Chapter 5

Stellar temperatures using equivalent width line-ratios

The photometric transit of a planet across the disk of its parent star allows the measurement of the planet to star radius ratio. The measurement of the radial velocity or astrometry wobbles of a star due to an orbiting planet allows the measurement of the planet to star mass ratio. If the stellar radius and mass are precisely measured, the planet radius and mass can be derived more precisely. For bright stars, precise stellar radii can be measured by interferometry or asteroseismology, but for most of the transiting planets, the host stars are not bright enough and other techniques must be used. The most widely used technique, for stars with transiting planets, is to find the stellar evolutionary track corresponding to the density (e.g. $M_s^{1/3}/R_s$) measured from the planetary transit and the stellar temperature measured from the stellar spectrum. Stellar evolution models (e.g. Baraffe et al. 1998, Siess et al. 2000, Girardi et al. 2002) allow us to derive the stellar radius and mass associated to a given stellar atmosphere obtained from comparing the stellar spectrum with stellar atmosphere models (e.g. the ATLAS models, Kurucz 1993).

Precise stellar effective temperatures ($T_{\rm eff}$) are fundamental to many areas in astrophysics, and in particular, to derive precise stellar radii. The $T_{\rm eff}$ of a star can be derived using photometric methods or spectroscopic methods. An example of photometric methods, for bright stars, includes deriving the stellar bolometric flux recovered from multi-band photometry allows us to derive the stellar temperature knowing the stellar radii (see equation 5.1). For instance, the stellar radii can be measured from stellar evolution tracks, interferometry or asteroseismology. Examples of spectroscopic methods include studying the line profile of the H α line, or comparing observed spectra to synthesised spectra from stellar atmosphere models.

Assuming the star radiates as a black body, the stellar luminosity L, radius R_{\star} and effective temperature T_{eff} are related as followed:

$$L = 4\pi R_\star^2 \sigma_{\rm SB} T_{\rm eff}^4 \tag{5.1}$$

where $\sigma_{\rm SB}$ is the Stefan-Boltzmann constant.

Using equation 5.1, the stellar effective temperatures can be derived photometrical, e.g. using temperature calibrated colour bands (e.g. Nordström et al. 2004), spectroscopically, e.g. using H_{α} wings (e.g. Fuhrmann 1998) or iron lines (e.g. Santos et al. 2004), or through interferometry using the measured stellar radius to derive the stellar temperature. These methods derive uncertainty on the temperature typical down to 80 or 20 K depending on the method and on the star.

This chapter presents a method based on temperature calibrated equivalent width (EW) ratios which allows us to derive stellar relative temperatures with a precision down to 10 K. The current line-ratio temperature calibrations in the literature are based on line depth ratios (e.g. Gray 1994; Kovtyukh et al. 2003). The temperature calibration of equivalent width ratios presented in this chapter are then used to show that such calibration is possible and works well.

After the calibration presented in the chapter was built and tested, an improved version of this calibration was implemented, based on the knowledge gathered from this first calibration. The new calibration is now published in Sousa et al. (2009).

5.1 $T_{\rm eff}$ calibration of equivalent width line-ratios

The equivalent width¹ of a spectral line is a measure of the line strength which is sensitive to the temperature (equation 5.2). The ratio of the equivalent widths of two spectral lines can be used as temperature sensors. Each calibrated equivalent width lineratio can be used to obtain a measurement of the stellar temperature. The larger the number of ratios used, the larger the number of individual measurements of the temperature, which can then be combined together to statistically improve the precision of the stellar temperature.

In Local Thermal Equilibrium (LTE), the ratio of electrons population of two levels n and m, i.e. the ratio of the strength of the two spectral lines corresponding to the energy level n and m, is:

$$\frac{N_n}{N_m} = \frac{g_n}{g_m} e^{-(\chi_n - \chi_m)/kT}$$
(5.2)

where g_n and g_m are the statistical weight of level n and m (number of degenerate states at the given energy), χ_n and χ_m are the excitation potential (the energy from the ground level) of level n and m, k is the Boltzmann constant and, T is the temperature (Gray, 2005).

¹The equivalent width of a spectral line is the width of a rectangle of length one and an area equal to the area of the spectral line.

5.1.1 Choosing the line ratios

The different spectral lines have a different sensitivity to temperature. In this study, the lines are selected and combined into ratios, in order to optimise the response of the line ratios with temperature.

Selecting the spectral lines

A list of 268 lines from different chemical elements was computed from Kovtyukh et al. (2003), Kovtyukh (private communication), Santos et al. (2004), and Gilli et al. (2006). The lines used are all located outside telluric absorption lines, and have wavelengths ranging from 5200 to 6800 Å.

Only weak lines (10 mÅ< EW < 200 mÅ in the solar spectrum) were kept, as they are independent of microturbulence and the ratio of such lines show little or no dependence on metallicity variations (Gray, 1994). The lower limit on EWs was set to 10 mÅ as weaker lines are more sensitive to continuum level estimations, as for some sub-solar metallicity, and might not be detectable.

Finally, among the selected lines, only the lines which appear unblended in a high metallicity low temperature stellar spectrum of our sample (HD59686: (Fe/H)=0.28, T=4871 K, Santos et al. 2005) were kept. The criterion for blends was to visually exclude lines over-lapped by another line by more than $\sim 5\%$ of their EW. Identifying blended lines in the spectrum of a cool-metal rich star, provides a worse case scenario for blends within our sample of stellar spectra.

Applying the above criteria resulted in a list of 155 spectral lines from different chemical elements with wavelength ranging from 5490 to 6722 Å, excitation potentials ranging from 0.8 to 5.0 eV.

Combining the spectral lines into line ratios

To maximise the dependence of the equivalent width line-ratios on temperature and minimise their dependence on other parameters, the 155 selected spectral lines are combined into line ratios following four criteria:

- 1. Lines close in wavelength are combined into ratios. The continuum level is the same for these lines and will cancel out in the ratio of the lines, minimising the influence of the uncertainty on the continuum evaluation in the equivalent width line-ratios. Here lines within 70 Å from each other were combined together (value used in Kovtyukh et al. 2003).
- 2. Lines with large differences in excitation potential were combined. Lines with high excitation potential will be highly responsive to any temperature variations. Combining them with lines of low excitation potentials (low response to temperature variations) will give ratios to build ratios highly sensitive to temperature variations.

Here, lines with excitation potential difference greater than 3 eV were combined together.

- 3. Lines from different chemical elements are combined into ratios. The electronic population of the energy levels of a single chemical element can be dependent on other effects than the temperature (e.g. in NLTE² where the relative strength of the lines of a chemical element is dependent on the density of the medium), in which case combining lines from the same element will avoid this.
- 4. Lines from chemical elements with the same or similar behaviour of abundance ratio [X/Fe] with metallicity [Fe/H] are combined into ratios, to avoid a dependence of the ratios on metallicity. The calibration stars have different metallicities, and among the sample, the chemical elements which EW are combined into ratios should have a similar response of relative abundances with metallicity. The chemical elements are classified into 5 categories, according to the variation of their abundance ratio [X/Fe] with metallicity (Gilli et al., 2006). FeI, MgI, Sil and Til are classified as abundance ratio constant with metallicity, VI, AII, NaI, Nil as abundance ratio weakly increasing with metallicity, Col and MnI have as abundance ratio strongly increasing with metallicity.

Applying these criteria returned 278 line ratios (Table 5.6) built with 116 spectral lines (Table 5.3) from 8 different chemical elements.

5.1.2 Calibrating the line ratios with temperature

The selected line ratios need to be temperature calibrated. This is done using a set of calibration stars as described below .

The calibration stars

The starting set of stars used to calibrate the equivalent width line-ratios with temperature, is composed of 101 stars with a high resolution and high signal-to-noise ratio (200-400) spectrum. The spectra of 50 of the stars were taken with UVES³ and the spectra of the 51 other stars with FEROS⁴. Using high resolution spectra allows a more accurate measurement of the equivalent widths. The stars are solar-type (F-K) with temperature ranging from 4500 to 6200 K, metallicity (Fe/H) from -0.5 to 0.5, and $\log g$ from 2.5 to 4.7. Their temperatures are taken from Santos et al. (2004), Santos et al. (2005) and

²NLTE = Non Local Thermodynamic Equilibrium, which happens when the density of the medium is low enough that the dominant mode of energy transport becomes radiation and not collisions.

³UVES: echelle spectrograph with a maximum resolution of 100000, mounted on the VLT/UT2 8m Kueyen Telescope at ESO Paranal Observatory, Chile.

 $^{^{4}\}mathrm{FEROS}$: 100000-resolution echelle spectrograph on the 2.2m Telescope in ESO La Silla Observatory, Chile.

Sousa et al. (2006). These authors all used the same technique to derive the stellar parameters and provide a set of calibration temperature homogeneously determined which allows us to minimise the scatter in temperature within each line ratios. The stellar temperature derived in these papers were obtained using the line abundance code $\rm MOOG^5$. MOOG uses ATLAS9 (Kurucz, 1993) stellar atmosphere models to create model spectra. These models are compared to the equivalent widths measured on the observed stellar spectrum, and with a condition on the Fe ionisation balance MOOG returns the stellar atmospheric parameters ($T_{\rm eff}$, $\log(g)$, metallicity (Fe/H), and microturbulence) corresponding to the data.

The spectra used in this work are the same as the ones used in Santos et al. (2004), Santos et al. (2005) and Sousa et al. (2006). They were pre-reduced by these authors using UVES and FEROS reduction pipelines.

Measuring the equivalent widths with ARES

A standard method to measure the equivalent width of a spectral line is to use an interactive routine – such as IRAF – where the continuum position is fitted by eye for each individual line. In this case, the measurement has an intrinsic human error that is difficult to estimate. Using an automatic process to measure the equivalent width reduces the human error. In this chapter, the equivalent widths are measured using the software ARES⁶ (Sousa et al., 2007) which measures the equivalent width of an input list of absorption spectral lines for a given parameter list and a given stellar spectrum. ARES currently does not return uncertainties on the measured equivalent widths; this suggestion has been sent to the author and should be implemented in a future version of the software. Using a Linux script, this software is run automatically over the 101 stellar spectra lines in each spectrum. The 278 equivalent width line-ratios are then computed for each star using an IDL code.

ARES has a list of input parameters. The rejt parameter determines the points in the spectrum used to evaluate the local continuum. This parameter needs to be adjusted according to the signal to noise ratio (S/N) of each spectrum (see Sousa et al. (2008) for a table of correspondence between the S/N and the optimal rejt). To keep the equivalent width measurements as automated as possible, and because in our data set the different spectra obtained from the same spectrograph have a similar S/N, a single value of rejt is adopted for each spectrograph (0.998 for the UVES spectra and 0.990 for the FEROS spectra). Sousa et al. (2009) discusses on the effect of the rejt value on the derived temperature using temperature calibrated equivalent width line-ratios similar to the one presented in this chapter. The *smoothder* parameter corresponds to the width (in pixels) of the boxcar used to reduce the noise in the spectra and allow

⁵http://verdi.as.utexas.edu/moog.html

⁶http://www.astro.up.pt/ sousasag/ares/

a better fit of the lines. The *space* parameter sets the wavelength range used on each side of the lines to evaluate the local continuums. The *lineresol* parameter defines the minimum separation (in Å) between consecutive lines. The *miniline* parameter sets the lower value of the equivalent width returned by ARES. The default values used here are *smoothder* = 4, *space* = 3, *lineresol* = 0.1, and *miniline* = 2.

The number of stars with successfully measured equivalent width ratios varies for each line ratio, depending on whether ARES successfully measured the equivalent width of the two spectral lines of the ratio. If a star is visually far from the other stars (e.g. more than 4σ) when plotted in an equivalent width ratio – e.g. due to a line miss-measured by ARES or affected by a cosmic ray) – the star is removed from the sample of calibration stars. After this selection, 62 stars are left to calibrate the line ratios (Figure 5.1).

Figure 5.1: Distribution in temperature (left) and metallicity (right) of the 62 calibration stars (red) and the original sample of 101 stars (black).

Fitting function

For each of the 278 line ratios, the dependence of the equivalent width line-ratios $r_{\rm EW}^{j}$ with the stellar effective temperatures $T_{\rm eff}^{S,j}$ (*j* for each calibration star, *S* for calibration temperature taken from Santos et al. (2004), Santos et al. (2005) and Sousa et al. (2006)) was fitted with a 3^{rd} order polynomial function. For each line ratio, a best fit is derived with the POLYFIT function of IDL⁷, weighing each data points ($r_{\rm EW}^{j,T}, T_{\rm eff}^{S,j}$) with the uncertainty on the $T_{\rm eff}^{S,j}$.

The equivalent width ratios are calibrated against temperature as follows:

$$T_{\rm eff}^{S,j} = c_0 + c_1 r_{\rm EW}^{i,j} + c_2 r_{\rm EW}^{i,j^2} + c_3 r_{\rm EW}^{i,j^3}$$
(5.3)

where c_0 , c_1 , c_2 and c_3 are respectively the zeroth, first, second and third order of the 3^{rd} order polynomial function, and *i* is the line ratio.

⁷IDL: Interactive Data Language

Selection of the final calibration set

For each line ratios, the standard deviation of the points around the best fit is calculated and taken as the uncertainty in temperature of the calibration of this ratio. The uncertainties on the individual calibrations ranges from 30 K to 240 K.

To minimise the uncertainties on the final temperature T_{eff}^{f} derived from the calibrated line ratios, the first 68% of the ratios with the lowest standard deviation from the fit are selected, which corresponds to standard deviation less than 100 K. This selection resulted in 190 ratios, composed of 88 spectral lines.

Figure 5.2: Distribution in standard deviation of the equivalent width line-ratios calibrated in temperature. The 278 original line ratios are plotted in black and the 190 selected line ratios in red. The 100 K limit in standard deviation, used for the selection, is marked by the dashed line.

5.1.3 Using the calibration to derive stellar temperatures

In a spectrum, the equivalent width of a spectral line can be inaccurately measured (e.g. due to line blends or cosmic rays affecting the determination of the local continuum). This will affect the value derived for the associated line ratio and return a wrong T_{eff}^k for this ratio. This temperature is classified as an "outlier" and to avoid taking it into account in the final temperature T_{eff}^f , a 2σ clipping from the median of the T_{eff}^k s (equation 5.8) is applied, where σ is the 1.48*MAD⁸ of the T_{eff}^k s (equation 5.9).

There are several ways to combine the remaining individual temperature measurements into a final temperature. The weighted average of the measurements (equation 5.4, and equation 5.5 for the associated uncertainty) can be used when the accuracy of the individual measurements (values and uncertainties) can be trusted. The mean of the measurements (equation 5.6, and equation 5.7 for the associated uncertainty) can be used when the exactitude of the individual measurements can be trusted but not the associated uncertainties. The median of the measurements (equa-

⁸MAD: Median Absolute Deviation

tion 5.8, and equation 5.9 for the associated uncertainties) can be used when the exactitude of the individual measurements (values and uncertainties) cannot be trusted.

As the outlying temperatures have already been removed, the final temperature can be obtained by taking the mean of the remaining individual measurements of the temperature (equation 5.6, and equation 5.7 for the uncertainty). The weighted mean is not used as it is not certain that the uncertainties associated to the individual temperature take into account all the sources of uncertainties.

Weighted average:

$$T_{\text{eff}}^{f} = \frac{\sum_{k} \frac{T_{\text{eff}}^{k}}{\sigma_{k}^{2}}}{\sum_{k} \frac{1}{\sigma_{k}^{2}}}$$
(5.4)

where σ_k is the uncertainty on the individual measurement of temperature (T_{eff}^k) for the line ratio k. The uncertainty associated to the weighted average is

$$\sigma_{T_{\text{eff}}^f} = \frac{1}{\sum_k \frac{1}{\sigma_k^2}} \tag{5.5}$$

Mean:

$$T_{\rm eff}^f = \frac{\sum_k T_{\rm eff}^k}{N}$$
(5.6)

where N is the number of individual measurements of temperature combined together. The uncertainty associated to the mean is

$$\sigma_{T_{\text{eff}}^f} = \sqrt{\frac{\sum_k (T_{\text{eff}}^k - T_{\text{eff}}^f)^2}{N}} \frac{1}{\sqrt{N_i}}$$
(5.7)

where N_i is the number of independent measurements of the temperature. In this work the number of independent measurements is taken as the number of unique combinations of chemical elements into line ratios. It is not taken as the total number of line ratios as several ratios are made of the same combination of elements and are therefore not independent from each other.

Median:

$$T_{\rm eff}^f = T_{\rm eff}^k|_{k=med} \tag{5.8}$$

When ordering the T_{eff}^k , med is the index of the T_{eff}^k with as many individual temperatures larger than T_{eff}^{med} than smaller. The uncertainty associated to the median is

$$\sigma_{T_{\text{eff}}^{f}} = 1.48 * |T_{\text{eff}}^{k} - T_{\text{eff}}^{f}|_{k=med} \frac{1}{\sqrt{N_{i}}}$$
(5.9)

5.1.4 Testing the calibration

To evaluate the performance of the equivalent width line-ratio calibration set built in the previous sections, the three following tests were performed:

The inverse test

The first test is an inverse experiment where the 62 stars used to build the calibration are run back into the calibration and the resulting temperatures are compared to the values used to build the calibration. If the calibration is working well, both sets of temperature should be consistent within the error bars.

The resulting temperatures are plotted versus the original ones in Figure 5.3. For the stars with calibration temperature between 5000 and 6100 K, there is a good agreement between the calibration $T_{\rm eff}$ and the equivalent width $T_{\rm eff}$. But for the stars with calibration temperature lower than 5000 K, the current calibration overestimates the $T_{\rm eff}$ by up to 200 K, and for the stars with calibration temperature larger than 6100 K, the current calibration underestimates the $T_{\rm eff}$ by up to 100 K.

Figure 5.3: In blue, the $T_{\rm eff}$ of the 62 calibration stars derived using the equivalent width line-ratio calibration (y-axis), compared to the value of their $T_{\rm eff}$ with error bars used to build the calibration (x-axis). For each star (x-axis), the black dots along the y-axis are the $T_{\rm eff}$ measured from the individual line-ratios. The equivalent width $T_{\rm eff}$ and the associated error bars (along the y-axis, in blue) are derived as described in section 5.1.3. The grey dashed line is the identity line between the calibration $T_{\rm eff}$ and the equivalent width $T_{\rm eff}$.

Test on lower resolution spectra

The second test evaluates the performance of the calibration when using a spectrum with a resolution smaller than that of the spectra used to build the calibration.

The equivalent width line-ratio calibration is run on four stars with 50000-resolution spectra taken with CORALIE⁹. These spectra were reduced in Santos et al. (2004) using the standard tasks in the IRAF echelle package. The spectra have an S/N of about 190 so the equivalent width are measured with ARES using rejt = 0.992. The individual $T_{\rm eff}$ derived from each calibrated equivalent width line-ratios are presented in Figure 5.4. The final $T_{\rm eff}$, derived as described in section 5.1.3, are compared in Table 5.1 to the value in Santos et al. (2004).

Figure 5.4: Test of the equivalent width line-ratio calibration on four stars with CORALIE spectra. Each point marks the $T_{\rm eff}$ and its uncertainty derived with the corresponding equivalent width line-ratio (numbered on the x-axis). The grey lines marks the levels at plus and minus twice the scatter from the median of the individual $T_{\rm eff}$, outside which the individual $T_{\rm eff}$ are considered as outliers. The red line marks the final $T_{\rm eff}$ derived as the mean of the $T_{\rm eff}$ within the grey lines.

Table 5.1: $T_{\rm eff}$ derived using the equivalent width calibration on the CORALIE spectra, compared to the values obtained by Santos et al. (2004) on the same spectra. N_r is the number of ratios used to compute the final $T_{\rm eff}$, N_i is the number of independent ratio, used to derive the uncertainty on the $T_{\rm eff}$, taken as the number of unique combinations of chemical elements in the line ratios.

	This CI	napter		Santos et al. (2004)
	$T_{\rm eff}$	N_r	N_i	$T_{ m eff}$
HD106252	6009±14	159	11	5899±35
HD160691	5782±13	177	12	5798±33
HD179949	6111±20	139	12	6260±43
HD213240	5986±11	168	12	5984±33

⁹CORALIE: 50000-resolution spectrograph on the 1.2m Euler Swiss Telescope at the ESO La Silla Observatory, Chile

For the two cooler stars, the final $T_{\rm eff}$ derived is consistent within the error bars with Santos et al. (2004), while the uncertainties derived with the equivalent width line-ratio calibration are smaller (half) than those from Santos et al. (2004). The two hotter stars have derived $T_{\rm eff}$ 110 and 150 K different from the value cited in Santos et al. (2004). For the star with $T_{\rm eff}$ >6100 K, the underestimation of the temperature by the equivalent width line-ratio calibration was also identified in the previous test. The mis-match in temperature for the other star is not understood.

This test shows that the equivalent width measurements with ARES and the method used to combine the individual $T_{\rm eff}$ return consistent temperatures even for lower resolution spectra, as long as the temperature is within the temperature range where the calibration performs well ((5000,6100) K as defined in the previous test).

Test stars at various rejt

The rejt parameter is used in ARES to select which points of the spectrum are used to evaluate the local continuum. This parameter is dependent on the signal to noise ratio of the spectrum. To keep the procedure automated, and as all the spectra used to calibrate the equivalent width line-ratios have similar S/N (200-400), a unique rejt is used for all the UVES spectra (0.998) and for all the FEROS spectra (0.990). For S/N varying from 200 to 400, the rejt value should vary from 0.993 to 0.996. To evaluate the effect on the temperature derived from the equivalent width line-ratio calibration, of a rejt value not optimised to the S/N of the spectrum, the following test is performed. Three stars ($T_{\rm eff}$ =4810, 5699, 6143 K), with similar (Fe/H) and spectra taken with the same spectrograph (UVES), the equivalent widths are measured for rejt ranging from 0.990 to 0.999. The $T_{\rm eff}$ is derived for each of the rejt value using the equivalent width line-ratio calibration has a spectrum taken with FEROS is studied in the same way. Figure 5.5 plots the resulting $T_{\rm eff}$ versus the value of rejt.

Figure 5.5 shows that the stellar T_{eff} can vary by 12 to 25 K depending on the rejt value used to measure the equivalent widths. Within the explored range of rejt, the T_{eff} of the three UVES stars remain different to the value in Santos et al. (2004) by 30 to 100 K. The T_{eff} for the FEROS star is consistent with Santos et al. (2004).

This test indicates that choosing a rejt value not optimised to the spectrum, introduces an additional uncertainty in the final $T_{\rm eff}$. To take this into account, an uncertainty of ~25 K – coming from the uncertainty of the equivalent width measurements – should be added in quadrature. To reduce this additional source of uncertainty, the rejt parameter should be adjusted for each spectrum. This is not aways straight forward as even a small difference (e.g. 0.001) in rejt results in a difference of 5 to 10 K in the final $T_{\rm eff}$.

The unique values of rejt used for the UVES and the FEROS calibration spectra can explain the large number of calibration stars (21 UVES, 18 FEROS) that were dropped

Figure 5.5: $T_{\rm eff}$ derived from the equivalent width line-ratio calibration, versus the rejt value used to measure the EWs. The $T_{\rm eff}$ as derived by Santos et al. (2004) is indicated above each plot. The number of equivalent width line-ratios used to derive the $T_{\rm eff}$ in each rejt trial is indicated in small prints by the side of each point.

out of the calibration sample as their equivalent width line-ratio $T_{\rm eff}$ were outliers.

This test shows on how the choice of rejt value when measuring the EWs with ARES impacts the T_{eff} derived with the equivalent width line-ratio calibration.

5.1.5 Discussion

This section summarises the strengths and limitations of the equivalent width line-ratio calibration. It then lists some suggestions to improve this calibration.

Strengths

The calibration presented in this chapter is composed of 190 equivalent width line ratios calibrated for temperatures ranging from 4500 K to 6200 K., with equivalent width measured uniformly using ARES and calibration temperature derived uniformly by previous authors.

This calibration is the first to present such a large number of calibrated equivalent width ratios. It was developed further and published in Sousa et al. (2009). Previous works on this subject calibrated line-depth ratios, not equivalent width ratios, and published less ratios (e.g. Kovtyukh et al. (2003) published 105 calibrations of line-depth ratios). This calibration demonstrates that equivalent width ratios are as good as line-depth ratios to measure stellar temperatures, contrarily to previous believes that they would not be precise enough as they are more sensitive to blends.

With its large number of calibrated line ratios, this calibration allows temperatures to be to derived with smaller relative uncertainties. The calibration was tested on 4 stars and, within the error bars, the temperatures are consistent with Santos et al. (2004), while our relative temperature error bars are at least a factor of two smaller.

The calibration can be applied to the monitoring of stellar variation in temperature, e.g. due to spots. From an exoplanet point of view, this could be used to tell apart spots mimicking planetary transits from real planetary transits (e.g. Biazzo et al. 2006).

Limitations

The calibration is valid only over the calibrated temperature range (4500 to 6200 K), and loses precision below 5000 K and above 6100 K.

Only a temperature relative to another measurement, with the same calibration, can be determined with a better precision. The absolute temperature suffers from the same systematic offsets in temperature as the sample of calibration stars (e.g. $\sim 10 \text{ K}$ compared to Ramírez & Meléndez 2004 as derived in Santos et al. 2005). In the case of exoplanets, to derive an accurate and precise stellar radius, one needs an accurate and precise stellar temperatures. The calibration of equivalent width line ratios is thus limited when it comes to deriving absolute temperature.

The accuracy on the $T_{\rm eff}$ is also dependent on that of the equivalent width measurements. For instance, the equivalent widths measured with ARES have an uncertainty due to the continuum determination controlled by the rejt, which is difficult to optimise for each spectrum. This uncertainty translates into ~25 K in temperature, and needs to be added in quadrature to the uncertainty from the calibration itself – derived as the scatter in the individual $T_{\rm eff}$ measured). When using another tool to measure the equivalent widths, the user should evaluate and propagate the uncertainty on their equivalent width measurements to the final $T_{\rm eff}$.

Improvements

The calibration can be improved by having more calibration stars. The 59 stars removed from the calibration sample can be revisited with adjusted rejt to derive better equivalent widths and thus better values of the equivalent width line-ratios for these stars. Also, for a given star, if only some of the equivalent width line-ratio measurements are outliers, the star can be selectively removed from the affected ratios instead of systematically from the whole calibration.

The sample of stars can also be extended to lower $T_{\rm eff}$ to improve the quality of the calibration in that temperature range. The sample can also be extended outside the current calibration range in order to extend the temperature range over which the calibration can be applied.

The quality of the calibration can be in general improved with more precise measurements of equivalent widths, e.g. by using a rejt value adapted to each spectrum.

The choice in fitting function used to model the dependence of the equivalent width with temperature can be diversified, e.g. by adding the functions $\frac{1}{x}$ and $\log x$ to the 3^{rd} order polynomial functions, and by selecting the function modelling each ratio with the smallest residuals.

The number of spectral lines can be increased, by widening the wavelength range or by changing the criteria of selection of good line ratios (e.g. loosening the 100 K limit in standard deviation). This will increase the number of line ratios, and thus theoretically improve the precision on the derived $T_{\rm eff}$. Adding spectral lines at shorter wavelength will improve the determination of the $T_{\rm eff}$ of hotter stars which have less lines at longer wavelengths.

In practice they are sources of uncertainty on the derived $T_{\rm eff}$ (e.g. from the ARES parameter rejt, or from the calibration temperatures) that should be taken into account when associating an uncertainty to an absolute temperature. These other sources of uncertainties are larger than the precision achieved by the current calibration. Thus, developing a more precise calibration (large number of ratios, fitting function, accuracy of the EWs measurements) will not make a major difference on the uncertainties associated with the absolute temperature.

5.2 Comparison to the calibration of Sousa et al. (2009)

An improved version of the calibration described in the previous sections, taking into account most of the points mentioned in Section 5.1.5, was published in Sousa et al. (2009).

In this new calibration, a larger number of calibration stars (451) are used, all with high resolution HARPS spectra (R~110000), with 90% of the spectra with a S/N > 200, and with calibration temperatures homogeneously derived in Sousa et al. (2008). The sample of calibration stars covers more uniformly the (4500,6500) K range.

This calibration is composed of a larger number of equivalent width line ratios. The initial line list was extended to 498 spectral lines. The spectra lines were combined into ratios only on the basis of their proximity in wavelength (< 70 Å) and their difference in excitation potential > 3 eV). The equivalent width measurements were obtained with ARES adjusting the *rejt* parameter for each spectra. Ratios with a very weak and/or a very strong spectral line were removed as the equivalent width measured for these lines can be affected by the continuum estimate (for the weak lines) or by the gaussian fit to the line (for the strong lines).

In Sousa et al. (2009), the best fit to each equivalent width line-ratio r, calibrated in temperature (T_{eff}), is selected among 6 models: a linear fit and a $3^r d$ order polynomial fit to the relations (T_{eff} vs. r), (T_{eff} vs. 1/r) and (T_{eff} vs. $\log r$). Finally, only the equivalent

width line-ratios measured in more than 300 stars and with a standard deviation to the best temperature calibration fit smaller than 120 K, were kept. Based on these criteria, the calibration published in Sousa et al. (2009) is composed of 433 line ratios built with 171 spectral lines.

In Sousa et al. (2009), the final temperature is derived as the weighted average of the temperatures from the individual equivalent with ratios, after having removed those temperatures outside the (4200,6800) K range and the ones outside a 2σ range from the average temperature. The uncertainty associated to this final temperature is derived as the standard deviation of the individual temperatures used to derived the final temperature, divided by the square root of the number of independent line ratios (i.e. the number of line ratios with unique combination of chemical elements). Sousa et al. (2009) published a correction function to the final temperature, to be applied if the temperature derived is greater than 6000 K.

The calibration derived in Sousa et al. (2009) is applied to the 62 calibration stars used to build the calibration presented in this chapter. The $T_{\rm eff}$ are plotted in Figure 5.6 and compared to the value derived with the calibration presented in this chapter.

Figure 5.6: The $T_{\rm eff}$ derived with the calibration presented in this chapter (blue) versus the $T_{\rm eff}$ derived with the calibration presented in Sousa et al. (2009) (grey), for the 62 calibration stars used to build the calibration presented in this chapter. The dashed line is the identity line between the spectroscopic $T_{\rm eff}$ and the equivalent width ratio $T_{\rm eff}$.

The $T_{\rm eff}$ derived by the two calibrations are consistent within the errors bars. In general, the $T_{\rm eff}$ from Sousa et al. (2009) calibration have smaller error bars than the $T_{\rm eff}$ from the calibration described in this chapter. For the high $T_{\rm eff}$ stars, the calibration of Sousa et al. (2009) derives a $T_{\rm eff}$ closer to the identity line than this chapter's calibration, due to the systematic temperature correction applied to the high $T_{\rm eff}$ stars in the calibration of Sousa et al. (2009). For the low $T_{\rm eff}$ stars, this chapter's calibration derives $T_{\rm eff}$ slightly closer to the identity line than the calibration of Sousa et al. (2009). The difference observed between the two calibrations, is likely due to the approach

used when combining the individual $T_{\rm eff}$, as Sousa et al. (2009) derive the final $T_{\rm eff}$ as the weighted average which is more sensitive to wrong measurements of equivalent width line-ratio associated to line-ratios with small internal errors.

5.3 Applying the calibration to the host stars of CoRoT planets

In this section, the effective temperature $T_{\rm eff}$ of the host stars of the planets CoRoT-1b to 9b, are derived using the temperature calibrated equivalent width line-ratio technique. Two calibration sets and methods to combine the individual $T_{\rm eff}$ are used: the calibration set described in this chapter and the calibration set derived in Sousa et al. (2009), and re-described in section 5.2.

5.3.1 Spectra and equivalent width measurements

The spectra used in this section are UVES spectra for CoRoT-1,2,3,6,8,9 and HARPS spectra for CoRoT-4,5,7. The spectra are the same as the ones used for the determination of the stellar parameters in the discovery papers of the associated orbital companion. The UVES and HARPS spectra were reduced prior to this work with the standard instrument pipelines. Additionally, as the HARPS spectra were originally taken to measure the variations in radial velocity due to the orbital companion; after correcting each order of the spectra from its blaze function, the spectra were weight averaged order per order according to their S/N, to increase the S/N of the spectrum used to derive the stellar atmosphere parameters.

In this work, the following additional reduction steps were performed on the spectra using the IRAF software: 1) the spectra were normalised order per order using the CONTINUUM task and the spline function of order 3 to 5, 2) the orders were merged using the SCOMBINE task, and 3) the stellar radial velocity was corrected, when needed, using the DOPCOR task.

The list of spectral lines used in the calibration presented in this chapter and in the calibration by Sousa et al. (2009) are combined into a single line list which is inputed into ARES to uniformly measure the equivalent width of all the spectral lines and avoid biases in equivalent width measurements between the two calibrations. The default ARES parameters used are *smoothder* = 4, *space* = 3, *lineresol* = 0.15 and *miniline* = 2. The values of *space* and *lineresol* have been slightly increased to account for the slightly noisier spectra compared to the spectra used to built the calibration presented in this chapter.

The S/N of the different spectra vary from 40 to 240 so the rejt parameter is adjusted for each spectrum. For the UVES spectra (CoRoT-1,2,6,8), the S/N can vary from 70 to 180 across a single spectrum due to the level of fringing in the redder part of the spectrum which increases the noise in this range. For these spectra a single rejt value (0.990) is used to compromise between the different values of the S/N. The spectrum of CoRoT-4,5,9 have smaller S/N (70, 50 and 90 respectively) so smaller values of rejt are used (0.989, 0.985 and 0.989 respectively). The spectrum of CoRoT-7 has a larger S/N (150-240) so a larger rejt is used (0.993). For CoRoT-3, the spectral lines are broad, so the values used for *lineresol* and *space* = 8 are increased to 0.4 and 8 respectively. These parameters set the minimum resolution between consecutive spectral lines and the wavelength range around the spectral lines used to evaluate the continuum. The value of both needs to be larger for broader lines.

5.3.2 Deriving the effective temperatures

The measured equivalent widths of each star are run through the calibrated equivalent width line-ratios described in this chapter. Figure 5.7 shows the individual $T_{\rm eff}$ derived from each ratio and the value of the combined $T_{\rm eff}$ (red line).

The measured equivalent widths are then run through the calibration of Sousa et al. (2009), also described in section 5.2, and the corresponding $T_{\rm eff}$ are extracted. If the derived $T_{\rm eff}$ is larger than 6000 K, a temperature correction is applied as described in Sousa et al. (2009). For CoRoT-6, the $T_{\rm eff}$ was corrected by -10 K.

The $T_{\rm eff}$ of the host stars of CoRoT-1b to 9b, derived from the two calibration sets, are presented in Table 5.2, along with the number of ratios used in each case and the value of the $T_{\rm eff}$ taken from the discovery paper.

Table 5.2: $T_{\rm eff}$ of CoRoT 1b to 9b derived using the two sets of equivalent width ratio calibrations, compared to the value in the literature. N_r is the number of ratios used to compute the $T_{\rm eff}$, N_i the number of independent ratios used to derive the uncertainty.

	This chapter			Sousa et al. (2009)			Literature	
	$T_{ m eff}$	N_r	N_i	$T_{\rm eff}$	N_r	N_i	$T_{\rm eff}$	Ref.
CoRoT-1	6015±35	131	11	5919±77	264	19	5950 ± 150	Barge et al. (2008)
CoRoT-2	5663 ± 50	163	12	5516±33	325	20	5625 ± 120	Alonso et al. (2008)
CoRoT-3	5974±84	66	11	5856 ± 100	111	14	6740 ± 140	Triaud et al. (2009)
CoRoT-4	5971±46	158	12	5927±60	324	23	6190±60	Aigrain et al. (2008)
CoRoT-5	5832 ± 56	161	12	5736±66	333	22	6100±65	Rauer et al. (2009)
CoRoT-6	6069±44	113	11	6014±73	184	16	6090±70	Fridlund et al. (2010)
CoRoT-7	5333 ± 34	181	12	5291±9	383	29	5275±75	Léger et al. (2009)
CoRoT-8	5122±46	163	12	5134±40	354	20	5150±75	Bordé et al. (2010)
CoRoT-9	5741±44	161	12	5563 ± 35	331	18	5625 ± 80	Deeg et al. (2010)

Figure 5.7: The $T_{\rm eff}$ of the CoRoT planet host stars derived from the equivalent width lineratio calibration described in this chapter, based on UVES spectra for CoRoT-1,2,3,6,8,9 and HAPRS spectra for CoRoT-4,5,7. Same legend as Figure 5.4.

5.3.3 Discussion

The $T_{\rm eff}$ of the CoRoT planet host stars derived with the equivalent width line-ratios technique (both calibration set) are consistent within the error bars with the stellar $T_{\rm eff}$ published in the discovery papers, except for CoRoT-3,4,5. The uncertainties derived using the equivalent with ratios technique are in general smaller than those from the discovery papers (expect for CoRoT-4,5,6) when using the calibration set of Sousa et al. (2009).

The values of the $T_{\rm eff}$ derived from the calibration of this chapter are consistent within the error bars with those derived from the calibration of Sousa et al. (2009), except for CoRoT-2 and 9. The uncertainties derived with the calibration described in this chapter are smaller than those derived with the calibration of Sousa et al. (2009), except for CoRoT-2,7,8,9.

For CoRoT-2 and 9, the values of $T_{\rm eff}$ derived with the calibration set described in this chapter are 70 and 100 K higher than the values of $T_{\rm eff}$ derived with the calibration of Sousa et al. (2009). The reason for this difference is unclear as the $T_{\rm eff}$ are well within the calibrated temperature range of the two calibration sets, and as the equivalent widths of all the spectral lines were measured uniformly and should return uniform line ratios and thus uniform $T_{\rm eff}$. A possible difference could be in the approach used to combine the individual $T_{\rm eff}$. The weighted average used by Sousa et al. (2009) is more sensitive to outlier equivalent width measurements associated to well calibrated line ratios. This could explain the $T_{\rm eff}$ derived with the calibration of Sousa et al. (2009) but not the $T_{\rm eff}$ derived with the calibration of sousa et al. (2009) but not the $T_{\rm eff}$.

CoRoT-3 is a hot and fast rotating star, therefore its spectrum has less lines in the visible, and the spectral lines are broad so more likely to be blended. This results in fewer line ratios well measured by ARES, which in turn limits the accuracy of the $T_{\rm eff}$ derived from the temperature calibrated equivalent width line-ratios. For this star, the $T_{\rm eff}$ of the two calibration sets are consistent with each other, which is as expected given the equivalent widths of the two sets were measured at the same time. But these $T_{\rm eff}$ are not consistent with the value in the discovery paper because the temperature of the star is outside the temperature range calibrated.

The $T_{\rm eff}$ of CoRoT-3,4,5, derived from equivalent width ratios, are underestimated. Their $T_{\rm eff}$ are larger than 6100 K, temperatures above which the calibration derived in this chapter are known to underestimate the $T_{\rm eff}$, as seen in section 5.1.4. The calibration of Sousa et al. (2009) has a correction function at $T_{\rm eff}$ >6000 K, integrated into the derivation of the final $T_{\rm eff}$, but for these CoRoT host stars, the $T_{\rm eff}$ derived by the calibration is smaller than 6000 K, so the correction is not applied.

5.4 Conclusion

The equivalent width line ratios calibrated against temperature, is a successful method to derive stellar effective temperature, within the temperature calibrated range, and using medium to high resolution (R>50000) and signal-to-noise (S/N >40) spectra.

The limitation to the precision of the $T_{\rm eff}$ derived with this method is not in the number of line ratios used but in the precision of the equivalent width measurements and local continuum. Using softwares (such as ARES) to automatically measure the equivalent width of a large number of spectral lines makes the derivation of the $T_{\rm eff}$ faster and removes biases due to human "eye-ball" intervention in line fitting (such as with IRAF), but the derived equivalent width measurements largely depend on the input parameters (such as rejt in ARES) which introduces an additional source of uncertainties in the derived $T_{\rm eff}$.

The equivalent width line ratio technique was applied to the host stars of CoRoT-1b to 9b and the derived $T_{\rm eff}$ are consistent with the discovery papers, except for the stars hotter than 6100 K. The associated uncertainties derived purely from the combination of the individual temperatures are smaller than the uncertainties published in the discovery papers, but are highly sensitive to the ARES rejt value chosen.

The two sets of equivalent width line ratios presented in this chapter combine the individual $T_{\rm eff}$ differently. A larger and more uniform calibration set than the one presented in this chapter was developed in Sousa et al. (2009). Although the $T_{\rm eff}$ derived with the two calibrations are consistent, the calibration of Sousa et al. (2009) is an improvement to the calibration presented in this chapter. Thus, the $T_{\rm eff}$ and uncertainties kept for CoRoT-1b to 9b are those derived from the calibration of Sousa et al. (2009).

This chapter has presented an alternative method to measure the stellar temperature from the stellar spectrum. The $T_{\rm eff}$ derived with this method provides an additional measurement to compare with the values from the other methods, and increase or reduce the confidence on the value of the stellar temperature. The method presented here also has the advantages of been fast, automated and homogeneous, even if, like for the other methods, the temperature scale is not absolute.

5.5 Appendix

5.5.1 Line list

Table 5.3: List of the 116 spectral lines in the 278 lines ratios identified in section 5.1.2, with λ the wavelength, EP (Excitation Potential) the energy of the level above the ground state, $\log gf$ the weighted oscillator strength (product of the oscillator strength f of the atomic transition and the statistical weight g of the lower level), and A the atomic number of the chemical element. The values of EP and and $\log gf$ are taken from the VALD atomic database (Piskunov et al., 1995).

$\overline{\lambda}$	EP	$\log gf$	λ	EP	$\log gf$	λ	EP	$\log gf$
Nal (A =	11)		6090.21	1.081	-0.150	6200.32	2.608	-2.437
5688.22	2.104	-0.625	6111.65	1.043	-0.715	6213.43	2.223	-2.482
6154.23	2.102	-1.607	6135.36	1.051	-0.746	6215.15	4.186	-1.320
6160.75	2.104	-1.316	6216.35	0.280	-0.900	6226.73	3.880	-2.066
MgI (A =	12)		6251.82	0.287	-1.340	6232.65	3.654	-1.223
5711.09	4.346	-1.706	Crl (A = 2	24)		6240.66	2.223	-3.233
6318.72	5.108	-1.996	6330.13	0.941	-2.920	6246.32	3.602	-0.733
Sil (A = 14	4)		Fel (A = 2	26)		6252.55	2.404	-1.687
5517.53	5.082	-2.384	5619.60	4.386	-1.700	6254.26	2.279	-2.443
5621.60	5.082	-2.500	5633.97	4.991	-0.270	6265.13	2.176	-2.550
5690.43	4.930	-1.790	5650.71	5.085	-0.960	6271.29	3.332	-2.703
5701.11	4.930	-2.020	5651.47	4.473	-2.000	6330.86	4.733	-1.740
5753.65	5.616	-0.830	5662.52	4.178	-0.573	6380.75	4.190	-1.321
5772.15	5.082	-1.620	5680.26	4.186	-2.580	6392.55	2.280	-3.932
5948.55	5.080	-1.110	5701.54	2.559	-2.216	6592.91	2.727	-1.473
6125.03	5.610	-1.520	5705.99	4.607	-0.530	6608.03	2.279	-4.030
6142.49	5.619	-1.480	5717.85	4.284	-1.130	6609.12	2.559	-2.692
6145.02	5.616	-1.480	5731.77	4.256	-1.300	6627.56	4.548	-1.680
6155.14	5.619	-0.750	5753.12	4.260	-0.688	6677.99	2.692	-1.418
6237.33	5.614	-0.530	5852.23	4.550	-1.187	6703.58	2.758	-3.160
6244.48	5.616	-0.690	5855.08	4.610	-1.529	6710.33	1.485	-4.880
6414.99	5.871	-1.100	5856.09	4.290	-1.564	6750.15	2.424	-2.621
6583.71	5.954	-1.640	5862.36	4.549	-0.058	Nil (A = 2	8)	
6721.85	5.863	-1.090	5956.70	0.859	-4.605	5578.72	1.676	-2.650
ScII (A =	21)		5983.69	4.549	-1.878	5587.86	1.930	-2.380
5526.82	1.770	0.150	5987.05	4.795	-0.556	5682.20	4.100	-0.390
6245.62	1.510	-1.040	6007.96	4.652	-0.966	5754.68	1.935	-2.330
6604.60	1.360	-1.160	6027.06	4.080	-1.180	6007.31	1.676	-3.330
Til (A = 22	2)		6055.99	4.733	-0.460	6086.29	4.266	-0.440
5490.15	1.460	-0.980	6056.01	4.730	-0.498	6108.12	1.676	-2.450
5866.45	1.0/0	-0.840	6065.48	2.608	-1.530	6111.07	4.090	-0.800
6091.18	2.26/	-0.460	60/8.50	4.795	-0.424	6128.99	1.680	-3.370
6126.22	1.067	-1.410	6089.57	4.580	-3.112	6130.14	4.260	-0.950
6258.11	1.440	-0.440	6098.28	4.558	-1.880	61/5.42	4.089	-0.559
6261.11	1.430	-0.490	6102.18	4.835	-0.627	61/6.81	4.088	-0.260
VI (A = 2	3)	0.440	6105.15	4.548	-2.050	6186.74	4.105	-0.960
56/0.85	1.081	-0.460	6127.91	4.143	-1.399	6204.64	4.088	-1.100
5/03.59	1.051	-0.211	6151.62	2.1/6	-3.299	6223.99	4.105	-0.910
5/2/.05	1.080	-0.000	015/./3	4.0/0	-1.240	0327.60	1.6/6	-3.150
5/3/.0/	1.060	-0.770	0159.38	4.610	-1.860	0586.33	1.951	-2.810
6039.73	1.064	-0.650	6165.37	4.140	-1.503	6/6/./7	1.826	-2.170
6081.44	1.051	-0.579	6188.00	3.940	-1.631			

5.5.2 List of the calibration stars

Table 5.4: List of the final 62 calibration stars used to calibrate the line ratios, as described in section 5.1.2. The stellar parameters were taken from Santos et al. (2004), Santos et al. (2005) and Sousa et al. (2006).

star	Ta	(Fe/H)	log a		star	T a	(Fe/H)	log a	
5 GI	$\binom{1}{K}$	(10/11)	(cms^{-2})			$\binom{I}{K}$	(10/11)	$(cm s^{-2})$	
HD4203	5636+40	0.40+0.05	4 23+0 14	(1)	HD73256	5518+49	0.26+0.06	442+012	(1)
HD7199	5426 ± 52	0.39 ± 0.06	441+0.07	(2)	HD73524	6012 ± 50	0.23 ± 0.06	440+0.03	(2)
HD7570	6198 ± 39	0.24 ± 0.05	4.44+0.09	(1)	HD73526	5699 ± 49	0.27 ± 0.06	4.27 ± 0.12	(1)
HD7727	6131 ± 41	0.16 ± 0.05	4.34+0.02	(2)	HD74156	6112 ± 39	0.16 ± 0.05	4.34 ± 0.10	(1)
HD8326	4914 + 63	0.10 ± 0.07	4.30 ± 0.11	(2)	HD75289	6143 ± 53	0.28 ± 0.07	4.42 ± 0.13	(1)
HD9562	5937 + 36	0.26 ± 0.05	4.13+0.02	(2)	HD78429	5786 + 31	0.11 ± 0.05	4.34 ± 0.02	(2)
HD9782	6023±36	0.15 ± 0.05	4.40±0.02	(2)	HD82943	6028±19	0.29±0.02	4.45±0.07	(1)
HD81110A	5818±38	0.31 ± 0.05	4.50 ± 0.03	(2)	HD99492	4810±72	0.26 ± 0.07	4.21±0.21	(1)
HD10180	5912±24	0.13±0.04	4.33±0.01	(2)	HD102117	5708±46	0.33 ± 0.06	4.31±0.09	(2)
HD11226	6099±32	0.09±0.04	4.31±0.01	(2)	HD114386	4834±77	-0.06±0.06	4.33±0.29	(1)
HD11964A	5372±35	0.14±0.05	3.99±0.04	(2)	HD117618	6013±41	0.06 ± 0.06	4.39±0.07	(1)
HD13043A	5934±21	0.14 ± 0.03	4.33±0.01	(2)	HD121504	6075±40	0.16±0.05	4.64±0.12	(1)
HD19994	6121±33	0.19±0.05	4.19±0.12	(1)	HD128311	4835±72	0.03 ± 0.07	4.44±0.21	(1)
HD20201	6064±34	0.19 ± 0.05	4.43±0.02	(2)	HD177565	5664 ± 28	0.14 ± 0.04	4.43±0.09	(2)
HD23079	5959±46	-0.11±0.06	4.35±0.12	(1)	HD177830	4804±77	0.33±0.09	3.57±0.17	(1)
HD28185	5656 ± 44	0.22 ± 0.05	4.44 ± 0.05	(1)	HD183263	5991±28	$0.34{\pm}0.04$	4.38±0.17	(2)
HD33214	5180±74	0.17±0.08	4.40±0.11	(2)	HD183658	5833 ± 19	0.08 ± 0.03	4.42±0.01	(2)
HD33636B	6046±49	-0.08±0.06	4.71±0.09	(1)	HD190248	5638 ± 40	0.39 ± 0.05	4.33±0.04	(2)
HD37605	5391±49	0.31 ± 0.06	4.37±0.18	(2)	HD190360A	5584 ± 36	$0.24{\pm}0.05$	4.37 ± 0.06	(1)
HD37986	5586 ± 42	$0.35 {\pm} 0.05$	$4.38 {\pm} 0.05$	(2)	HD192310	5166 ± 52	$0.04{\pm}0.06$	4.39±0.08	(2)
HD39091	5991±27	0.10 ± 0.04	4.43±0.07	(1)	HD199190	5946 ± 25	0.20 ± 0.04	4.25±0.01	(2)
HD43745	6086±28	0.14 ± 0.04	3.98±0.01	(2)	HD204385	6022±24	0.09 ± 0.04	4.31±0.01	(2)
HD47186	5696±29	0.27 ± 0.04	4.39±0.03	(2)	HD208487	6141±29	0.06 ± 0.04	4.52 ± 0.15	(2)
HD47536	4554 ± 85	-0.54±0.12	2.48 ± 0.23	(1)	HD209458	6117±26	0.02 ± 0.03	4.48 ± 0.08	(1)
HD50554	6026±30	0.01 ± 0.04	4.41±0.13	(1)	HD213240	5984±33	0.17 ± 0.05	4.25±0.10	(1)
HD52265	6103±52	0.20 ± 0.07	4.27±0.15	(1)	HD216435	5938±42	$0.24{\pm}0.05$	4.12 ± 0.05	(1)
HD55693	5951±34	0.32 ± 0.04	4.41±0.02	(2)	HD216437	5887 ± 32	0.25 ± 0.04	4.30 ± 0.07	(1)
HD61606	4958±80	0.01 ± 0.08	4.45±0.19	(2)	HD221420	5864 ± 43	0.37 ± 0.06	4.06 ± 0.03	(2)
HD66221	5655 ± 33	0.21±0.05	4.39±0.03	(2)	HD222480	5848 ± 24	0.21±0.04	4.20 ± 0.01	(2)
HD70642	5693±26	0.18±0.04	4.40 ± 0.15	(1)	HD224022	6134±46	0.15 ± 0.06	4.30 ± 0.02	(2)
HD72659	5995 ± 45	0.03 ± 0.06	4.30 ± 0.07	(1)	HD330075	5017 ± 53	0.08 ± 0.06	4.22±0.11	(1)

(1) = UVES spectrum

(2) = FEROS spectrum

5.5.3 Plot of the line ratio and their calibration

Table 5.5: Plot of the 190 equivalent width line-ratios calibrated against temperature, with the 3^{rd} order polynomial function (coefficients in Table 5.6) modelling the dependency of the ratios with temperature (red line). Each dot is a calibration star with its $T_{\rm eff}$ taken from Santos et al. (2004), Santos et al. (2005) or Sousa et al. (2006), and its equivalent width is measured with ARES. "sdev" is the scatter of the points.

0.5 1.0 1.5 ratio193: VI 6135.36/NI 6175.42

Table 5.6: List of the 190 equivalent width ratios (rEW_k) calibrated against temperature (T_{eff}) as 3^{rd} order polynomial functions. The polynomial function is $T_{eff}^k = c_0 + c_1 * rEW_k + c_2 * rEW_k^2 + c_3 * rEW_k^3$ with c_0 , c_1 , c_2 and c_3 the coefficients of the 2^{nd} order polynomial function. "ratio" is the ratio identification number given in this study. "std" is the standard deviation (1.48*MAD) of the points around the polynomial fit (printed as "sdev" in Figure 5.5).

ratio	std	line 1	line 2	c_0	c_1	c_2	c_3
0	71	Til 5490.15	Sil 5517.53	6651.07	-586.95	13.40	6.15
8	72	Fel 5619.60	VI 5670.85	3719.77	2565.28	-1008.76	142.20
9	62	Sil 5621.60	VI 5670.85	4437.02	3985.89	-3032.56	708.43
10	66	Fel 5633.97	VI 5670.85	4090.92	1262.39	-286.55	22.09
11	70	Fel 5633.97	VI 5703.59	2957.03	3479.63	-1349.64	177.58
12	65	Fel 5650.71	VI 5670.85	4151.17	1848.12	-653.23	81.52
13	91	Fel 5650.71	VI 5703.59	3495.73	3983.64	-2170.97	418.24
14	43	Fel 5651.47	VI 5670.85	3743.38	4476.96	-3096.91	774.50
15	79	Fel 5651.47	VI 5703.59	2964.10	7837.76	-4851.15	-94.44
16	83	Fel 5662.52	VI 5670.85	3902.30	1017.41	-166.92	9.20
17	93	Fel 5662.52	VI 5703.59	2337.74	3095.76	-875.30	82.88
18	91	Fel 5662.52	VI 5727.05	2313.54	3701.09	-1256.53	144.21
19	79	VI 5670.85	Fel 5680.26	6509.60	-154.64	-169.33	26.25
20	73	VI 5670.85	Nil 5682.20	6367.58	-1351.32	318.97	-22.80
21	80	VI 5670.85	Sil 5690.43	6359.31	-1327.39	386.69	-50.97
22	66	VI 5670.85	Sil 5701.11	6356.71	-1029.41	160.05	0.90
23	77	VI 5670.85	Fel 5705.99	6282.13	-1580.51	-1211.63	1217.36
24	79	VI 5670.85	Mgl 5711.09	6123.64	10.83	-6115.10	4657.15
25	97	VI 5670.85	Fel 5717.85	6368.22	-1524.61	-140.82	261.48
26	71	VI 5670.85	Fel 5731.77	6293.14	-1006.38	-296.36	153.82
30	68	Nil 5682.20	VI 5703.59	3327.65	3672.50	-1763.17	298.53
31	54	Nil 5682.20	VI 5727.05	3611.60	3580.20	-1871.07	351.96
32	78	Nil 5682.20	VI 5737.07	4390.77	811.85	-142.30	8.46
34	60	Sil 5690.43	VI 5703.59	3722.71	2957.22	-1304.30	200.26
35	49	Sil 5690.43	VI 5727.05	3793.06	3373.91	-1804.31	347.64
36	85	Sil 5690.43	VI 5737.07	4461.86	787.29	-140.96	8.60
37	53	Sil 5701.11	VI 5703.59	3566.43	4023.01	-2314.45	473.85
38	47	Sil 5701.11	VI 5727.05	3733.14	4225.35	-2760.41	656.32
39	75	Sil 5701.11	VI 5737.07	4424.06	995.87	-219.87	16.55
41	87	VI 5703.59	Fel 5705.99	6152.58	549.08	-4380.79	2413.51
44	74	VI 5703.59	Fel 5731.77	6035.30	663.39	-1671.33	367.88
45	73	VI 5703.59	Fel 5753.12	5884.85	1692.04	-4416.16	1764.89
46	67	VI 5703.59	Sil 5753.65	6409.02	-522.77	-537.28	195.41
47	89	VI 5703.59	Sil 5772.15	6460.62	-1085.55	179.41	-1.22
48	75	Fel 5705.99	VI 5727.05	3822.58	1629.31	-400.31	33.82
49	86	Fel 5705.99	VI 5737.07	4390.87	440.72	-41.68	1.33
50	90	MgI 5711.09	VI 5727.05	1750.73	3865.29	-1184.85	122.32
54	65	VI 5727.05	Fel 5731.77	6151.00	336.93	-1207.43	313.34
55	65	VI 5727.05	Fel 5753.12	6021.76	898.15	-2639.55	949.23
56	64	VI 5727.05	Sil 5753.65	6619.42	-993.22	11.97	37.94
57	88	VI 5727.05	Sil 5772.15	6493.94	-1000.77	171.07	-6.78
58	91	Fel 5731.77	VI 5737.07	4187.47	874.82	-144.46	7.99
59	89	VI 5737.07	Fel 5753.12	6205.50	-1809.29	-621.43	929.32
60	75	VI 5737.07	Sil 5753.65	6302.65	-1900.57	813.35	-129.06

ratio	std	line 1	line 2	c_0	c_1	c_2	c_3
64	63	Fel 5852.23	Til 5866.45	2862.44	1680.16	5380.29	-3835.08
66	53	Fel 5856.09	Til 5866.45	5667.04	-8307.49	20059.59	-11372.40
67	94	Fel 5862.36	Til 5866.45	3128.31	2843.11	-883.86	90.41
68	66	Sil 5948.55	Fel 5956.70	3158.16	2110.05	-153.28	-88.88
69	92	Sil 5948.55	Nil 6007.31	2017.67	2509.53	-517.22	35.51
70	88	Fel 5983.69	VI 6039.73	4171.05	764.58	-108.24	5.23
72	89	Fel 5987.05	VI 6039.73	4093.37	753.59	-102.35	4.83
75	86	Fel 6007.96	VI 6039.73	4213.30	801.07	-122.41	6.50
78	65	VI 6039.73	Fel 6055.99	6312.44	-2149.28	145.51	323.98
79	65	VI 6039.73	Fel 6056.01	6311.11	-2133.79	99.70	353.27
80	70	VI 6039.73	Fel 6078.50	6328.51	-2287.81	-864.99	1350.92
81	67	VI 6039.73	Nil 6086.29	6485.36	-2301.72	1193.10	-304.55
82	60	VI 6039.73	Fel 6089.57	6561.61	-2185.47	1107.17	-372.24
83	63	VI 6039.73	Fel 6098.28	6789.35	-1429.67	287.16	-16.71
84	80	VI 6039.73	Fel 6102.18	6320.05	-2217.56	-1597.46	2228.72
86	84	Fel 6055.99	VI 6081.44	4293.63	735.90	-101.59	4.63
87	76	Fel 6055.99	VI 6090.21	3074.97	2943.33	-971.68	107.61
89	90	Fel 6055.99	VI 6111.65	4657.40	410.46	-40.89	1.36
90	83	Fel 6056.01	VI 6081.44	4291.53	737.11	-101.80	4.64
91	77	Fel 6056.01	VI 6090.21	3066.86	2953.01	-975.36	108.06
93	90	Fel 6056.01	VI 6111.65	4656.65	410.77	-40.93	1.36
95	85	Fel 6078.50	VI 6081.44	4010.17	849.49	-119.80	5.71
96	80	Fel 6078.50	VI 6090.21	2328.04	3628.28	-1207.11	137.32
98	83	Fel 6078.50	VI 6111.65	4518.26	442.06	-44.25	1.51
99	84	Fel 6078.50	Til 6126.22	3389.50	1618.83	-346.54	26.25
101	93	Fel 6078.50	VI 6135.36	4306.61	527.26	-54.36	1.90
102	95	VI 6081.44	Nil 6086.29	6503.44	-1860.41	693.46	-124.54
103	84	VI 6081.44	Fel 6089.57	6537.99	-1567.43	399.57	-82.37
107	99	VI 6081.44	Nil 6111.07	6667.95	-2049.50	861.20	-153.21
108	80	VI 6081.44	Sil 6125.03	6504.55	-1549.44	520.84	-62.19
109	82	VI 6081.44	Fel 6127.91	6497.62	-2072.23	844.96	-193.58
110	96	VI 6081.44	Nil 6130.14	6641.71	-1322.00	320.60	-29.08
111	74	VI 6081.44	Sil 6142.49	6482.59	-1590.74	599.55	-84.96
112	82	VI 6081.44	Sil 6145.02	6490.29	-1805.29	768.02	-122.15
113	69	Nil 6086.29	VI 6090.21	3181.81	4216.20	-2122.91	380.77
114	79	Nil 6086.29	VI 6111.65	4555.56	717.86	-121.52	7.18
115	84	Nil 6086.29	Til 6126.22	3767.75	2165.20	-732.89	92.56
117	57	Fel 6089.57	VI 6090.21	1796.06	8272.26	-5482.17	1266.13
118	75	Fel 6089.57	VI 6111.65	4412.66	973.78	-203.52	14.87
119	56	Fel 6089.57	Til 6126.22	3546.35	2566.59	-816.51	80.89
120	80	Fel 6089.57	VI 6135.36	4160.82	1181.74	-254.48	18.97
122	85	VI 6090.21	Fel 6102.18	5782.13	2907.25	-7343.66	3398.69
124	59	VI 6090.21	Nil 6111.07	7194.51	-1580.02	198.05	20.70
125	52	VI 6090.21	Sil 6125.03	6850.89	-1231.87	248.36	-17.19
126	59	VI 6090 21	Fel 6127.91	6207.53	594 07	-1952 97	655.31
127	77	VI 6090 21	Nil 6130 14	733794	-1310.85	198.56	-8 45
128	57	VI 6090.21	Sil 6142 40	6828 16	-130118	313 41	-29 <u>4</u> 0
120	52	VI 6020.21	Sil 6145.02	6768 10	-1205 37	273 /1	-18 00
130	70	VI 6000.21	Sil 6155 14	6588 87	-1754 46	15703	134 53
130	56	Til 600118	Sil 6125 03	6600.07	-2030 00	760 01	_08 RO
132	57	Til 60071.10	SIL 61/0 /0	6680 10	-2007.77	086 59	_70.07 _171 //5
100	57 AD	TH 6007 1.10	SILU 142.49 SIL 6175 00	661705	-2104.2U _2279 61	00.007 1010 01	-171.40
104	00 40		SIL 0 143.02	6634 00	-22/0.04	1012.01	-104.0/
100	09 50		311 0 1 0 0.14	1305 10	-0000.00 1000.1F	2000.40	-J1/.Z1
130	50		VIOIII.05	4305.49	1929.15	-/22./0	90.13
13/	6Y		111 0 120.22	4105.90	1105.33	JJZ4.U8	-2493.09
130	ರು		VI0135.30	4047.30	∠∠ŏ4.01	-040.00	105.20
140	84	rei 0102.18	VI0III.65	4310.74	432.30	-42.08	1.39

retto std lene 1 lene 2 cn cc cc cc 141 37 Fel 610218 Til 612622 3401.96 5502.50 -49.55 1.65 144 84 Fel 6105.15 Vi 6113.53 412.15 220.60 -124.48 223.82 151 64 Nil 6111.07 Vi 6135.36 412.15 270.59 -1100.22 157.38 153 62 Nil 6111.07 Vi 6135.36 437.04 -827.9 -157.8 135.88 154 62 Vi 6111.65 Sil 645.01 637.37 -339.46 -477.78 -54.33 155 64 Vi 6111.65 Sil 645.02 632.053 -171.80 806.34 -135.22 156 65 Vi 6111.65 Sil 645.07 633.60 -237.82 170.58 -807.15 161 62 Vi 6111.65 Sil 645.07 633.60 -237.82 170.48 -405.24 164 62 Vi 6111.65 Sil 645.03 633.45								
141 87 Fel 6102.18 Tit 012.62.2 3401.96 1537.51 -310.82 220.0 144 84 Fel 6105.15 VI 6133.63 4142.15 2703.59 -1190.02 1797.3 13.341 151 64 NII 6111.07 TV 6111.65 4522.10 872.22 -1797.3 13.341 152 61 NII 6111.07 VI 6135.36 4370.54 982.79 -195.78 13.58 153 62 VI 6111.65 NII 6130.14 6444.33 -1347.38 424.69 -449.47 156 61 VI 6111.65 NII 6140.20 6309.60 -1480.01 580.14 -80.78 156 61 VI 6111.65 NII 6145.02 6309.60 -1480.01 580.14 -1392.22 156 64 VI 6111.65 NII 6176.42 6334.45 -222.90 144.52 -447.47 156 65 VI 6111.65 NII 6176.81 6337.87 -2741.73 281.72 -11.98 156 VI 6111.65 NII	ratio	std	line 1	line 2	c_0	c_1	c_2	c_3
143 89 Fel 610218 VI 61136.5 4314.85 502.50 -149.56 165 144 81 Fel 610515 VI 61135.36 4142.15 2400.20 -1246.48 223.82 151 64 NII 6111.07 VI 6135.36 4142.15 2400.20 -1264.48 223.82 153 92 NII 6111.07 VI 6135.36 4370.54 982.79 -195.78 13.58 154 62 VI 6111.65 SI 612.203 6311.34 -1391.68 471.78 -64.33 155 64 VI 6111.65 SI 6142.20 6320.53 -1718.80 805.14 -80.76 156 55 VI 6111.65 SI 615.14 6251.14 -292.32 170.58 -11.98 162 58 VI 6111.65 Fel 615.73 631.60 -227.90 144.63 -405.24 164 62 VI 6111.65 Fiel 615.73 633.64 -223.22 170.58 -217.93 -821.53 165 49 SII 6125.03 <	141	87	Fel 6102.18	Til 6126.22	3401.96	1537.51	-310.82	22.06
144 84 Fel 6105.15 VI 6113.65 414.012 248.020 -1246.48 223.82 151 64 Nil 6111.07 VI 6113.65 4142.15 2703.59 -1190.02 159.38 152 62 Nil 6111.07 VI 6133.64 4532.10 872.62 -179.73 13.41 152 62 VI 6111.65 Sil 6125.03 6371.37 -236.61 1592.89 -487.47 156 61 VI 6111.65 Sil 6125.03 6311.94 -1391.68 471.78 -54.33 156 61 VI 6111.65 Sil 6145.02 6320.53 -1718.80 806.34 -807.82 157 63 VI 6111.65 Sil 6145.02 6320.53 -1718.80 806.34 -807.25 160 64 VI 6111.65 Fiel 6153.77 6316.00 -237.82 1579.68 -592.26 161 24 VI 6111.65 Sil 6125.03 Sil 6125.03 16175.22 2304.65 -1271.63 4405.24 164 24 V	143	89	Fel 6102.18	VI 6135.36	4318.85	502.50	-49.56	1.65
146 81 Fel 6105.15 VI 6111.65 6432.10 270.35 -1190.02 159.38 151 64 Nil 6111.07 VI 6111.65 4532.10 872.62 -179.73 13.41 154 62 VI 6111.65 Sil 6125.03 631.14 -139.168 471.78 -54.33 155 64 VI 6111.65 Fiel 6127.91 6371.37 -2358.40 159.289 -487.47 156 61 VI 6111.65 Sil 6142.02 6320.53 -1718.80 806.34 -135.22 157 63 VI 6111.65 Fiel 6157.37 6316.04 -237.82 170.58 -592.26 161 82 VI 6111.65 Fiel 6157.37 636.72 -2241.60 1088.46 -270.55 163 71 VI 6111.65 Nil 6175.42 633.44 -2229.90 1446.35 -11.98 164 62 VI 6111.65 Nil 6176.41 6337.87 -2741.73 2217.93 -821.53 165 381 6125.03 Nil 6126.22 3338.67 <td>144</td> <td>84</td> <td>Fel 6105.15</td> <td>VI 6111.65</td> <td>4344.02</td> <td>2480.20</td> <td>-1246.48</td> <td>223.82</td>	144	84	Fel 6105.15	VI 6111.65	4344.02	2480.20	-1246.48	223.82
151 64 Nik 6111.07 Vi 6111.65 452.10 872.62 -179.73 13.41 152 61 Nik 6111.07 Vi 6135.36 4370.54 982.79 -195.78 13.58 154 62 Vi 6111.65 Si 6125.03 6311.94 -1391.68 471.78 -54.33 155 64 Vi 6111.65 Si 6142.49 6309.60 -1480.01 580.14 -80.78 158 65 Vi 6111.65 Si 61452.02 6302.65 2571.62 -807.15 160 60 Vi 6111.65 Fel 6157.73 6316.00 -237.82 1579.68 -592.26 161 82 Vi 6111.65 Fel 6155.37 6367.28 -2041.60 1088.40 -20.55 163 71 Vi 6111.65 Nik 1675.42 4334.45 -222.90 1446.35 -405.24 164 22 Vi 6111.65 Nik 1676.81 6337.87 -2041.60 1088.40 -202.55 163 71 Vi 6111.65 Nik 1676.7 1334.79<	146	81	Fel 6105.15	VI 6135.36	4142.15	2703.59	-1190.02	159.38
152 61 NII6111.07 TI 16126.22 4077.05 178.04 -358.40 6.63 154 62 VI 6111.65 SII 6125.03 6311.94 -1391.68 471.78 6-63.33 155 64 VI 6111.65 SII 6125.03 6311.94 -1391.68 471.78 6-63.33 156 61 VI 6111.65 SII 6142.49 6309.60 -1480.01 580.14 -80.78 157 63 VI 6111.65 SII 6142.49 6309.60 -1480.01 580.14 -80.78 158 55 VI 6111.65 Fel 6157.73 6316.00 -237.82 170.58 -11.98 160 60 VI 6111.65 Fel 6157.37 631.60 2021.60 1088.46 -270.55 163 71 VI 6111.65 NII 6175.42 6334.45 -222.90 1446.35 -405.24 164 62 VI 6111.65 NII 6175.42 6334.45 -222.90 1446.35 -11.98 165 SII 6125.03 NII 6128.97 3456.21	151	64	Nil 6111.07	VI 6111.65	4532.10	872.62	-179.73	13.41
IS3 92 Nik fill.07 Vi (313.36 4370.54 982.79 -195.78 135.88 I54 62 Vi 6111.65 Sil 6125.03 6311.94 -1391.68 471.78 -487.47 I56 64 Vi 6111.65 Sil 6142.49 6309.60 -1480.01 580.14 -480.78 I57 63 Vi 6111.65 Sil 6142.02 6302.65 -171.8.0 806.54 -135.22 I59 60 Vi 6111.65 Fiel 6157.73 6316.00 -2237.82 1579.68 -592.26 I61 82 Vi 6111.65 Fiel 6157.37 637.28 -2241.00 1088.46 -270.55 I63 71 Vi 6111.65 Nil 6176.41 6337.47 -2241.73 221793 821.53 I64 62 Vi 6111.65 Nil 6176.42 6334.45 -2229.0 1446.53 1.65 I64 Sil 6125.03 Nil 6176.42 3452.30 3338.67 -1374.99 184.53 I65 Sil 6125.03 Nil 6128.99 3452.30	152	61	Nil 6111.07	Til 6126.22	4097.05	1678.04	-358.40	6.53
154 64 VI 6111.65 Si 6125.03 6311.94 -1391.68 471.78 -54.33 155 64 VI 6111.65 Si 6127.91 6371.37 -2358.61 1592.89 -487.47 156 61 VI 6111.65 Si 6142.49 6309.60 -1480.01 580.14 -80.78 158 55 VI 6111.65 Si 6155.14 6295.15 -3084.65 2571.62 -807.15 160 66 VI 6111.65 Fel 6157.73 6316.00 -237.82 1579.68 -11.98 162 58 VI 6111.65 Fel 6157.73 6337.67 -2241.60 1088.44 -270.55 163 71 VI 6111.65 Nil 6176.42 3337.67 -2241.73 2217.93 -821.53 164 62 VI 6111.65 Nil 6176.42 3337.67 -2241.73 2217.93 -821.53 165 49 Si 6125.03 Nil 6126.22 3357.7 -2241.60 108.45.3 -11.62 166 93 Si 6125.03 Nil	153	92	Nil 6111.07	VI 6135.36	4370.54	982.79	-195.78	13.58
155 64 VI 6111.65 FNI 6130.14 644.33 -1347.38 424.69 -48.64 156 61 VI 6111.65 SII 6142.49 6309.60 -1480.01 580.14 -80.78 158 55 VI 6111.65 SII 6145.12 6320.53 -1718.80 806.34 -135.22 159 60 VI 6111.65 Fel 6157.73 6316.00 -2377.82 1579.68 -592.26 161 82 VI 6111.65 Fel 6155.77 6367.28 -2041.60 1088.46 -270.52 164 62 VI 6111.65 NII 6176.81 6337.87 -2741.73 221.793 -821.53 164 62 VI 6111.65 NII 6126.22 4366.21 1611.03 -502.22 56.72 164 62 VI 6111.65 NII 6126.23 1787.15 832.19 -165.35 11.65 164 62 VI 6111.65 NII 6126.22 4249 4362.30 1338.67 -137.99 184.53 164 525.01.65 11.65<	154	62	VI 6111.65	Sil 6125.03	6311.94	-1391.68	471.78	-54.33
156 61 VI 6111.65 NII 6130.14 6444.33 -1347.38 424.69 -40,66 157 63 VI 6111.65 SII 6142.49 6309.60 -1480.01 580.14 -80.78 158 55 VI 6111.65 SII 6155.14 6295.15 -3084.65 2571.62 -807.15 160 66 VI 6111.65 Fel 6157.73 631.60 -923.782 1579.68 -511.98 161 82 VI 6111.65 Fel 6156.37 6367.28 -2041.60 1088.46 -270.55 163 71 VI 6111.65 NII 6176.42 4354.5 -222.90 1446.35 -405.24 164 62 VI 611.55 NII 6176.81 633.78 -2741.73 221.79 842.53 165 49 SII 6125.03 NII 618.63 479.15 832.19 -165.55 11.65 169 77 SII 6125.03 NII 6130.14 7058.67 -162.53 304.64 -34.47 173 46 TIII 6126.22 SII 6112	155	64	VI 6111.65	Fel 6127.91	6371.37	-2358.61	1592.89	-487.47
157 63 VI 6111.65 Sil 6142.49 6309.60 -1480.01 580.14 135.22 158 60 VI 6111.65 Sil 6155.14 6295.15 -3084.65 2571.62 -807.15 160 66 VI 6111.65 Fel 6157.33 631.60 -233.22 170.58 -110.58 161 82 VI 6111.65 Fel 6157.33 6331.41 -923.32 170.58 -140.55 163 71 VI 6111.65 Nil 6175.81 6337.87 -2741.73 2217.93 -821.53 164 64 Sil 6125.03 Nil 6128.29 3462.30 3338.67 -1374.99 184.53 166 64 Sil 6125.03 Nil 6135.43 4789.24 -1204.61 5412.64 -2938.84 170 95 Sil 6125.03 Nil 6130.14 7058.67 1652.53 501.65 -1.37 171 61 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 172 67 Til 6126.22 <t< td=""><td>156</td><td>61</td><td>VI 6111.65</td><td>Nil 6130.14</td><td>6444.33</td><td>-1347.38</td><td>424.69</td><td>-49.66</td></t<>	156	61	VI 6111.65	Nil 6130.14	6444.33	-1347.38	424.69	-49.66
158 55 VI 6111.65 SII 6145.02 6320.53 -1718.80 806.34 -135.22 159 60 VI 6111.65 Fel 6157.73 6316.00 -2377.82 1579.68 -592.26 161 82 VI 6111.65 Fel 6157.37 6367.08 -2201.60 1088.46 -270.55 163 71 VI 6111.65 NII 6176.81 6337.87 -2741.73 2217.93 -821.53 164 62 VI 6111.65 NII 6176.81 6337.87 -2741.73 2217.93 -821.53 165 49 SII 6125.03 NII 6126.22 4366.21 1611.03 -502.22 65.72 166 64 SII 6125.03 NII 6154.23 4789.24 -1204.61 5412.64 -2938.84 170 95 SII 6125.03 NII 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 TII 6126.22 SII 6145.04 6690.16 -1652.12 544.13 -650.1 174 49 TII 6126.22	157	63	VI 6111.65	Sil 6142.49	6309.60	-1480.01	580.14	-80.78
159 60 VI 6111.65 Sil 6155.14 629.15 -3084.65 2571.62 -807.15 160 66 VI 6111.65 Fel 6157.73 6316.10 -2377.82 170.68 -11.98 162 58 VI 6111.65 Fel 6155.37 6367.28 -2041.60 1088.46 -270.55 163 71 VI 6111.65 Nii 6175.42 6334.45 -2229.90 1446.35 -405.24 164 62 VI 6111.65 Nii 6128.02 3456.21 1611.03 -502.22 56.72 165 49 Sii 6125.03 Nii 6128.99 3452.30 3338.67 -1374.99 184.53 166 64 Sii 6125.03 Nii 6154.23 4789.24 -1204.61 5412.44 -2938.84 170 95 Sii 6125.03 Nii 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Tii 6126.22 Sii 6145.02 6693.16 -1625.12 544.13 -650.1 174 49 Tii 6126.22 <	158	55	VI 6111.65	Sil 6145.02	6320.53	-1718.80	806.34	-135.22
160 66 VI 6111.65 Fel 6157.73 6316.00 -2377.82 1579.68 -592.26 161 82 VI 6111.65 Fel 6159.38 6531.14 -923.32 170.58 -111.98 162 58 VI 6111.65 Fel 6159.38 6531.14 -923.32 170.58 -240.53 164 62 VI 6111.65 Fel 6159.38 6337.87 -2229.90 1446.35 -405.24 164 64 Sil 6125.03 Nil 6128.99 3452.03 3338.67 -1374.99 184.53 167 68 Sil 6125.03 Nil 6154.23 4789.24 -1204.61 5412.64 -2938.84 170 95 Sil 6125.03 Nil 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Til 6126.22 Sil 6127.03 Nil 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Til 6126.22 Sil 6142.49 6690.16 -1652.12 544.13 -656.1 174 9 <	159	60	VI 6111.65	Sil 6155.14	6295.15	-3084.65	2571.62	-807.15
161 82 VI 6111.65 Fel 6159.38 6531.14 -923.32 170.58 -11.98 162 58 VI 6111.65 Fel 6165.37 6367.28 -2041.60 1088.46 -2270.55 164 62 VI 6111.65 NII 6175.42 6334.45 -222.90 144d.55 -405.24 164 64 SII 6125.03 NII 6128.29 3452.30 3338.67 -1374.99 184.53 165 64 SII 6125.03 NII 6174.23 4789.24 -1204.61 5412.64 -2938.84 170 95 SII 6125.03 NII 610.75 6213.43 -11523.86 28659.86 -17171.25 171 61 TII 6126.22 NII 6130.14 7058.67 -1652.12 544.13 -65.01 174 49 TII 6126.22 SII 6145.14 6605.17 -3039.90 1869.77 -436.02 175 55 TII 6126.22 NII 6176.81 6585.46 -2080.90 337.35 105.37 178 67 TII 6126.22	160	66	VI 6111.65	Fel 6157.73	6316.00	-2377.82	1579.68	-592.26
162 58 VI 6111.65 Fel 6165.37 6367.28 -2041.60 1088.46 -270.55 163 71 VI 6111.65 Nii 6175.42 6334.45 -2229.90 1446.35 -405.24 164 62 VI 6111.65 Nii 6172.62 4366.21 1611.03 -502.22 56.72 166 64 Sii 6125.03 Nii 6128.99 3452.30 3338.67 -1374.99 184.53 167 68 Sii 6125.03 Nii 6154.23 4789.24 -120.41 5412.44 -2938.84 170 95 Sii 6125.03 Nii 6160.75 6213.43 -1152.36 28659.88 -17971.25 171 61 Tii 6126.22 Sii 6142.04 6690.16 -1652.12 544.41 -650.11 173 46 Tii 6126.22 Sii 6145.02 663.80 -182.27 656.93 -85.87 175 55 Tii 6126.22 Fiel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Tii 6126.22	161	82	VI 6111.65	Fel 6159.38	6531.14	-923.32	170.58	-11.98
163 71 VI 6111.65 NII 6175.42 6334.45 -2229.90 1446.35 -405.24 164 62 VI 6111.65 NII 6176.81 6337.87 -2741.73 2217.93 -281.53 165 49 SII 6125.03 NII 6128.29 3452.30 3338.67 -1374.99 184.53 167 68 SII 6125.03 NII 6154.23 4789.24 -1204.61 5412.64 -2938.84 170 95 SII 6125.03 NII 6160.75 6213.43 -11523.86 28659.88 -17971.25 171 61 TII 6126.22 SII 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 TII 6126.22 SII 615.14 6605.17 -3093.99 1869.77 -436.02 174 49 TII 6126.22 SII 6165.13 6630.51 -1405.85 -219.90 -219.33 175 55 TII 6126.22 NII 6176.81 6585.46 -2080.90 337.35 105.37 176 70 TII 6126.22 <td>162</td> <td>58</td> <td>VI 6111.65</td> <td>Fel 6165.37</td> <td>6367.28</td> <td>-2041.60</td> <td>1088.46</td> <td>-270.55</td>	162	58	VI 6111.65	Fel 6165.37	6367.28	-2041.60	1088.46	-270.55
164 62 VI 6111.65 NII 6176.81 6337.87 -2741.73 2217.93 -821.53 165 49 SII 6125.03 TII 6126.22 4366.21 1611.03 -502.22 56.72 166 64 SII 6125.03 NII 6135.36 4597.15 832.19 -165.35 11.65 167 68 SII 6125.03 Nci 6160.75 6213.43 -11523.86 28659.88 -17971.25 171 61 TII 6126.22 NiI 6130.14 7058.67 -1625.73 396.46 -344.47 173 46 TII 6126.22 SII 6145.02 6683.80 -1822.27 656.93 -85.87 174 49 TII 6126.22 SII 6155.14 6605.17 -3093.99 1869.77 -436.02 176 70 TII 6126.22 NII 6175.42 6634.37 -1067.49 594.97 -63.72 180 64 TII 6126.22 NII 6176.81 6388.49 -208.09 33.735 105.37 180 64 TII 6126.22	163	71	VI 6111.65	Nil 6175.42	6334.45	-2229.90	1446.35	-405.24
165 49 Sil 6125.03 Til 6126.22 4366.21 1611.03 -502.22 56.72 166 64 Sil 6125.03 Nil 6128.99 3452.30 3338.67 -1374.99 184.53 167 68 Sil 6125.03 Nil 6154.23 4789.24 -1204.61 5412.44 -2938.84 170 95 Sil 6125.03 Nil 6160.75 6213.43 -11523.86 28659.88 -17971.25 171 61 Til 6126.22 Fiel 6127.91 6716.18 -2062.53 501.65 -1.37 172 67 Til 6126.22 Sil 6145.02 6693.80 -1622.12 564.13 -650.11 174 49 Til 6126.22 Sil 6155.14 6605.17 -3093.99 1869.77 -436.02 175 55 Til 6126.22 Nil 6175.42 6634.37 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nil 6176.81 6585.46 -2080.90 337.35 105.37 180 64 Til 6126.22	164	62	VI 6111.65	Nil 6176.81	6337.87	-2741.73	2217.93	-821.53
166 64 SII 6125.03 NII 6128.99 3452.30 3338.67 -1374.99 184.53 167 68 SII 6125.03 VI 6135.36 4597.15 832.19 -165.35 11.65 169 77 SII 6125.03 Nci 6160.75 6213.43 -11523.86 28659.88 -1797.125 171 61 Til 6126.22 Fiel 6127.91 6716.18 -2062.53 501.65 -1.37 172 67 Til 6126.22 Sil 6142.49 6690.16 -1625.93 396.46 -34.47 173 46 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Fiel 6157.73 6398.68 -905.13 -1348.64 732.82 176 70 Til 6126.22 Nii 6168.17 -2080.90 337.35 105.37 180 64 Til 6126.22 Nii 6176.81 6584.62 -2080.90 337.35 105.37 181 60 Til 6126.22 Niii 6186.74	165	49	Sil 6125.03	Til 6126.22	4366.21	1611.03	-502.22	56.72
167 68 Sil 6125.03 VI 6135.36 4597.15 832.19 -165.35 11.65 169 77 Sil 6125.03 Ncl 6154.23 4789.24 -1204.61 5412.64 -2938.84 170 95 Sil 6125.03 Ncl 6160.75 6213.43 -11523.86 28659.88 -17971.26 171 61 Til 6126.22 Sil 6142.09 6690.16 -1652.12 544.13 -65.01 173 46 Til 6126.22 Sil 6145.02 6683.80 -1822.27 666.93 -85.87 176 70 Til 6126.22 Fiel 6157.37 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fiel 6165.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Niel 6157.42 6633.47 -1967.49 594.97 -63.72 180 64 Til 6126.22 Niel 618.74 763.94 -2645.08 1021.40 -147.03 183 70 Niii 6128.99	166	64	Sil 6125.03	Nil 6128.99	3452.30	3338.67	-1374.99	184.53
169 77 Sil 6125.03 Nai 6154.23 4789.24 -1204.61 5412.64 -2938.84 170 95 Sil 6125.03 Nai 6160.75 6213.43 -11523.86 28659.88 -17971.25 171 61 Til 6126.22 Fiel 612.791 6716.18 -2062.53 501.65 -1.37 172 67 Til 6126.22 Sil 6142.49 6690.16 -1652.12 544.13 -6501 174 49 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Fiel 615.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Nii 6175.42 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nii 6186.74 7263.94 -2645.08 1021.40 -147.03 183 60 Til 6126.22 Nii 6185.74 6338.91 -198.62 -744.87 207.42 184 84 Nii 6128.99	167	68	Sil 6125.03	VI 6135.36	4597.15	832.19	-165.35	11.65
170 95 Sii 6125.03 Nai 6160.75 6213.43 -11523.86 28659.88 -17971.25 171 61 Tii 6126.22 Fiel 6127.91 6716.18 -2062.53 501.65 -1.37 172 67 Tii 6126.22 Nii 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Tii 6126.22 Sii 6142.49 6690.16 -1652.12 544.13 -650.11 174 49 Tii 6126.22 Sii 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Tii 6126.22 Fiel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Tii 6126.22 Nii 6176.81 6585.46 -2080.90 337.35 105.37 180 64 Tii 6126.22 Nii 618.74 7263.94 -2645.08 1021.40 -147.03 183 70 Nii 6128.99 Sii 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nii 6128.99	169	77	Sil 6125.03	Nal 6154.23	4789.24	-1204.61	5412.64	-2938.84
171 61 Til 6126.22 Fel 6127.91 6716.18 -2062.53 501.65 -1.37 172 67 Til 6126.22 Nil 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Til 6126.22 Sil 6142.49 6690.16 -1652.12 544.13 -65.01 174 49 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Fel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Nil 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 6176.81 6585.46 -2080.90 333.5 105.37 183 70 Nil 6128.99 Sil 6142.02 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6338.91 -198.62 -744.87 207.42 185 86 Nil 6128.99 S	170	95	Sil 6125.03	Nal 6160.75	6213.43	-11523.86	28659.88	-17971.25
172 67 Til 6126.22 Nil 6130.14 7058.67 -1625.93 396.46 -34.47 173 46 Til 6126.22 Sil 6142.49 6690.16 -1652.12 544.13 -65.01 174 49 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Fel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fel 6165.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nil 6176.81 6585.46 -2080.90 337.35 105.37 180 64 Til 6126.22 Nil 6176.81 6585.45 -2080.90 337.35 105.37 183 70 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -734.87 207.42 184 84 Nil 6133.14 VI 6135.36 Sil 6145.02 6384.89 -1171.06 755.16 -121.13 185 86 <t< td=""><td>171</td><td>61</td><td>Til 6126.22</td><td>Fel 6127.91</td><td>6716.18</td><td>-2062.53</td><td>501.65</td><td>-1.37</td></t<>	171	61	Til 6126.22	Fel 6127.91	6716.18	-2062.53	501.65	-1.37
173 46 Til 6126.22 Sil 6142.49 6690.16 -1652.12 544.13 -65.01 174 49 Til 6126.22 Sil 6145.02 6683.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Fel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fel 6155.7 6630.51 -1405.85 -29.90 219.33 179 67 Til 6126.22 Nil 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 6176.42 6338.91 -198.62 -744.87 207.42 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -93.85 306.67 185 86 Nil 6135.36 Sil 6145.02 6383.84 -173.106 755.16 -121.13 186 81 Nil 6135.36	172	67	Til 6126.22	Nil 6130.14	7058.67	-1625.93	396.46	-34.47
174 49 Til 6126.22 Sil 6145.02 668.80 -1822.27 656.93 -85.87 175 55 Til 6126.22 Sil 6155.14 6605.17 -3093.99 1869.77 -436.02 176 70 Til 6126.22 Fel 6155.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fel 6155.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nil 6175.42 6633.81 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 616.81 6585.46 -2080.90 337.35 105.37 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -544.87 207.42 185 86 Nil 6128.99 Sil 6155.14 6155.73 912.59 -6390.65 3771.88 186 81 Nil 6135.36 Sil 6152.14 638.84 -1731.06 755.16 -121.13 18	173	46	Til 6126.22	Sil 6142.49	6690.16	-1652.12	544.13	-65.01
175 55 Til 6126.22 Sli 6155.14 6605.17 -3093.99 1869.77 -436.02 176 70 Til 6126.22 Fel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fel 6165.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nil 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 6176.81 6585.46 -2080.90 33.35 105.37 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6135.36 Sil 6145.02 6388.84 -1731.06 755.16 -121.13 186 81 Nil 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36	174	49	Til 6126.22	Sil 6145.02	6683.80	-1822.27	656.93	-85.87
176 70 Til 6126.22 Fel 6157.73 6398.68 -905.13 -1348.64 732.82 178 55 Til 6126.22 Fel 6165.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nii 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nii 6186.74 7263.94 -2645.08 1021.40 -147.03 183 70 Nii 6128.99 Sii 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nii 6128.99 Sii 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nii 6128.99 Sii 6145.02 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sii 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sii 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36	175	55	Til 6126.22	Sil 6155.14	6605.17	-3093.99	1869.77	-436.02
178 55 Til 6126.22 Fel 6165.37 6630.51 -1405.85 -219.90 219.33 179 67 Til 6126.22 Nil 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 6176.81 6585.46 -2080.90 337.35 105.37 181 60 Til 6126.22 Nil 6176.81 6585.46 -2080.90 337.35 105.37 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 186 81 Nil 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36 Fel 6157.37 6314.54 -2063.00 391.82 65.27 191 <td>176</td> <td>70</td> <td>Til 6126.22</td> <td>Fel 6157.73</td> <td>6398.68</td> <td>-905.13</td> <td>-1348.64</td> <td>732.82</td>	176	70	Til 6126.22	Fel 6157.73	6398.68	-905.13	-1348.64	732.82
179 67 Til 6126.22 Nil 6175.42 6634.37 -1967.49 594.97 -63.72 180 64 Til 6126.22 Nil 6175.42 6634.37 -2080.90 337.35 105.37 181 60 Til 6126.22 Nil 6176.81 6585.46 -2080.90 337.35 105.37 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6157.73 6314.54 -2063.00 391.82 652.7 191 85 VI 6135.36 Fel 6165.37 6402.93 -2028.32 751.95 -115.22 193	178	55	Til 6126.22	Fel 6165.37	6630.51	-1405.85	-219.90	219.33
180 64 Till 6126.22 Nill 6176.81 6385.46 -2080.90 337.35 105.37 181 60 Till 6126.22 Nill 6186.74 7263.94 -2645.08 1021.40 -147.03 183 70 Nill 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nill 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nill 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6145.02 6388.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36	179	67	Til 6126.22	Nil 6175.42	6634.37	-1967.49	594.97	-63.72
181 60 Til 6126.22 Nil 6186.74 7263.94 -2645.08 1021.40 -147.03 183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6128.99 Sil 6155.14 6155.73 912.59 -6390.65 3771.88 186 81 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6157.73 6402.93 -2028.32 751.95 -115.22 193 73 VI 6135.36 N	180	64	Til 6126.22	Nil 6176 81	6585.46	-2080 90	337.35	105.37
183 70 Nil 6128.99 Sil 6142.49 6338.91 -198.62 -744.87 207.42 184 84 Nil 6128.99 Sil 6145.02 6338.91 -198.62 -744.87 207.42 185 86 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6159.38 6570.02 -887.59 95.11 1.87 192 86 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 193 73 VI 6135.36 Nil 6176	181	60	Til 6126.22	Nil 6186 74	7263 94	-2645.08	102140	-147.03
184 84 Nil 6128.99 Sil 6145.02 6354.53 -253.29 -933.85 306.67 185 86 Nil 6128.99 Sil 6155.14 6155.73 912.59 -6390.65 3771.88 186 81 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2223.22 -985.49 190 90 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6157.73 6402.93 -2028.32 751.95 -115.22 193 73 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 195 84 VI 6135.36 N	183	70	Nil 6128.99	Sil 6142 49	6338.91	-198.62	-744 87	207.42
185 86 Nil 6128.99 Sil 6155.14 6155.73 912.59 -6390.65 3771.88 186 81 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6159.38 6570.02 -887.59 95.11 1.87 192 86 VI 6135.36 Nil 6176.41 6371.88 -2771.62 1857.47 -660.58 193 73 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 194 79 VI 6135.36 Nil 6	184	84	Nil 6128.99	Sil 6145.02	6354 53	-253 29	-933 85	306.67
186 81 Nil 6130.14 VI 6135.36 4379.06 1337.90 -339.65 26.76 187 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6159.38 6570.02 -887.59 95.11 1.87 192 86 VI 6135.36 Fel 6165.37 6402.93 -2028.32 751.95 -115.22 193 73 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 195 84 VI 6135.36 Nil 6186.74 6547.48 -2077.52 951.92 -182.12 196 65 VI 6135.36 Nil 616	185	86	Nil 6128.99	Sil 615514	6155 73	912.59	-6390.65	3771.88
166 67 VI 6135.36 Sil 6142.49 6383.84 -1731.06 755.16 -121.13 188 64 VI 6135.36 Sil 6145.02 6389.86 -1974.28 1008.34 -191.61 189 81 VI 6135.36 Sil 6155.14 6348.89 -3419.76 2923.22 -985.49 190 90 VI 6135.36 Fel 6157.73 6314.54 -2063.00 391.82 65.27 191 85 VI 6135.36 Fel 6159.38 6570.02 -887.59 95.11 1.87 192 86 VI 6135.36 Fel 6165.37 6402.93 -2028.32 751.95 -115.22 193 73 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 195 84 VI 6135.36 Nil 6186.74 6547.48 -2077.52 951.92 -182.12 196 65 VI 6135.36 Nil 6160.75 6074.37 -9786.17 23624.87 -14186.05 201 88 Sil 6142.49	186	81	Nil 6130 14	VI 6135 36	/370 N6	1337.00	-339.65	26.76
107 <td>187</td> <td>67</td> <td>VI 6135 36</td> <td>SIL 61/12 /10</td> <td>4077.00</td> <td>-1731.06</td> <td>755.16</td> <td>-12113</td>	187	67	VI 6135 36	SIL 61/12 /10	4077.00	-1731.06	755.16	-12113
1000410101000001101000010101000001010100000000000000000000000000000000	188	64	VI 6135 36	Sil 6142.47	6380 86	-107/ 28	1008.34	-121.13
1090101 0135.3031 0133.440340.39-0419.702923.22-933.4919090VI 6135.36Fel 6157.736314.54-2063.00391.8265.2719185VI 6135.36Fel 6159.386570.02-887.5995.111.8719286VI 6135.36Fel 6165.376402.93-2028.32751.95-115.2219373VI 6135.36Nil 6175.426404.91-2528.131675.67-515.8719479VI 6135.36Nil 6176.816371.88-2771.621857.47-660.5819584VI 6135.36Nil 6186.746547.48-2077.52951.92-182.1219665VI 6135.36Nil 6204.646592.69-1607.78494.39-55.9119872Sil 6142.49Nal 6154.234592.53-44.373339.47-1887.2019988Sil 6142.49Nal 6160.756074.37-9786.1723624.87-14186.0520188Sil 6145.02Fel 6151.625481.57-4850.0010136.05-4691.0720271Sil 6145.02Nal 6154.234480.67505.591954.58-1068.7420675Fel 6151.62Sil 6155.148627.01-6789.433944.25-783.2320791Nal 6154.23Sil 6155.146379.8223.60-2530.621165.3520881Sil 6155.14Nal 6160.755505.77-3285.434201.39-1218.84 <tr< td=""><td>180</td><td>91</td><td>VI 6135 36</td><td>Sil 6145.02</td><td>6348.80</td><td>3410.76</td><td>2023.22</td><td>085.40</td></tr<>	180	91	VI 6135 36	Sil 6145.02	6348.80	3410.76	2023.22	085.40
170707070707070707070707019185VI 6135.36Fel 6159.386570.02-887.5995.111.8719286VI 6135.36Fel 6165.376402.93-2028.32751.95-115.2219373VI 6135.36Nil 6175.426404.91-2528.131675.67-515.8719479VI 6135.36Nil 6176.816371.88-2771.621857.47-660.5819584VI 6135.36Nil 6186.746547.48-2077.52951.92-182.1219665VI 6135.36Nil 6204.646592.69-1607.78494.39-55.9119872Sil 6142.49Nal 6154.234592.53-44.373339.47-1887.2019988Sil 6142.49Nal 6160.756074.37-9786.1723624.87-14186.0520188Sil 6145.02Fel 6151.625481.57-4850.0010136.05-4691.0720271Sil 6145.02Nal 6154.234480.67505.591954.58-1068.7420675Fel 6151.62Sil 6155.148627.01-6789.433944.25-783.2320791Nal 6154.23Sil 6155.146379.8223.60-2530.621165.3520881Sil 6155.14Nal 6160.755505.77-3285.434201.39-1218.8421159Sil 6155.14VI 6216.352929.133820.32-1589.74230.07 <td>109</td> <td></td> <td>VI 6135.30</td> <td>Fol 615772</td> <td>6311 51</td> <td>-0417.70 _2063 00</td> <td>2720.22 201 20</td> <td>-700.47 65.07</td>	109		VI 6135.30	Fol 615772	6311 51	-0417.70 _2063 00	2720.22 201 20	-700.47 65.07
17105VI 0155.36Fel 0154.360570.02-067.3995.111.8719286VI 6135.36Fel 6165.376402.93-2028.32751.95-115.2219373VI 6135.36Nil 6175.426404.91-2528.131675.67-515.8719479VI 6135.36Nil 6176.816371.88-2771.621857.47-660.5819584VI 6135.36Nil 6186.746547.48-2077.52951.92-182.1219665VI 6135.36Nil 6204.646592.69-1607.78494.39-55.9119872Sil 6142.49Nal 6154.234592.53-44.373339.47-1887.2019988Sil 6142.49Nal 6160.756074.37-9786.1723624.87-14186.0520188Sil 6145.02Fel 6151.625481.57-4850.0010136.05-4691.0720271Sil 6145.02Nal 6154.234480.67505.591954.58-1068.7420675Fel 6151.62Sil 6155.148627.01-6789.433944.25-783.2320791Nal 6154.23Sil 6155.146379.8223.60-2530.621165.3520881Sil 6155.14Nal 6160.755505.77-3285.434201.39-1218.8421159Sil 6155.14VI 6216.352929.133820.32-1589.74230.0721470Fel 6157.73VI 6216.353741.622492.09-397.55-147.42<	170	70 QE	VI 0100.00	FOL 6150 20	6570.00	-2000.00 _227 50	071.02	1 07
17206VI 0135.36Per 0105.370402.93-2028.32751.93-115.2219373VI 6135.36Nil 6175.426404.91-2528.131675.67-515.8719479VI 6135.36Nil 6176.816371.88-2771.621857.47-660.5819584VI 6135.36Nil 6186.746547.48-2077.52951.92-182.1219665VI 6135.36Nil 6204.646592.69-1607.78494.39-55.9119872Sil 6142.49Nal 6154.234592.53-44.373339.47-1887.2019988Sil 6142.49Nal 6160.756074.37-9786.1723624.87-14186.0520188Sil 6145.02Fel 6151.625481.57-4850.0010136.05-4691.0720271Sil 6145.02Nal 6154.234480.67505.591954.58-1068.7420675Fel 6151.62Sil 6155.148627.01-6789.433944.25-783.2320791Nal 6154.23Sil 6155.146379.8223.60-2530.621165.3520881Sil 6155.14Nal 6160.755505.77-3285.434201.39-1218.8421159Sil 6155.14VI 6216.352929.133820.32-1589.74230.0721470Fel 6157.73VI 6216.353741.622492.09-397.55-147.42	171	20	VI 0100.00	EOL 6165 27	6400 02	-001.07 00 20	70.11 761.06	1.07
175 76 710150.35 18110173.42 0404.91 -2328.13 1075.07 -515.87 194 79 VI 6135.36 Nil 6176.81 6371.88 -2771.62 1857.47 -660.58 195 84 VI 6135.36 Nil 6186.74 6547.48 -2077.52 951.92 -182.12 196 65 VI 6135.36 Nil 6204.64 6592.69 -1607.78 494.39 -55.91 198 72 Sil 6142.49 Nal 6154.23 4592.53 -44.37 3339.47 -1887.20 199 88 Sil 6145.02 Fel 6151.62 5481.57 -4850.00 10136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14	172 102	00 72	VI 0100.00		0402.93 6101 01	-2020.32 _2529.12	1675 47	-110.22
194 79 VI 0153.30 NII 0170.01 0571.68 -2771.02 1857.47 -600.38 195 84 VI 6135.36 NII 6186.74 6547.48 -2077.52 951.92 -182.12 196 65 VI 6135.36 NII 6204.64 6592.69 -1607.78 494.39 -55.91 198 72 Sil 6142.49 Nal 6154.23 4592.53 -44.37 3339.47 -1887.20 199 88 Sil 6142.49 Nal 6160.75 6074.37 -9786.17 23624.87 -14186.05 201 88 Sil 6145.02 Fel 6151.62 5481.57 -4850.00 10136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14	190	70 70	VIUI00.00	NII 0170.42	0404.91 6271 00	-2020.13	10/0.0/	-010.07
195 64 VI 6135.36 Nil 6186.74 6547.48 -2077.32 951.92 -182.12 196 65 VI 6135.36 Nil 6204.64 6592.69 -1607.78 494.39 -55.91 198 72 Sil 6142.49 Nal 6154.23 4592.53 -44.37 3339.47 -1887.20 199 88 Sil 6142.49 Nal 6160.75 6074.37 -9786.17 23624.87 -14186.05 201 88 Sil 6145.02 Fel 6151.62 5481.57 -4850.00 10136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 <td>194</td> <td>/9</td> <td>VI 0135.30</td> <td>INII 01/0.01</td> <td>03/1.00</td> <td>-2//1.02</td> <td>1657.47</td> <td>-000.38</td>	194	/9	VI 0135.30	INII 01/0.01	03/1.00	-2//1.02	1657.47	-000.38
19005VI 0133.30INII 0204.040592.09-1007.78494.39-55.9119872Sil 6142.49Nal 6154.234592.53-44.373339.47-1887.2019988Sil 6142.49Nal 6160.756074.37-9786.1723624.87-14186.0520188Sil 6145.02Fel 6151.625481.57-4850.0010136.05-4691.0720271Sil 6145.02Nal 6154.234480.67505.591954.58-1068.7420675Fel 6151.62Sil 6155.148627.01-6789.433944.25-783.2320791Nal 6154.23Sil 6155.146379.8223.60-2530.621165.3520881Sil 6155.14Nal 6160.755505.77-3285.434201.39-1218.8421159Sil 6155.14VI 6216.352929.133820.32-1589.74230.0721470Fel 6165.37VI 6216.353741.622492.09-397.55-147.42	195	84 4 F	VI0135.30	INII 0 180.74	004/.48	-2077.52	404.00	-102.12
196 72 SII 0 142.49 INGI 0 154.23 4592.53 -44.37 3339.47 -1887.20 199 88 Sil 6142.49 Nal 6160.75 6074.37 -9786.17 23624.87 -14186.05 201 88 Sil 6145.02 Fel 6151.62 5481.57 -4850.00 10136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	190	00	VI0135.30	INII 0204.04	0092.09	-10U/./8	494.39	1907.00
199 66 Sil 6142.49 INGL 6160.75 60/74.37 -9786.17 23624.87 -14186.05 201 88 Sil 6145.02 Fel 6151.62 5481.57 -4850.00 10136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	198	/2	SIL 6142.49	INGI 6154.23	4592.53	-44.3/	3339.47	-1887.20
ZUT Go SILO 145.02 FELO 151.02 5481.57 -4850.00 IU136.05 -4691.07 202 71 Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	199	88	511 0 1 4 2 . 4 9	INGL 0 16U./5	00/4.3/	-9/80.1/	23024.8/	-14180.05
2U2 / I Sil 6145.02 Nal 6154.23 4480.67 505.59 1954.58 -1068.74 206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	201	88	SII 6145.02	Fel 6151.62	5481.57	-4850.00	10136.05	-4691.07
206 75 Fel 6151.62 Sil 6155.14 8627.01 -6789.43 3944.25 -783.23 207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	202	71	Sil 6145.02	Nal 6154.23	4480.67	505.59	1954.58	-1068.74
207 91 Nal 6154.23 Sil 6155.14 6379.82 23.60 -2530.62 1165.35 208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	206	75	Fel 6151.62	Sil 6155.14	8627.01	-6789.43	3944.25	-783.23
208 81 Sil 6155.14 Nal 6160.75 5505.77 -3285.43 4201.39 -1218.84 211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	207	91	Nal 6154.23	Sil 6155.14	6379.82	23.60	-2530.62	1165.35
211 59 Sil 6155.14 VI 6216.35 4240.13 1152.70 -192.73 4.73 212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	208	81	Sil 6155.14	Nal 6160.75	5505.77	-3285.43	4201.39	-1218.84
212 86 Fel 6157.73 VI 6216.35 2929.13 3820.32 -1589.74 230.07 214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	211	59	Sil 6155.14	VI 6216.35	4240.13	1152.70	-192.73	4.73
214 70 Fel 6165.37 VI 6216.35 3741.62 2492.09 -397.55 -147.42	212	86	Fel 6157.73	VI 6216.35	2929.13	3820.32	-1589.74	230.07
	214	70	Fel 6165.37	VI 6216.35	3741.62	2492.09	-397.55	-147.42

ratio	std	line 1	line 2	c_0	c_1	c_2	<i>C</i> 3
215	66	Nil 6175.42	VI 6216.35	3825.95	2560.29	-920.34	107.02
216	62	Nil 6176.81	VI 6216.35	3500.33	2739.20	-1020.57	140.44
217	75	Nil 6186.74	VI 6216.35	4386.23	1024.44	1356.25	-668.51
218	64	Nil 6186.74	VI 6251.82	4416.97	1396.75	-423.30	45.65
219	72	Fel 6188.00	VI 6216.35	3553.23	2066.35	339.51	-396.36
220	84	Fel 6188.00	VI 6251.82	4280.94	1108.25	-241.19	18.03
224	56	Nil 6204.64	VI 6251.82	4391.23	1869.13	-739.26	105.03
227	62	Fel 6215.15	VI 6216.35	2826.97	2738.04	-740.68	67.25
228	74	Fel 6215.15	VI 6251.82	4285.67	690.31	-93.85	4.37
230	85	VI 6216.35	Fel 6226.73	8805.03	-3491.99	1046.24	-115.13
232	49	VI 6216.35	Sil 6237.33	7067.14	-2706.02	1185.79	-188.29
233	67	VI 6216.35	Sil 6244.48	6910.79	-1760.62	522.44	-54.71
236	57	Nil 6223.99	VI 6251.82	4427.37	1512.21	-504.36	60.25
237	67	Fel 6226.73	VI 6251.82	4224.50	1716.74	-561.76	64.16
238	98	Fel 6232.65	VI 6251.82	4444.99	594.25	-75.02	3.16
239	80	Sil 6237.33	Fel 6240.66	5784.57	-4004.60	4746.01	-1323.72
241	79	Sil 6237.33	VI 6251.82	4652.83	577.31	-83.43	4.16
244	60	Sil 6237.33	Til 6258.11	5234.95	-2260.85	3605.92	-1150.10
245	59	Sil 6237.33	Til 6261.11	4703.68	-100.87	1375.47	-488.66
249	83	Sil 6244.48	VI 6251.82	4716.94	676.72	-117.71	6.99
252	88	Sil 6244.48	Til 6258.11	5003.67	-1820.76	4698.58	-2025.39
253	63	Sil 6244.48	Til 6261.11	4633.20	356.28	1646.00	-816.49
255	95	Fel 6246.32	VI 6251.82	4378.48	440.32	-39.23	1.17
256	71	VI 6251.82	Fel 6271.29	6383.44	-715.40	-106.41	55.41
257	64	VI 6251.82	Mgl 6318.72	6352.97	-1291.30	191.10	24.57
260	75	Til 6261.11	Fel 6330.86	9186.18	-3487.31	933.99	-84.83
262	96	Mgl 6318.72	Crl 6330.13	2964.81	3400.01	-1143.57	109.63
264	47	Crl 6330.13	Fel 6330.86	6633.91	-656.44	-534.35	185.91
265	80	Crl 6330.13	Fel 6380.75	6037.16	1172.08	-3537.36	1484.66
266	67	Fel 6392.55	Sil 6414.99	6480.93	-1660.87	-556.96	525.34
274	75	Fel 6703.58	Sil 6721.85	7317.80	-2006.40	66.05	126.73
275	65	Fel 6710.33	Sil 6721.85	6467.06	-1713.33	129.43	114.98