature used as prior is the temperature derived for
CoRoT-2 in Chapter 5 using the temperature calibrated equivalent width line ratios:
Teff=5516±33 K.

The scale stepe sizes chosen when no prior on the Teff was applied, is 2 10−5 for T0,
4 10−3 for b, 2 10−4 for Rp/R�, and 1000 for k. The scales were obtained by trial and errors
starting from scale sizes equal to the uncertainty on the initial values and reducing the
scale size until the number of accepted steps was close to 50% when no prior on the
Teff was used, and close to 30% when a prior on the Teff was applied. When the prior
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on the Teff is used, the number of accepted steps decreases due to the additional
constraint on the Teff . If less steps are accepted, a longer chain is needed to keep
the statistic of the posterior distributions robust. To avoid having to run longer chains,
two adjustments are made to increase the number of accepted steps when a prior on
the Teff is applied. First, prior to running the chain, the stellar evolution model file was
re-arranged to keep only the models with a Teff at the prior temperature plus or minus
4× the uncertainty on this prior, so that when stepping in k the Teff of more models will
be compatible with the prior on the Teff . Secondly, the scale size in k was reduced to
100.

The planetary parameters (T0, Rp/R�, b) from Alonso et al. (2008) were first used
as initial values to run the MCMC. The MCMC translates k into a/R� using stellar evo-
lution models, and b and a/R� into i. As the sampling of the grid in the stellar evo-
lution models is finite, the derived a/R� and i do not correspond exactly to the val-
ues in the discovery paper, and the transit model derived from these value is too
different from the data (large χ2) to allow the MCMC to start. The initial parame-
ters used are T0 from the discovery paper, b=0.05, Rp/R�=0.16, and k=509965 (no prior
on Teff) or k=81492 (prior on Teff). k=509965 correspond to Teff=5521 K, M�=0.888 M⊙,
R�=0.881 R⊙ in the full stellar evolution model file used. k = 81492 corresponds to the
same model in the file re-arranged to increase the number of accepted steps when
using a prior on the Teff . Teff=5521 K is the closest to Teff=5516±33 K in our list of stellar
evolution models. M�=0.888 M⊙ and R�=0.881 R⊙ are the closest to R�=(0.88±0.03)R⊙

and M�=(0.89±0.09)M⊙ corresponding to Teff=5516±33 K. The corresponding R� is cal-
culated using L� = 4πσR2

�T
4
eff . L� calculated using the values in Alonso et al. (2008):

R�=(0.90±0.02)R⊙ and Teff=5625±120 K . The corresponding M� is derived from the
range of models in Padova2002 corresponding to the range in Teff and R�.

Three chains of 500000 iterations each are run simultaneously with different starting
points, all starting points being within a scale size from the initial value. The first 7000
steps of each chain are cut away, as considered part of the burn-in phase. A visual
check of the chains, showed that it takes that many steps for a chain to fall within
the 1σ range of the total chain. These chains are then compared to each other using
Gelman and Rubin’s statistic (described in section 6.1.6) to check their convergence.
If the convergence criteria is reached, the three chains are combined together (put
one after the other) to form a longer chain, statistically more robust. The distribution
of the values stored in the MCMC chain for each parameter is plotted, and used to
derive the 1σ uncertainty range of each parameter as described in Section 6.1.7.
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6.2.2 Results

Without a prior on the stellar temperature

Three 500000-step MCMC chains are run on the binned and truncated IRF-filtered tran-
sit light curve of CoRoT-2b. The resulting chains (Figure 6.3) have 56 to 57% of the steps
accepted which shows that the scale sizes allowed the MCMC to explore the surround-
ing parameter space while keeping a large number of steps around the best model.
The transition between value extrema in each parameter chain is checked to be done
in several steps, which confirms that the scale size in each parameter is not too large.

The 7000 steps of the burn-in phase are cut away in each chain. The resulting three
chains have similar position of maximum and 1σ range in their posterior distributions,
and the best fit model of each chain are consistent with each other within the uncer-
tainty range of their posterior distributions. The correlation length of each parameter
chain is several times smaller than the length of the chain, i.e. the correlated features
of the parameter space were explored several times. The Gelman & Rubin’s conver-
gence statistic run on the three 500000-step chains returns ST0 = 1.02, SRp/R�

= 1.40,
Sk = 1.47, and Sb = 1.87. These numbers show that the 500000-step chain has not fully
converged in Rp/R�, k and b, although the correlation length of the chain was several
times smaller than the total length of the chain. Gelman & Rubin’s convergence statis-
tic is a more robust test for chain convergence than the correlation length of a chain.
In future work, longer chains will be run to ensure that the individual chains have fully
converged in all the parameters. An alternative to lengthening the chains will be to
increase the scale sizes. This allows the chain to explore more of the parameter space,
but at the detriment of the number of accepted steps. Chains with slightly larger scale
sizes than the ones giving the optimal number of accepted steps, have shown to have
S values closer to 1, i.e. to converge faster.

The three chains are combined together to increase the statistical robustness and
the precision of the posterior distributions. The posterior distributions of the combined
chain are plotted in Figure 6.2. The planetary parameters derived from the model
with the highest likelihood, and the associated 1σ range derived from the posterior
distributions are shown in Table 6.1.

Using equation 6.2 and the posterior distribution of k translated into M� and R� the
posterior distribution of a/R� can also be derived. In addition, using equation 6.1, the
posterior distribution of b and the posterior distribution of a/R�, the posterior distribution
of i can also be derived. The posterior distribution of a/R� and i are shown in Figure 6.4,
along with the posterior distribution in Teff , M� and R� derived from k. The best model
value and the 1σ uncertainty range are shown in Table 6.1.

k, b and Rp/R� show a strong correlation with each other, which is expected as they
are all dependent on the stellar radius R�.
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Table 6.1: Table of parameters for CoRoT-2b derived from the posterior distribution of
the MCMC with no prior on the stellar temperature. The table presents the model with
the highest likelihood (best-fit), and the median value (median) and 1σ uncertainty
range (1σ range) of each distribution of parameters.

Best-fit Median 1σ range
P [d] <——- 1.7429964 ± 0.0000017 (fix) ——->
T0-2454237 [d] 0.53518 0.53518 [0.53511 - 0.53524]
Rp/R� 0.1618 0.1615 [0.1608 - 0.1623]
b 0.25 0.22 [0.18 - 0.29]
a/R� 6.56 6.60 [6.48 - 6.72]
i [◦] 87.9 88.1 [87.5 - 89.0]
ua <————– 0.478 ± 0.010 (fix) ————–>
ub <————– 0.205 ± 0.007 (fix) ————–>
e <———————- 0 (fix) ———————->

With a prior on the stellar temperature

Three chains of 500000 steps each are run, with the prior on the temperature equal
to 5516±33 K, and a smaller scale size in k as mentioned previously. The chains are
presented in Figure 6.5. The number of accepted steps was between 29 and 31%. This
is smaller than in the case with no prior on Teff despite the reduced scale sizes. With the
new constraint on the temperature, the MCMC disregards the models which have a
Teff incompatible with the prior on the Teff , while these models were kept in the chains
without a prior on the Teff .

The first 7000 steps of each chains are part of the burn-in phase and cut away. The
Gelman & Rubin’s convergence statistic is applied and returned ST0 = 1.02, Sb = 1.87,
SRp/R�

= 1.40, and Sk = 1.47. These numbers show that the 500000-step chains have not
fully converged in b, Rp/R�, and k, and that longer chains still need to be run to ensure
the statistical robustness of the posterior distributions.

The three chains are combined together. The planet parameters are derived from
the model with the highest likelihood and the 1σ uncertainty range from the posterior
distributions (Figure 6.6); the values are shown in Table 6.2. The model with the high-
est likelihood is for a k corresponding to Teff=5521 K, M�=0.947 M⊙, R�=0.912 R⊙. The
median of the k corresponds to Teff=5495 K, M�=0.952 M⊙, R�=0.910 R⊙.

The posterior distributions of Teff , M�, R�, a/R� and i are shown in Figure 6.7. The
distribution in a/R� is calculated from M� and R� extracted from the distribution in k.
The posterior distribution of the inclination is derived from the posterior distributions of
b and a/R�; the values are shown in Table 6.2.

The MCMC coverage in the 2-D parameter spaces is plotted in Figure 6.6. The corre-
lation between k, b and Rp/R� is present and a range in R� values is covered under the
uncertainty range of the prior on Teff . The posterior distribution of Teff reproduces the
prior distribution of Teff . This is as expected given that the prior distribution on the Teff is
applied as a constraint to select the models with compatible Teff . The current distribu-
tion in k has two peaks (at 75000 and 85000), corresponding Teff of 5407 and 5470 K, R�



CHAPTER 6. JOINT MODELLING OF TRANSIT AND STELLAR TEMPERATURE USING AN MCMC APPROACH 174

of 0.897 and 0.884 R⊙, and M� of 0.895 and 0.922 M⊙respectively. The stellar density
associated to these two peaks is different (M�/R3

� ∼ 1.240 and 1.336 M⊙/R3
⊙), which

translated into a double peak distribution in a/R� peaking at ∼ 6.55 and 6.75. The first
peak (a/R�=6.55) is the same as the peak of the probability distribution of a/R� in the
MCMC run with no prior on the Teff (Figure 6.4). The second peak is therefore added
by the prior in Teff . This indicates that the current prior on Teff is different from the Teff

that would naturally be derived from models of the transit with no prior constraint on
the stellar temperature.

A longer chain should be run to check the statistical robustness of this double peak
probability distribution in k, or if one of the peaks will dominate the distribution. Addi-
tionally, another chain should be run with a different prior on the Teff to investigate the
relative position of the peaks with different priors on the stellar temperature.

Table 6.2: Table of parameters for CoRoT-2b derived from the posterior distribution of
the MCMC with a prior on Teff of 5516±33 K. The table presents the model with the
highest likelihood (best-fit), the median value and the 1σ uncertainty range of each
distribution of parameters.).

Best-fit Median 1σ range
P [d] <——- 1.7429964 ± 0.0000017 (fix) ——->
T0-2454237 [d] 0.53518 0.53518 [0.53511 - 0.53524]
Rp/R� 0.1618 0.1616 [0.1607 - 0.1624]
b 0.24 0.23 [0.10 - 0.29]
a/R� 6.57 6.59 [6.48 - 6.74]
i [◦] 87.9 88.0 [87.4 - 89.1]
ua <————– 0.478 ± 0.010 (fix) ————–>
ub <————– 0.205 ± 0.007 (fix) ————–>
e <———————- 0 (fix) ———————->
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Figure 6.3: The 2D MCMC chains with no prior on the Teff , and their posterior distribu-
tions. The chains are 1479000 steps long. Same colour line legend as Figure 6.2.

Figure 6.4: The posterior distributions of a/R� and i derived from the posterior distribu-
tions of k and b. The posterior distributions of Teff , M� and R� derived from k, are shown
for comparison with Figure 6.7. Same colour line legend as Figure 6.2.
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Figure 6.6: 2D MCMC chains, run with a prior of Teff=5516±33 K, and their posterior
distributions. Same legend as Figure 6.3.

Figure 6.7: The posterior distributions of Teff , a/R� and i derived from the posterior distri-
butions of k and b of Figure 6.6. The posterior distribution of M� and R�, derived from k,
are also shown as used to derive a/R�. Same legend as Figure 6.4.
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6.2.3 Discussion

The MCMC best-fit models of CoRoT-2b’s IRF-filtered transit light curve are presented in
Figure 6.8, and the parameters are summarised in Table 6.3. These models and values
are compared to the parameters from Alonso et al. (2008) and the parameters derived
with the Levenberg-Marquardt algorithm (fitting method used in Chapter 3).

Table 6.3: Comparison table of the parameters of CoRoT-2b presented in the discovery
paper, derived using the Levenberg-Marquardt algorithm (LMA), and derived using the
Markov Chain Monte Carlo (MCMC) without and with a prior on the Teff .

Alonso et al. (2008) LMA MCMC
no Teff Teff=5516±33K

P [d] <———————————- 1.7429964 ± 0.0000017 ———————————->
T0-2454237 [d] 0.53562 ± 0.00014 0.53534 ± 0.00002 0.53518+0.00006

−0.00006 0.53518+0.00006
−0.00007

Rp/R� 0.1667 ± 0.0006 0.1621 ± 0.0003 0.1618+0.0005
−0.0010 0.1618+0.0006

−0.0011

b 0.26 ± 0.01 0.25 ± 0.02 0.25+0.04
−0.13 0.24+0.05

−0.14

a/R� 6.70 ± 0.03 6.56 ± 0.04 6.56+0.16
−0.08 6.57+0.17

−0.09

i [◦] 87.8 ± 0.1 87.8 ± 0.2 87.9+1.1
−0.4 87.9+1.2

−0.4

ua 0.41 ± 0.03 <———————– 0.478 ± 0.010 (fix) ———————->
ub 0.06 ± 0.03 <———————– 0.205 ± 0.007 (fix) ———————->
e <———————————————— 0 (fix) ———————————————>

Figure 6.8: Top panel: the binned phase-folded transit of CoRoT-2b, zoomed over the
first half of the IRF-filtered transit. Over-plotted are the best transit models derived with
the LMA and with the different MCMC runs. Bottom panel: the residual to the data of
the LMA and MCMC transit models.

Table 6.3 and Figure 6.8 show that both the LMA and the MCMC derive consistent
planet parameters and transit model to the data. However, the uncertainties on the
parameters derived from the MCMC are more conservative and better representative
of the shape of the parameter space around the best model. The comparison show
that the LMA has also found the global best minimum for this light curve. It also shows
that adding a constraint on the Teff does not change the planet parameters derived
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from this light curve. However, it has changed the shape of the posterior distribution
in k, adding a second peak to the distribution. This also creates a second peak in the
distribution of a/R� at ∼6.75. A longer chain needs to be run to check the robustness
of the shape of this distribution and see if the peak due to the prior on the Teff shifts the
value of a/R�.

The prescribed MCMC walk in stellar density allows us to derive a posterior distri-
bution for Teff . This provides an additional method to derive the stellar temperature
from the photometric transit of an orbiting planet, and to map the likelihood space in
Teff around the best value. In the case of CoRoT-2, the temperature derived from the
posterior probability distribution of a chain stepping in stellar densities, is 5741 K for the
best-fit value, 5571 K for the median value and ∼5400 K for the most probable value
(Figure 6.4). These values are smaller, but consistent within the 1σ uncertainty range of
the distribution in Teff [5260 - 5998], with the stellar temperature derived from the equiv-
alent width ratios in Chapter 5 (5516±33 K), and with the stellar temperature published
in Alonso et al. (2008) (5625±120 K).

The larger residuals to the model from Alonso et al. (2008) in Figure 6.8 show that
the phase-folded IRF-filtered transit light curve is slightly shifted in T0 compared to the
processing done by Alonso et al. (2008). Additionally, the stellar limb darkening coef-
ficients of Alonso et al. (2008) do not reproduce the shape of the IRF-filtered transit as
well as the ones of Sing (2010) used in this chapter.

The uncertainty on Rp/R� derived from the phase-folded IRF-filtered transit light
curve of CoRoT-2b is smaller than the value published in Alonso et al. (2008), although
derived more robustly. This shows an improvement in the light curve processing when
using the IRF.

The planetary parameters derived from the LMA and the MCMC applied to the IRF-
filtered transit light curve of CoRoT-2b makes the planet appear smaller and closer to its
star than published in Alonso et al. (2008). CoRoT-2b is classified as an inflated planet,
i.e. its radius is larger than what can be explained with the current planet composition
and evolution models as discussed in Alonso et al. (2008). This new set of parameters
makes CoRoT-2b appear less inflated and thus less challenging for the models.

One difference between the two analyses is the choice of different limb darkening
coefficients. Using different limb darkening coefficients changes the shape of the tran-
sit model forcing the other parameters to adjust to reproduce the data points. In the
discovery paper of CoRoT-2b, the limb darkening coefficients were fitted at the same
time as the planet parameters, thus the degeneracy of their values with the value of
Rp/R� depend strongly on the broadness and the finesse of the exploration of the pa-
rameter space performed by the authors, as well as on the light curve processing. In
this thesis, the limb darkening coefficients were kept fixed to aid the comparison of the
derived planet parameters obtained with the different methods used.

Stellar isochrones can be plotted in stellar luminosity versus temperature diagrams.
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The constraint in stellar density, from the transit shape, allows us to derive probabil-
ity distributions for the stellar ages, along with the other stellar parameters, using the
resampled Padova stellar evolution models. In the MCMC, each k is related to a com-
bination of stellar density, temperature and age. The MCMC posterior distribution in
k is dependent on the constraints from the stellar density, from the transit shape, and
from the stellar effective temperature from the equivalent width ratios. The distribu-
tion in stellar age can be directly produced from the distribution in k, as each k is re-
lated to a stellar age in the resampled Padova stellar evolution models. However, one
should keep in mind that the validity of the derived age distribution will be both stellar-
evolution-model and contaminant-flux-free-light-curve dependent. When a prior on
the temperature is applied, the derived age distribution will also be stellar-temperature
dependent.
Quantifying the improvement in the determination of the stellar age from the prob-
abilistic distribution of the stellar density, and the new stellar temperature, will be an
interesting study to perform as future work. It will be interesting to see if the new age
estimate makes the host star of CoRoT-2b younger than currently thought. A younger
star would also infer that the planet is younger, which better explains the inflated as-
pect of CoRoT-2b. Younger planets are intrinsically hotter and larger, as a planet cools
and contracts after formation.

6.3 Conclusion and future work

The work presented in this chapter is in progress. Improvements on the code and the
science included in the MCMC are ongoing.

6.3.1 Conclusions

The greatest strength of the MCMC is its capability to map the parameter space around
the best model, showing structures in the likelihood of the surrounding models and cor-
relations between parameters. If the MCMC is run for long enough, it derives a robust
uncertainty range on the value of the parameter and a finesse of exploration sufficient
to derive accurate values of the best model.

The other major advantage of the MCMC is that it allows the inclusion of a-priori
knowledge to the search for best model. This makes the solution a better representa-
tion of the true reality. However, the probability distributions it returns are only as good
as the priors assumed.

The greatest drawback of the MCMC approach is that it takes time to run. A
lot of iterations are needed to derive statistically robust probability distributions. The
Levenberg-Marquardt algorithm is much faster but more sensitive to the initial condi-
tions, as it converges towards the first minimum in χ2 it finds in the parameter space
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which might not be the global minimum.
The set-up stage of an MCMC can also be lengthy, as opposed to the setting up

of a grid search for instance. Factors to take into account in the setting-up stage on
a MCMC include: a) the format of the data (number of points) as it can lengthen
the calculation time, b) the choice of priors and their distributions, c) the initial values,
d) the typical step sizes, e) the length of the chain to ensure convergence. However,
once the MCMC is set-up, for the same resolution and statistical robustness of the so-
lution, running an MCMC can be faster than a grid search.

The transit modelling using the MCMC approach described in this chapter makes
use of a new photometric method to derive the stellar temperature. This method uses
stellar evolution models to translate the stellar densities (adjusted in the MCMC) into
stellar temperature. The precision of the derived Teff will depend on the finesse and
intrinsic accuracy of the grid of stellar evolution models.

Applied to the phase-folded IRF-filtered transit light curve of CoRoT-2b, the MCMC
approach derived is a more robust method to determine error bars on the planet pa-
rameters. It also provides an independent measurement of the stellar temperature
from the transit shape. The addition of a prior in the stellar temperature was not found
to change the final values of the planet parameters, but did change the shape of the
distribution in stellar density.

6.3.2 Future work

Longer chains still need to be run to ensure the convergence for each parameter. This
will secure a robust solution for the parameters, for the given data and priors.

The uncertainties on the contaminant flux needs to be taken into account in the
uncertainties derived for the parameters. The suggested approach is to add to the
transit model, at each MCMC iteration, a constant flux drawn from a Gaussian distri-
bution (with a zero mean and a standard deviation equal to the uncertainty on the
contaminant flux), then re-normalise the model and use it in the calculation of the like-
lihood. The posterior distribution of the parameter will thus include the uncertainty of
the contaminant flux.

The red noise in the light curve needs to be taken into account as a good merit
function needs to use a true estimate of the noise. The red noise can be taken into
account by replacing the σwhite in the merit function by σpink = σwhite + N ∗ σred (Pont
et al., 2006). σred can be evaluated by binning the unfolded light curves with different
bin sizes and evaluating each time the standard deviation of the resulting signal. The
σwhite will go as σno bin/N , N being the number of points binned together, while σred

should be constant, so the difference between the σbin and σno bin/N , e.g. for bin size
of 1 or 2h, is σred.

The IRF filtered light curve was binned in order to reduce the number of data points
to speed up the MCMC. It will be interesting to see how this binning affects the ac-



CHAPTER 6. JOINT MODELLING OF TRANSIT AND STELLAR TEMPERATURE USING AN MCMC APPROACH 183

curacy and precision of the planet parameters and their 1σ uncertainty range. The
binning of the light curve by half, for instance.

It will be also be interesting to see how the posterior probability distributions vary
with different values of the prior in Teff , especially for the distribution in k and thus a/R�.
The MCMC can be run with the prior on the Teff set to the value published in Alonso
et al. (2008) (5625±120 K).

The grid of stellar evolution models used in the MCMC can also be refined to include
a finer sampling in the stellar parameters. This should improve the accuracy of the
posterior distribution in k, and thus in a/R� and i.

The MCMC performs steps in k, and at each k is associated a Teff . The limb dark-
ening of a star depends on the stellar temperature (as well as on the stellar surface
gravity and metallicity, and on the observational bandpass). Currently the limb dark-
ening coefficients are not adjusted when the MCMC steps into another value of Teff .
To be more consistent, the MCMC should be adjusted to allow the limb darkening co-
efficients to vary according to the Teff associated to the k of each step. For a chosen
limb darkening law and filter, the limb darkening coefficients can be calculated given
the stellar atmosphere parameters (Teff , log g, [M/H]). Claret (2000) and Claret (2004)
give tables of limb darkening coefficients for different standard filters and Sing (2010)
for CoRoT and Kepler bandpasses.

Finally, it will be interesting to homogeneously derive the planet parameters (1σ
uncertainty range and best model) of the other CoRoT planets using the MCMC ap-
proach presented in this chapter, on the IRF-filtered transit light curve of the planet,
including the prior knowledge on the stellar temperature. The value of the prior in Teff

can be set to the value from the discovery paper, or to the values derived from the
equivalent width ratios. The derived planetary parameters can then be compared to
each other, e.g. in a mass-radius diagram. This approach will reduce current biases on
the type of light curve processing and fitting used to analyses the individual planets.
It also provides the advantage of systematically taking into account more information
on the planets and their host star.


