
Chapter 2

Transit signal reconstruction

This chapter focuses on improving the planet parameters by improving the accuracy
of the transit signal.The motivation for a new stellar variability filter is presented in Sec-
tion 2.1. The Iterative Reconstruction Filter, the new post-detection stellar variability filter
developed during this PhD thesis, is presented in Section 2.4, and tested over simulated
data. The performance of the filter is then discussed in Section 2.5.

The work presented in this chapter was published in Alapini & Aigrain (2009).

2.1 Motivation

As smaller and lower-mass planets become increasingly detectable, thanks to space-
based transit searches and improvements in ground-based radial velocity instruments,
the uncertainties arising from the transit and radial velocity fits are expected to be-
come more important. A specific problem arises when the transits become compara-
ble in depth with the amplitude of the intrinsic brightness fluctuations of the host star.
The amplitude of these variations can be several orders of magnitude greater than the
transit signal, particularly for terrestrial planets and/or active stars, and they can occur
on timescales significantly shorter than the orbital period of the planet (Fig. 2.1, black
curve). Stellar variability can thus hinder the detection of planetary transits (Aigrain
et al., 2004). A number of ‘pre-detection’ filters have been developed to tackle this
problem.

Pre-detection filters aim to remove stellar variability in light curves to improve the
detectability of transits, without any prior knowledge of the transit signal except for the
fact that stellar variability typically occurs on longer time scales (hours to days) than
the transit signal (minutes to hours). All of the techniques tested in the first CoRoT blind
test (Moutou et al., 2005), which range from simple Fourier-domain low-pass filters to
slightly more sophisticated implementations involving simultaneous fitting of hundreds
of low-frequency sinusoids, or time-domain nonlinear iterative filtering (Aigrain & Irwin,
2004), exploit this difference. These filters proved effective in removing stellar variability
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to facilitate the detection of transits but, as pointed out in Moutou et al. (2005) and
Bonomo & Lanza (2008), they deform the shape of the transits.

The performance of several of these filters in terms of transit detection was evalu-
ated in the context of first CoRoT blind test, a hare-and-hounds exercise involving 1000
simulated CoRoT light curves containing various transit-like signals, stellar variability and
instrumental noise. This test showed that the most successful filters recover a detection
threshold close to that obtained in the presence of instrumental noise only, except for
a few cases involving the most active and rapidly rotating stars simulated.

However, these filters also have the property of modifying the shape of the transit
signal (Moutou et al., 2005; Bonomo & Lanza, 2008), and would destroy any signal at
the period of the transit occuring on longer timescales than a few hours.

After introducing, in Sect. 2.2, the simulated data set used for test purposes through-
out this chapter, in Sect. 2.3 the effect on the transit signal of a benchmark pre-detection
filter, the nonlinear iterative filter of Aigrain & Irwin (2004), is quantified. Described in
Sect. 2.4 is the iterative reconstruction filter designed in this thesis, evaluating its effect
on the transit signal. The IRF is a post-detection filter that uses the knowledge of the
transit period to reconstruct signals at that period while filtering out signals at other
timescales. The impact of these two filters on the accuracy of planet parameter mea-
surements are compared in Sect 2.5, and the main results are summarised in Sect 2.6.

2.2 Data set

2.2.1 BT2 light curves

The starting dataset used in this study is a sample of 236 simulated CoRoT light curves
taken from the second CoRoT blind test (hereafter BT2; Moutou et al. 2007), which was
carried out to compare methods for discriminating between planetary transits and
grazing or diluted stellar eclipses. Twenty six (26) of these light curves have planetary
transits and 210 have eclipsing binary signals. We selected for this study of transit de-
formation only the BT2 light curves with planetary transits.

The production of the light curves followed roughly the same steps as that for the
first CoRoT blind test (BT1), described in detail in Moutou et al. (2005), incorporating
transits simulated with the Universal Transit Modeler (UTM1, Deeg 2009), instrumental
noise simulated using the CoRoT instrument model (Auvergne et al., 2003), and stellar
variability curve simulated using a combination of the methods of Lanza et al. (2004)
and Aigrain et al. (2004). The stellar variability modelled in the BT2 light curve is pes-
simistically strong both in terms of amplitude and times scale. The CoRoT data show
that most stars are not quite so variable (Aigrain et al., 2009). An updated version of the
CoRoT instrument model was used in the BT2, incorporating more realistic satellite jitter

1See http://www.iac.es/galeria/hdeeg/.
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and enabling the production of 3-colour light curves, though the 3 bandpasses were
summed in the present study to construct a ‘white’ light curve. The two approaches,
used in the BT1 to model stellar variability, were merged in the BT2 using the scaled spot
model of Lanza et al. (2004) to simulate rotational modulation of active regions and
the stochastic model of Aigrain et al. (2004) to simulate granulation. The simulated
transits correspond to planet radii ranging from 0.2 to 1.1RJup, orbital periods from 2.6
to 11.0 d, and impact parameters from 0.25 to 0.88.

As in the BT1, the flux in each aperture was modelled as arising from two stars, only
one of which contained a transit-like signal. This is to reflect the fact that there is almost
always one or more background star in the CoRoT aperture. This has the effect of
diluting the transit signal, and to account for it we subtract from each BT2 light curve
a constant corresponding to the fraction of the median flux contributed by the star
which is not eclipsed (see Tab. 2.1 for contaminant fluxes (percentages of total flux)
corrected from each BT2 light curve studied).

An example of a light curve with transit from the BT2 is shown in Fig. 2.1. The full set
of light curves is shown in Fig. 2.8.

Table 2.1: Table of flux percentages coming from a contaminant star, for each of the
BT2 light curve studied. Each light curve was corrected from the contaminant flux,
before deriving transit and planet parameters. The fraction of flux coming from a con-
taminant star in each colour channel (CoRoT red, green and blue) was given in the
parameter file used to build the BT2 light curves. For each light curve, the total con-
taminant flux was computed as the median of the sum of the contaminant fluxes in
each colour channel, normalised by the median of the total flux.

BT2 contaminant BT2 contaminant
LC n

o flux (%) LC n
o flux (%)

105 0.2 177 0.6
110 0.1 186 0.3
126 2.2 192 0.8
131 90.6 193 13.1
133 0.2 196 0.9
135 0.1 200 3.3
145 2.3 208 1.8
152 0.3 220 1.9
154 1.9 223 77.4
162 0.1 225 0.6
165 91.1 233 0.6
169 0.5 236 1.4

2.2.2 Reference light curve sample

As the data is simulated, each component of the signal is known and can be stud-
ied individually. Thus two sets of reference light curves were constructed, using only
the transit signal (no noise, no stellar variability) and the transit signal with instrumen-
tal noise only (no variability). We use the first set to evaluate the reference values of
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Figure 2.1: BT2 light curve (black), in which transit signal of a Saturn-like planet orbiting a
particularly active Sun-like host star with an orbital period of 4.576 d. Transit signal only
(blue) and with instrumental noise (grey) plotted underneath for comparison. Left:
unfolded light curves. Right: phase-folded versions.

the parameters derived from transit fits. These could have simply been deduced from
the input parameters given to the transit modelling software UTM when simulating the
light curve. However, there can be differences between those and the parameters
recovered from the transit fit due to the fitting process, rather than to the noise, and
we wish to keep those effects, which are not specifically of interest here, separate from
the effects of the stellar and instrumental noise. The second set was used to provide a
benchmark for how well one can measure the parameters of interest in the presence
of instrumental (white) noise, i.e. if the stellar variability was removed perfectly. These
reference sets are shown in blue and grey respectively in Fig. 2.1.

After visual analysis of our two reference sets of light curves, we discarded two of
the 26 light curves, where the transits were so small as to be undetectable even in the
light curves with no stellar variability, as such cases would not realistically reach the
post-detection stage.

2.3 Quantifying transit deformation with the Non-linear Iterative
Filter

In this section, we quantify the impact of the deformation caused by the nonlinear
iterative filter (NIF) of Aigrain & Irwin (2004) on the derived planet parameters. The
NIF performance as a pre-detection filter was recently compared to a range of other
published methods (Bonomo & Lanza, 2008), and it emerged as the method of choice
among those compared, which makes it a suitable benchmark for the present work.
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2.3.1 Definition of the NIF

The NIF has been extensively used at a pre-detetection / transit search level. Here we
briefly describe the main steps of the NIF, we refer the reader to Aigrain & Irwin (2004)
for further details.

The NIF separates stellar variability from the transit signal in the time domain, using
an iterative procedure with the following steps:

1. apply a short base-line (here we use 7 data-points, ∼1 hour) moving median filter
to smooth out the white noise and reduce the sharpness of any high-frequency
features in the data;

2. apply a longer base-line moving median filter (here we use 24 hours, NIF trade of
point to remove stellar variability while keeping away from the transit time domain
in these light curves) to the output of the step (1), followed by a shorter base-line
(here we use 2 data-points, ∼17 minutes) boxcar filter (moving average);

3. subtract the output of step (2) from that of step (1) and evaluate the scatter of
the residuals as σ = 1.48×MAD; 2

4. flag all outliers differing by more than nσ from the continuum;

5. return to step (2) and repeat the process, interpolating over any flagged data
points before estimating the continuum and excluding them when estimating
the scatter of the residuals, until convergence is reached (typically less than 3
iterations);

6. subtract the final continuum from the original light curve.

As the procedure converges, more and more of the in-transit points become flagged
at step (4), so that the effect of the transits on the final continuum estimate is minimal.
However, the choice of long base-line for the moving median filter in step (2) and of n
in step (4) must reflect a trade-off between appropriately following the stellar variations
and incorporating too much of the transit signal when evaluating the continuum. This
trade-off results in some of the transit signal been unavoidably filtered along with the
variability. For the value of n in step (4), one would normally use n = 3 to flag more
in-transit points. In the case of the BT2, some light curves contain very strong and rapid
variability. Thus, using a low n would clip not only in-transit points but also out-of-transit
points where the variability is too rapid to be well modelled by the continuum estimate
(e.g. Fig. 2.2 left, green curve compared to black one). Hence, we used a large n

2The MAD is the median of the absolute deviation from the median of the points, in other words it is
the median of the absolute value of the residuals from the median. 1.48*MAD is the equivalent of the
standard deviation when using the median of the points rather than the mean. In this thesis, the use of the
median and σ=1.48*MAD is preferred to the mean and the standard deviation, as the first combination
is more resilient to outliers in the data due to the way it is calculated.
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(150) in this study, which effectively means no points are clipped and convergence
occurs at the first iteration.

2.3.2 NIF quantitative impact on transit parameters

We applied the NIF to our sample of 24 BT2 light curves. The post-NIF light curves are
shown in green on Figs. 2.2 and 2.8. Clear variability residuals are visible in the unfolded
post-NIF curves, corresponding to sections of the light curve where the variability is too
rapid to be filtered adequately. The phase-folded light curves also show that the shape
of the transits is affected by the filter. In practical terms, the transit appears both shorter
and shallower than before filtering.

Figure 2.2: As in Figure 2.1 but the NIF-filtered light curve is now shown in green. The right
panel shows that the NIF filtering reduces well the amplitude of the variability (green
compared to black). The left panel shows that the NIF difficultly filters out fast stellar
variability (spikes in green curve).

We then folded all light curves at the period of the injected transits and performed
least-squares fits of trapezoidal models to the results to estimate the basic transit pa-
rameters: depth δ, internal and external duration di and de (respectively excluding and
including ingress and egress), and the phase φ. The light curves were normalised such
that the out-of-eclipse level is always 1. The same folding and trapeze fitting procedure
was applied to the two reference sets described in Section 2.2.2.

In 4 of the BT2 light curves (Fig. 2.9), the stellar variability was so strong that, after
applying the NIF, the phase-folded transits were barely detectable, and meaningful fits
to these transits impossible. These 4 light curves were excluded from the comparison
sample between the reference and filtered versions of the light curves.

We list the measured values of the transit parameters (δ, di, de) of direct relevance to
the determination of planet parameters for all 20 light curves in Fig. 2.8 (transit param-
eters in Tab. 2.2). We also show, in Fig. 2.3, cumulative histograms of the relative error
σ(θ) = |θ − θ0|/θ0, where θ is the parameter of interest and the subscript 0 refers to the
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Figure 2.3: Cumulative histograms of the relative error σ (see text for exact definition)
on the transit parameters measured from trapezoidal fits to the light curves with no
variability (grey), and to NIF-filtered light curves (green). Upper panel: transit depth δ;
middle panel: external duration de (total transit duration); lower panel: internal duration
di (duration in full-transit). σ > 1 when a parameter is mis-estimated by more than its
true value.

value measured from the reference light curve with transits only (no noise), contrast-
ing the NIF case (green dashed line) to the case with no variability (black solid line).
The median relative errors obtained with the NIF over our sample are σNIF(δ) = 12%,
σNIF(de) = 10% and σNIF(di) = 52%, indicating that the planet parameters would be
seriously affected if derived from NIF-filtered light curves. We note that the internal du-
ration di tends to be systematically underestimated even for the reference set of light
curves with no stellar variability. This bias is due to the white noise in the data smoothen-
ing the edges of the transit and making it appear more grazing, i.e with smaller orbital
inclination so a shorter transit internal duration di.

We therefore set out to develop a new post-detection filter: an alternative algo-
rithm, hereafter referred to as ’reconstruction filter’, designed to remove variability at
other periods than that of the transit and preserve the transit signal, once the transit
period has been determined.
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2.4 A new stellar variability filter: the Iterative Reconstruction Fil-
ter

In an attempt to avoid the undesirable effects of the NIF on the transit shape, an itera-
tive reconstruction filter (IRF, Alapini & Aigrain 2009) was develop to remove the stellar
variability post transit detection whilst altering the transit signal as little as possible using
the knowledge on the planet orbital period.

2.4.1 Definition of the IRF

The IRF is an iterative approximation of the full signal at the period of the transit. It
uses the NIF to simultaneously estimate the continuum variation (i.e., stellar variability).
Let {Y (i)} (where i = 1, . . . , N , N being the number of data points in the light curve)
represent the observed light curve (which is assumed to be normalised), {A(i)} the
detrended light curve and {F (i)} the signal to be filtered out. We give the main steps
of the IRF below:

1. Select an initial estimate for {F (i)}. {F (i)} = 1 is adopted as the initial estimate of
the stellar variability, instead of a closer estimate using a median filter for instance.
This is to avoid removing some transit signal before its first evaluation by the IRF,
as this signal would never have been evaluated by the IRF as part of the transit
signal and the IRF will not know that it has to be recovered.

2. Compute a corrected time-series Ŷ (i) ≡ Y (i)/F (i).

3. Estimate {Â(i)}by folding {Ŷ (i)}at the transit period and boxcar averaging it in in-
tervals of a fixed duration in phase units (binning is used to reduce high frequency
noise). For the BT2 light curves, a duration of 0.09% of the phase was found to be
suitable (this value was selected by trial and error, longer duration implying lower
noise in the estimate of {Â(i)} but more distortion of the transit signal).

4. Unfold {Â(i)} to obtain {A(i)}. Compute a new estimate of {F (i)} by applying
the NIF (described in Section 2.3.1) to {Y (i)/A(i)}. The baseline for the median
filter used in the NIF at this step can be chosen on a case-by-case basis, and can
be significantly shorter than in the pre-detection case, because it is applied to a
light curve from which most of the transit signal has been removed. In the present
study, we adopt a baseline of 12 hours, the rest of the NIF parameters being the
same as in Section 2.3.1.

5. Return to step (2) with the new estimate of {F (i)}, and iterate until the condition
|Dj−1−Dj | < 10−4 is satisfied for two consecutive iterations, where j is the iteration
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number (initialisation at j = 0), and

Dj =

�N
i=1 [Y (i)/Aj(i)− Fj(i)]

2

N − 1
.

In the case of the BT2 light curves, the convergence was reached after 4 iterations
(i.e Dj was calculated up to j = 6).

The final detrended light curve is given by {Y (i)/F (i)}, where {F (i)} is the last (presum-
ably best) estimate of the stellar variability. The steps of the IRF are sketched out in
Figure 2.4.
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Figure 2.4: Flow chart of the IRF. {Y (i)} represents the observed light curve, {A(i)} the
detrended light curve and {F (i)} the signal to be filtered out. i is the data points index
(1 to N) and j is the iteration index.
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2.4.2 Comparison with the Trend Filtering Algorithm (TFA)

This algorithm is in some ways analogous to the TFA (Kovács et al., 2005) in post-detection
mode. For clarity, we briefly list the main similarities and differences between the two
algorithms.

• The TFA is designed to remove systematic trends which are common to large num-
bers of light curves in the transit surveys, rather than stellar variability which is in-
dividual to each object. Both algorithms work by decomposing each light curve
into three components: the signal of interest {A(i)} (the transits), the signal to be
filtered out {F (i)} (the systematics in the case of the TFA and the stellar variabil-
ity in the case of the IRF), and the residuals. In the TFA, the signal to filter out
(systematics) is modeled as a linear combination of a number of template light
curves selected from the survey sample. In the IRF, the signal to filter out (stellar
variability) is taken as the continuum of the light curve estimated with the NIF. In
this analogy, the NIF would be equivalent to TFA in pre-transit-detection mode.
When used in reconstruction mode (post-detection), both methods make use of
the knowledge of the transit period to iteratively improve the evaluation of the
transit signal and of the signal to be filtered out (which is assumed not to be peri-
odic).

• Whereas {F (i)} and {A(i)} are treated additively in the TFA, they are treated mul-
tiplicatively here since the signal to be filtered out is intrinsic to the star, and the
planet blocks out a certain fraction of the flux emitted by the star. This results in a
different initialisation of {F (i)}. In Kovács et al. (2005), the first estimate of {F (i)}
is obtained from the pre-detection implementation of the TFA. In the IRF, it would
be counter-productive to use the NIF-filtered light curve as the initial estimate of
{F (i)}, since we have shown that the NIF affects the transit signal we are trying
to reconstruct (see Section 2.3.2), so the initial estimate of {F (i)} is taken to be
constant at 1.

• Finally, the IRF treats high frequency effects by smoothing the phase-folded signal,
while the TFA treats them by filtering out common outlier values.

2.4.3 Performance of the IRF on the BT2 transits

The IRF was applied to the 24 BT2 light curves described in Section 2.2, with the filtering
parameters described in Section 2.4.1. The red curves in Fig. 2.5 and Figs. 2.8, show the
light curves after applying the IRF.

As shown in Fig. 2.5, the IRF preserves any signal at the period of the transit. If the
stellar variability contains power at this period, it is also preserved, inducing a flux gradi-
ent around the transit which must be removed before fitting the transits. This correction
setting the out-of-transit level constant at 1, was done by fitting a 2nd order polynomial
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fit – the lowest-order found to give satisfactory results – to the data about the phase-
folded transit. The data used for the polynomial fit are two segments, each lasting 0.1
in phase, and offset by 0.15 in phase from the center of the transit on either side. This
is a significant improvement over the common practice of performing a local poly-
nomial fit to the vicinity of each transit, since the latter option has many more free
parameters (one set of free polynomial parameters per transit, rather than one for the
entire light curve). Fig 2.5 right panel gives an example of polynomial fit of the contin-
uum about the transit (black segment superimposed to red curve) and of the resulting
re-normalised transit (orange).

Figure 2.5: IRF-filtered light curve is red. Black and grey same as Fig. 2.1, plotted for
comparison; the black curve is the starting point, the grey curve is the level of clean
filtering we want to reach. These graphs show that the IRF conserves all variations at the
period of the transit. The right panel shows that the IRF recovers the transit signal better
than the NIF in Fig. 2.2. The IRF-filtered transit can be corrected from the non-constant
local continuum by dividing it by a 2nd order polynomial fit about the transit (black line
superimposed to the phase-folded IRF-filtered transit signal). The locally re-normalised
transit is shown in orange.

The transit parameters were then estimated from a trapezoidal fit to the resulting
phase-folded transit, in the same way as described in Section 2.3.1 for the NIF case. The
results are listed in Tab. 2.2 and shown as the red dash-dot curves in Fig. 2.6. For the 20
BT2 transit light curves which were also used to evaluate the performance of the NIF, the
IRF gives median relative errors of σIRF(δ) = 3%, σIRF(de) < 10−4% and σIRF(di) = 42%,
representing a significant improvement over the NIF case. Additionally after applying
the IRF, in 2 of the 4 cases which are not included in the comparison sample as the
transits were barely detectable after applying the NIF (Fig. 2.9), the transits are now
clearly detectable and yield meaningful fits. In the two other light curves, the IRF-
filtering gives a light curve closer to the reference version than the NIF, but the transits –
already hidden in the instrumental noise in the reference set – stay barely detectable
even in the IRF-filtered version.

Looking at Fig. 2.6, we see that while a relative error on the transit depth in excess of
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Figure 2.6: Same legend as Fig. 2.3 but for the IRF.

10% (essentially precluding any meaningful constraints on the planet structure) occurs
in 60% of the cases studied with the NIF, it occurs in only 5% of the cases with the IRF.
Similarly, the NIF yielded σ(δ) < 3% (potentially allowing discrimination between differ-
ent kinds of evolutionary models as well as a reliable basic structure determination) in
only 15% of the cases, but the IRF did so in 50% of the cases.

It is also clear that the external transit duration is recovered near-optimally in the
light curves treated with the IRF, with σ(de) < 0.1% in 80% of the cases and σ(de) < 10%

in 95% of the cases, compared to a significantly decreased performance with the NIF.
However, although the IRF also systematically improves the determination of the inter-
nal transit duration compared to the NIF, this improvement is much less significant, and
the relative errors remain large (more than 10% for 80% of the cases studied). This im-
plies that the IRF would probably not significantly increase the number of cases where
both internal (2nd to 3rd contact) and external (1st to 4th contact) duration can be
determined precisely enough to break the degeneracy between system scale and
inclination, and thus to constrain the stellar density in a model-independent fashion.

2.5 Discussion on the IRF performance

2.5.1 Star-planet parameters

Although the basic trapezoidal fits performed in the previous two sections provide a
quick estimate of the degree of deformation of the transit signal due to the variabil-
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ity filtering process, one would in practice perform a full transit fit based on a physical
model of the star-planet system. Mandel & Agol (2002) provided an analytical formu-
lation which has become very widely used for such purposes, and was also used to
generate the transits injected in the BT2 light curves.

We used the quadratic limb darkening prescription of Mandel & Agol (2002) to fit
transit models to the 20 BT2 transit light curves where the transits were clearly detectable
with both filters. We also performed these fits on both reference sets described in Sec-
tion 2.2.2, as well as on the BT2 light curves themselves after applying the NIF on one
hand, and the IRF – followed by a polynomial fit to the region around the transit (as
described in Section 2.4.3) – on the other hand. The best transit fits were derived using
�����, an ��� implementation of the Levenberg-Marquardt algorithm3. The parameters
of the model used are the transit epoch T0, the period P , the system scale a/Rs (where
a is the semi-major axis), the star-to-planet radius ratio Rp/Rs, the orbital inclination i

(or impact parameter b ≡ a cos i/Rs), and the quadratic limb-darkening coefficients ua
and ub. In this study, we fixed the period and limb-darkening coefficients at the values
used to build the light curves4. The initial epoch was taken directly from the trapezoidal
fits. The initial value for a/Rs was derived from the period using Kepler’s 3rd law, assum-
ing Rs = R⊙ and Ms = M⊙. In order to ensure convergence in both grazing and full
transits we selected, after some trial and error, an initial inclination corresponding to
an impact parameter b = 0.7. We assumed zero eccentricity in all cases (all the transit
light curves in our sample were simulated for circular orbits).

The results of the transit fits are listed in Table 2.3, while the fits themselves are shown
in Figures 2.8 and 2.9. They are also compared in cumulative histogram form in Fig. 2.7.
Instead of the relative error σ, we show the absolute error ξ = |θ − θ0| ≡ σ × θ0 with
respect to the no noise case (subscript 0), for θ the key planet parameters Rp/Rs, a/Rs

and b.
The IRF provides an overall improvement over the NIF in all three parameters, re-

ducing the median of ξ(Rp/Rs) from 0.007 to 0.003, ξ(a/Rs) from 1.7 to 1.0, and ξ(b)

from 0.07 to 0.04 for b. For comparison, the corresponding median values for the case
with no variability are 0.003, 1.4 and 0.07 respectively. However, the situation is not as
defined as when viewed in terms of transit parameters: there are a few cases where
the NIF gives a better match with the parameters obtained from the noise-free light
curves, and even cases where the largest error occurs in the light curves containing
instrumental noise only. In an attempt to understand the reason for this, we examined
all the light curves one by one (Figures 2.8 and 2.9). The light curves separate fairly

3����� is kindly provided by C. Markwart on http://cow.physics.wisc.edu/∼craigm/idl/fitting.html
4Visual examination of the phase-folded light curves revealed that the folding was not perfect even

in the no noise case, suggesting that the period values used may have been slightly inaccurate. We
attempted to refine the periods but did not succeed. It seems that the observation dates in the light
curve files themselves, rather than the periods, suffer from a small rounding error. It is not possible to
remedy this problem without re-generating the entire light curve set, but it is not expected to affect the
results strongly, and any effect would be common to all versions of a given light curve.
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naturally into three broad classes:

1. cases where the IRF performed better than the NIF (transit shape and derived
planet parameters closer to the shape and parameter obtained in the absence
of stellar variability): light curves 126, 162, 169, 196, 200, and 223. These are cases
where the original light curves contain large amplitude, short timescale stellar
variability (active and rapidly rotating stars).

2. cases where the NIF performance was already satisfactory, and the IRF gives re-
sults similar to the NIF: light curves 145, 152, 186, 193, 208, 225, and 233.

3. cases where, while the transit reconstructed with the IRF appears closer to the
original than the transit in the NIF-treated curve, the fitted parameters are not
significantly improved or worsened: light curves 131, 133, 135, 154, 177, 192, 220.
These are typically low signal-to-instrumental noise transits, where it becomes dif-
ficult to break the degeneracy between impact parameter and system scale.
The radius ratio is typically less affected, except in the highest impact parameter
cases (grazing transits).

Thus, we can see that where the limiting factor was stellar variability, the IRF is very
successful in improving the errors on the planet parameters. As might be expected,
the improvement is minor or non-existent where the limiting factor was the signal-to-
white noise or the grazing nature of the transits.
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Figure 2.7: Cumulative histograms of the absolute error ξ on the planet parameters de-
rived from the light curves with no variability (grey), NIF-filtered (green) and IRF-filtered
(red). The planet to star radius ratio Rp/R� is plotted in the upper panel, the planet
orbit to stellar radius ratio a/R� in the middle panel, and the impact parameter b in the
lower panel.

2.5.2 Application to orbital signal reconstruction

The fact that the IRF preserves any signal at the period of the transit has positive conse-
quences: it implies that potentially interesting signals, such as secondary eclipses, re-
flected light variations, or thermal emission variations, are preserved. The IRF therefore
presents itself as an interesting tool to detect these signals. However as the remaining
variations at the period of the transit after IRF-filtering can also be due to stellar variabil-
ity signal at the planet’s orbital frequency, any detection of planet phase variations will
need to be analysed carefully. The residual stellar variability at the orbital period of the
planet is a worse problem for the detection of the phase curve than for the detection
of the secondary eclipse as the latter happens on a shorter timescale.

As the BT2 light curves were not built with any of these orbital signals, the study of
the IRF performance in detecting planet orbital signals will have to be done on another
sample of light curves.

2.5.3 Potential application to transit detection

Another potential application of the IRF would be at the detection stage. Among the
24 light curves of our sample, there were 2 where the transit signal was larger than
the instrumental noise but where the residual stellar variability after NIF-filtering was too
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strong to perform any kind of meaningful fit. Naturally, these events were not detected
in the NIF-filtered light curves during the original blind test for which the light curves
were generated. There are two more cases which we did include in our 20-strong
comparison sample, as their transits after NIF-filtering could still be fitted, but for which
transits were not detected in the original exercise: light curves 192 and 200. After ap-
plying the IRF, two of these 4 cases became detectable5 (light curves 165 and 200),
the other 2 cases remained undetectable due to the level of instrumental noise. Using
the IRF as part of the detection process might therefore enable the detection of tran-
sits which would otherwise be missed around particularly active stars. However, since
the IRF would have to be run at each trial period, and is relatively computationally
intensive, this would require a very large amount of CPU time unless the algorithm can
be significantly optimised. However, as radial velocity measurements are also affected
by stellar activity (which induces radial velocity jitter and line bisector variations at the
rotation period of the star), the new photometry detections will be difficult to follow-up
in radial velocity, so it is not clear at this stage if the above CPU investment would be
justified.

2.6 Conclusion

In the absence of a prior knowledge of the planet’s orbital period, the transit and the
stellar signal cannot be separated effectively if they overlap too much in the frequency
domain. Because of this, commonly used pre-detection stellar variability filters, such as
the NIF, alter the transit signal, causing systematic errors in the resulting star and planet
parameters. We have quantified this effect using 20 CoRoT BT2 simulated light curves
including transits, instrumental noise and stellar variability. We found that the effect on
the transit signal can be very significant, leading to errors on the star-planet radius ratio
of up to 50%.

We thus developed the IRF to take advantage of the strictly periodic nature of plan-
etary transits (in the absence of additional bodies in the system) to isolate the transit
signal more effectively, following a method similar to the TFA algorithm previously de-
veloped for the reconstruction of transits in the presence of systematics. The IRF re-
quires accurate knowledge of the transit period. We evaluated the performance of
the IRF relative to the NIF and the no variability light curves by comparing a) the tran-
sit parameters from trapezoidal fits, b) the star-planet parameters from analytic transit
fits, and c) the light curves themselves by visual examination. The results can be sum-
marised as follows: the transits reconstructed with the IRF are systematically closer to
the no variability case than the NIF-processed transits, and the improvement in the
transit depth and duration can be very significant particularly in cases with large am-

5The detectability of the events was evaluated using the transit search algorithm of Aigrain & Irwin
(2004), which was used in both CoRoT blind tests.
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plitude and high frequency stellar variability. However, the full transit fits are affected
by other factors including instrumental noise and the well known degeneracy between
system scale and impact parameter, which dominate the final parameter estimates in
approximately one third of the cases in our sample, or about half of the cases where
the IRF provided a visual improvement over the NIF. The IRF will be most useful when
applied to light curves which are strongly affected by stellar variability. The improve-
ment in the planet parameters is likely to be better seen when the signal-to-noise ratio
– for other noise than the stellar variability – of the light curve is high, as the noise allows
degenerate solutions to the transit fit and thus keeps us from measuring the real impact
of the IRF.

The IRF preserves any signal at the period of the transit, which implies that potentially
interesting signals, such as secondary eclipses, reflected light variations, or thermal
emission variations, are preserved.

Any power in the stellar variability signal at the frequency corresponding to the
planet’s orbital period is also preserved by the IRF. If required, this remaining variability
can be removed locally using polynomial fits about the desired phase, but it is likely
to limit the extent to which the IRF can be used to recover signals associated with the
planet which vary continuously in phase.
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2.7 Appendix

2.7.1 Best-fit parameters to BT2 transits

Table 2.2: Transit parameters (transit depth δ, total transit duration de, and internal transit
duration di) derived from trapezoidal fits to the light curves with transit signal only (‘no
noise’), transit signal and instrumental noise only (‘no stvar’), the BT2 light curves fil-
tered using the pre-detection nonlinear iterative filter (‘NIF’), and the same light curves
filtered using post-detection iterative reconstruction filter (‘IRF’).

LC period δ de/P di/P
(days) no noise no stvar NIF IRF no noise no stvar NIF IRF no noise no stvar NIF IRF

126 4.576 0.00501 0.00495 0.00326 0.00504 0.0153 0.0153 0.0138 0.0153 0.0064 0.0064 0.0084 0.0079
131 6.880 0.00477 0.00469 0.00437 0.00448 0.0134 0.0121 0.0108 0.0121 0.0056 0.0017 0.0098 0.0098
133 8.128 0.00168 0.00161 0.00155 0.00160 0.0058 0.0058 0.0047 0.0057 0.0016 0.0010 0.0026 0.0015
135 3.733 0.00155 0.00148 0.00144 0.00152 0.0147 0.0147 0.0147 0.0147 0.0062 0.0062 0.0073 0.0090
145 5.557 0.00938 0.00949 0.00931 0.00923 0.0167 0.0153 0.0167 0.0167 0.0054 0.0064 0.0067 0.0086
152 7.360 0.00185 0.00185 0.00158 0.00176 0.0115 0.0125 0.0104 0.0115 0.0060 0.0065 0.0090 0.0071
154 10.987 0.00056 0.00065 0.00054 0.00061 0.0172 0.0172 0.0155 0.0237 0.0088 0.0038 0.0067 0.0051
162 4.171 0.00933 0.00922 0.00585 0.00894 0.0167 0.0167 0.0138 0.0167 0.0037 0.0037 0.0074 0.0070
169 5.195 0.00772 0.00770 0.00504 0.00769 0.0209 0.0209 0.0191 0.0209 0.0066 0.0066 0.0109 0.0107
177 7.339 0.00271 0.00267 0.00252 0.00260 0.0209 0.0209 0.0191 0.0209 0.0066 0.0046 0.0090 0.0107
186 4.373 0.00683 0.00679 0.00649 0.00690 0.0209 0.0209 0.0191 0.0209 0.0087 0.0087 0.0134 0.0127
192 3.915 0.00085 0.00102 0.00071 0.00076 0.0086 0.0094 0.0078 0.0078 0.0029 0.0023 0.0078 0.0070
193 6.763 0.00749 0.00747 0.00847 0.00858 0.0167 0.0167 0.0167 0.0167 0.0070 0.0070 0.0065 0.0086
196 4.608 0.01378 0.01384 0.00509 0.01288 0.0248 0.0248 0.0201 0.0248 0.0127 0.0127 0.0201 0.0175
200 5.995 0.00317 0.00313 0.00185 0.00311 0.0095 0.0095 0.0059 0.0086 0.0023 0.0023 0.0052 0.0038
208 4.064 0.00313 0.00301 0.00278 0.00302 0.0267 0.0267 0.0242 0.0267 0.0136 0.0136 0.0158 0.0162
220 7.253 0.00215 0.00212 0.00181 0.00216 0.0230 0.0250 0.0210 0.0230 0.0050 0.0030 0.0148 0.0140
223 5.237 0.00771 0.00736 0.00065 0.00761 0.0184 0.0184 0.0088 0.0200 0.0059 0.0059 0.0082 0.0102
225 2.613 0.01061 0.01053 0.01032 0.00998 0.0344 0.0344 0.0311 0.0344 0.0073 0.0073 0.0224 0.0174
233 3.083 0.00461 0.00460 0.00431 0.00459 0.0153 0.0153 0.0153 0.0153 0.0035 0.0035 0.0040 0.0049

Table 2.3: Star-planet parameters (planet to star radius ratio Rp/R�, system scale a/R�,
and impact parameter b) derived from full transit fits. The columns corresponding to
the 4 sets of light curves used in the fits are labelled as in Table 2.2.

LC period Rp/R� a/R� b
(days) no noise no stvar NIF IRF no noise no stvar NIF IRF no noise no stvar NIF IRF

126 4.576 0.0799 0.0800 0.0698 0.0817 12.27 12.09 13.14 11.89 0.862 0.870 0.858 0.872
131 6.880 0.0760 0.1687 0.0779 0.0749 15.64 9.64 10.65 12.30 0.825 1.058 0.893 0.873
133 8.128 0.1389 0.2836 0.0557 0.0642 17.70 15.59 20.99 20.65 1.074 1.233 0.961 0.979
135 3.733 0.0469 0.0369 0.0372 0.0393 10.00 20.34 20.62 16.75 0.916 0.422 0.397 0.676
145 5.557 0.1050 0.1044 0.1080 0.1079 14.35 14.24 13.34 13.38 0.788 0.795 0.822 0.820
152 7.360 0.0481 0.0476 0.0495 0.0475 15.48 15.80 13.29 15.35 0.860 0.836 0.908 0.865
154 10.987 0.0263 0.0313 0.0323 0.0245 11.54 9.24 8.50 23.47 0.829 0.914 0.933 0.023
162 4.171 0.1335 0.1245 0.1102 0.1272 10.91 11.13 11.58 11.21 0.927 0.910 0.911 0.913
169 5.195 0.0918 0.0921 0.0781 0.0925 12.61 12.36 11.84 12.25 0.720 0.736 0.750 0.735
177 7.339 0.0486 0.0555 0.0549 0.0549 17.53 10.92 11.66 11.83 0.150 0.794 0.760 0.749
186 4.373 0.0839 0.0872 0.0869 0.0876 12.71 11.21 11.69 11.69 0.667 0.760 0.738 0.735
192 3.915 0.0504 0.0488 0.0152 0.0240 10.97 12.64 12.09 8.51 0.988 0.978 0.656 0.926
193 6.763 0.0904 0.0929 0.0990 0.0996 15.26 13.90 14.60 14.42 0.723 0.780 0.759 0.764
196 4.608 0.1162 0.1160 0.0970 0.1150 11.87 11.91 14.47 11.98 0.546 0.533 0.000 0.547
200 5.995 0.0860 0.3645 0.0444 0.0755 14.59 12.10 22.72 15.91 0.965 1.290 0.916 0.945
208 4.064 0.0582 0.0588 0.0597 0.0592 9.33 9.30 8.63 8.93 0.710 0.716 0.780 0.763
220 7.253 0.0475 0.0436 0.0433 0.0462 10.71 12.86 15.67 12.93 0.722 0.519 0.019 0.550
223 5.237 0.0976 0.0811 0.0452 0.1008 11.33 19.75 18.84 9.82 0.835 0.017 0.231 0.854
225 2.613 0.1033 0.1028 0.1017 0.0989 8.28 8.22 8.59 8.84 0.624 0.625 0.575 0.552
233 3.083 0.1426 0.1500 0.1414 0.1378 9.29 9.38 9.30 9.23 1.020 1.029 1.020 1.012

2.7.2 Full BT2 light curve sample
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Figure 2.8: The 20 BT2 light curves in the comparison sample (left:unfolded; right :
phase-folded section around the transit). The light curve number is shown on the plots
in the left column (original BT2 numbering scheme) and the planet to star radius ratio
(rr), system scale (ss), and impact parameter (b) in the right column.
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Figure 2.8: continued
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Figure 2.8: continued
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Figure 2.8: continued
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Figure 2.8: continued
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Figure 2.9: The 4 BT2 transit light curves where the transit was undetectable after apply-
ing the NIF and miningfull fits to the resulting transits were not possible. Same legend as
Fig. 2.8. These transits became boarder-line detectable in the IRF-filtered light curves.


