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Abstract

The combined observations of a planet’s fransits and the radial velocity variations of
its host star allow the determination of the planet’s orbital parameters, and most inter-
estingly of its radius and mass, and hence its mean density. Observed densities provide
important constraints to planet structure and evolution models. The uncertainties on
the parameters of large exoplanets mainly arise from those on stellar masses and radii.
For small exoplanets, the treatment of stellar variability limits the accuracy on the de-
rived parameters. The goal of this PhD thesis was 1o reduce these sources of uncertainty
by developing new techniques for stellar variability filtering and for the determination
of stellar temperatures, and by robustly fitting the fransits taking info account external
constraints on the planet’s host star.

To thisend, | developed the Iterative Reconstruction Filter (IRF), a new post-detection
stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it
simultfaneously estimates the transit signal and the stellar variability signal, using a com-
bination of moving average and median filters. The IRF was tested on simulated CoRoT
light curves, where it significantly improved the estimate of the fransit signal, particu-
lary in the case of light curves with strong stellar variability. It was then applied to the
light curves of the first seven planets discovered by CoRoT, a space mission designed
to search for planetary transits, to obtain refined estimates of their parameters. As the
IRF preserves all signal at the planet’s orbital period, t can also be used to search for
secondary eclipses and orbital phase variations for the most promising cases. This en-
abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white
(300-1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital
phase variations. The wide optical bandpass of CoRaT limits the distinction between
thermal emission and reflected light contributions to the secondary eclipse.

| developed a method to derive precise stellar relative tfemperatures using equiv-
alent width ratios and applied it fo the host stars of the first eight CoRoT planets. For
stars with temperature within the calibrated range, the derived temperatures are con-
sistent with the literature, but have smaller formal uncertainties. | then used a Markov
Chain Monte Carlo tfechnique to explore the correlations between planet parameters
derived from fransits, and the impact of external constraints (e.g. the spectroscopically
derived stellar femperature, which is linked to the stellar density).

Globally, this PhD thesis highlights, and in part addresses, the complexity of perform-
ing detailed characterisation of fransit light curves. Many low amplitude effects must
be taken into account: residual stellar activity and systematics, stellar limb darkening,
and the inferplay of all available constraints on transit fitting. Several promising areas
for further improvements and applications were identified. Current and future high
precision photometry missions will discover increasing numibers of small planets around
relatively active stars, and the IRF is expected to be useful in characterising them.
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Chapter 1

Infroduction

1.1 A brief history on the search for exoplanets

Pondering on the existence of worlds other than our own has always piqued human
interest. There have been centuries of speculation on whether our planet, the Earth,
and our planetary system, the Solar System, were ones of many. As early as the 37
century B.C., Epicurus (341-270 B.C.) said "There are infinite worlds both like and unlike
this world of ours. For the afoms being infinite in number, as was already proven, (...)
there nowhere exists an obstacle to the infinite number of worlds”. But his point of view
was not commonly shared, as for instance by the philosopher Aristotle (384-322 B.C.)
who claimed “There cannotf be more worlds than one”. It was only in 1609 that Galileo
Galilei (1564-1642) first observed with a telescope other planets in our Solar System,
confirming the idea of Copernicus (1473-1543) that the sun is orbited by several planets,
of which the earth is but one.

Our search for other worlds, need not to be limited to our Solar System. Indeed, the
search for exoplanets, planets around other stars than the Sun, has already begun.
However, unlike the planets in our Solar System which are close to us and thus appear
very bright, exoplanets are very difficult to observe directly. The light of a planet is mil-
lions of fimes fainter than the light of its star. When seen from tens to thousands of light
years! away, the planet appears very close to its star and its faint light is diluted in the
glare of its star. Indirect methods designed to detect an exoplanet through its influence
on its parent star or on other field stars, avoid these difficulties of contrast, and so have
become successful and popular methods for defecting exoplanets. These methods
by which exoplanets have been detected are briefly described in Section 1.2.1.

Several claims of exoplanet detections have been documented since the 19th cen-
tury, but the first confirmed detections were made by Wolszczan & Frail (1992) who
monitored the irregularities in the fiming of pulsars. These exoplanets, PSR 1257+12 b
and ¢, are a few Earth masses and orbit a pulsar? at radii similar to that at which Mer-

'A light year is the distance covered when travelling at the speed of light over one year.
2A pulsar is a very dense star, resulting from the collapse of the core a massive star during a supernovae,
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cury orbits the Sun. The first discovery of an exoplanet around a star similar to the Sun
was made by monitoring variations in the radial velocity of a star (Mayor & Queloz,
1995). This exoplanet, 51 Pegasi b, is classified as a Hot Jupiter as it is similar in mass to
Jupiter (half the mass) and it orbits close to its star (about 8 times closer than Mercury
orbits the Sun). The discovery of Hot Jupiters challenged our understanding of planet
formation and evolution. Gas giant planets were originally expected to form beyond
the snow line® and so were expected to be found at orbits similar to those of the giant
planets in our Solar System (Pollack et al., 1996). But finding them so close to their stars
prompted people to suggest that these planets may have undergone inward migra-
tion after their formation, due to interactions with their parent protoplanetary discs (Lin
et al., 1996).

In the past two decades, the number of exoplanets discovered has gone from zero
to more than 400. This progress is the result of several improvements in instrumentation
and observing techniques, such as the development of CCD* cameras, the develop-
ment of stable high resolution spectroscopy, and the introduction of computer-based
image processing. It is also the result of an increased inferest in the field of exoplanets
and in the diversification of the techniques used to detect exoplanets.

In the 1980s, the first papers on the search for exoplanets using the transit method
were published (e.g. Struve 1952), and the first detailed development of this detec-
tfion method was carried out shortly after (Rosenblatt, 1971). The first observation of
the transit of an exoplanet was published in Charbonneau et al. (2000). This planet,
HD 209458b, was first discovered with the radial velocity technique (Mazeh et al., 2000).
The combined detection of the planet’s transit and radial velocity effect on its parent
star opened a new area in the study of exoplanets, this combination of technique al-
lows both the planet’s radius and mass to be measured. These can then be compared
to the predictions of planet evolution models with various compositions and heat de-
position mechanisms (e.g. Guillot 2005, Baraffe et al. 2008) to infer the planet’s bulk
composition. These models are continuously challenged by new planet discoveries,
the best known case of this being the small group of planets whose radii are larger than
expected for their mass and irradiation level: HD 209458b (Charbonneau et al., 2000;
Knutson et al., 2007b), HAT-P-1b (Bakos et al., 2007; Winn et al., 2007), WASP-1b (Col-
lier Cameron et al., 2007; Charbonneau et al., 2007), TrES-4b (Mandushev et al., 2007),
XO-3b (Winn et al., 2008), CoRoT-2b (Alonso et al., 2008), and WASP-12b (Hebb et al.,
2009). To explain the inflated radii of these planets, most models require an additional
heating mechanism that deposits energy deep into the atmosphere of the planet.

To date (March 2010), 431 exoplanets® have been discovered, more than 80 are

rotating around itself very rapidly and emitting very regular polar electromagnetic pulses.

3The snow line is the distance from the protostar where the temperature is low enough for the hydrogen
compounds in the solar nebulae (e.g. water, ammonia, methane) to condense info ice grains.

4CCD stands for Charged Coupled Device

Shitp://exoplanet.eu/catalog.php
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in mulfiple planet systems, more than 400 have been observed through radial velocity
measurements, the transits of 70 of them have been observed, and at least 4 exoplan-
ets® have been imaged directly.

1.2 The detection of exoplanets

1.2.1 The methods

There are several methods that have successfully detected exoplanets, and several
other proposed methods which have not yet detected an exoplanet. Perryman (2000)
and Lunine et al. (2008) review the different techniques and their performance and
limitations. In this thesis, | focus on the science and usage of the transit method and
use some information from the radial velocity method. | describe these two methods
hereafter. For completeness | also describe in this section the other methods that have
successfully detected one or more exoplanets to date. A summary of the different
parameters measurable from the different methods is presented in Table 1.1.

The transit method

This method detects the passage of a planet in front of its host star. This event is called
a transit. The passage of the planet behind its host star is called an occultation or
a secondary eclipse. Jupiter creates a transit of 1% depth in front of the Sun, and
the Earth create a depth of 0.08%. The observation of the fransit of a planet allows
one fo derive the dimensions of the planet relatfive to its host star, the planet to star
separation, and the orientation of the planet’s orbit relative to the plane of the sky,
as described in Section 1.3.1. For a transiting object to be confirmed as a planet, its
mMass needs to be measured through the radial velocity follow-up of its parent star. For
a transit to occur, the exoplanetary system needs to be seen nearly edge-on, which
reduces the probability of a transit detection. The transit method is most sensitive to
close-in planets as the probability of observing their transits is higher. The lower limit
of detectable planet size depends on the photometric precision of the light curve. To
increase the probability of fransit detections within a survey, thousands of stars need to
be monitored continuously with high precision photometry. The basic geometry and
physics of transits is reviewed in Winn (2010).

The radial velocity method

This method detects the oscillating Doppler shift in the stellar spectrum due 1o the pe-
riodic radial velocity motion (motion along the line of sight) of a star gravitationally

This number depends on the definition of an exoplanet. To date (March 2010), there are 4 exoplanets
with M, <13 M3, (above is the brown dwarf regime) orbiting a star (spectral class above Mé; below is the
brown dwarf regime).
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tugged back and forth by an orbiting planet. For instance, Jupiter induces a radial
velocity variation on the Sun of 12.5ms™!, and the Earth a radial velocity variation of
0.1ms™!. A close-in Jupiter-like exoplanet, such as 51 Pegasi b, induces a radial veloc-
ity variation on its host star of about 50ms~!. The mass of a planet (M,sin i, with i the
inclination of the planet orbital plane to the plane of the sky) can be measured from
the amplitude of the radial velocity variation it causes on its host star (see Section 1.3.2
for formulae). For the true mass o be measured, the inclinafion angle, i is needed,
which can be obtained from transit observations if the planet transits its host star. The
radial velocity method is most sensitive when the system is seen edge-on as the radial
gravitational tug then appears stronger.

The microlensing method

This method detects the magnification of the light of a background star due to the
deflection of its light by the gravitational field of a foreground star and its planet act-
ing as a gravitational lens. The foreground star acts as the main lens and the orbiting
planet is a much more short lived lens that acts in addition to the lensing of its host
star. The magnification of the background light lasts for ~100 days for the host star,
and the superimposed magnification due to the planet lasts for ~2 h for a Jupiter-size
planet. The microlensing technique is sensitive to exoplanets down to Earth-sizes. The
detection of small planets depends on the time sampling as the smaller the planet,
the shorter the microlensing event. The sensitivity of the microlensing technique peaks
for planet o star separations equal to the Einstein radius, typically corresponding to a
separation just beyond the snow line. This technique requires a crowed stellar back-
ground so microlensing surveys are performed along the Galactic disk. The theory of
the microlensing method applied to exoplanets is reviewed in Gaudi (2010).

The pulsar timing method

This method detects periodic anomalies in the frequency of the radio pulse of a neu-
tron star, a remnant of super-novae. An Earth-like planet around a pulsar creates a
detectable pulse delay of 1.2 miliseconds. This method is limited to pulsars.

The direct imaging method

This method detects the light of a planet itself (emitted or reflected from the star), and
works for those planets that are far enough from their parent stars such that the stellar
glare can be suppressed. The suppression of the stellar light can be done using an
occulter —a chronograph - 1o block the light from the star, or an interferometer to nullify
it. In optical wavelenghts Jupiter is 107 times less luminous than the Sun, and the Earth is
ten times fainter than Jupiter. In the mid-infrared, the Earth is 106 times fainter than the
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Sun. The direct imaging technique uses adaptive opfics to sharpen the image of the
star which is then easier to suppress, and to sharpen the image of the planet which is
then easier to detect.

1.2.2 Properties of the exoplanets discovered to date

Figure 1.1 displays the ranges in planet mass, radius and orbital distance of the exo-
planets detected by Jan 26th 2010, for each of the detection methods mentioned in
section 1.2.1.
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Figure 1.1: Graph of the masses, radii and orbital distances of the exoplanets detected
by Jan 26th 2010, with the detfection methods marked in different colours. The planet
masses indicated for the radial velocity method (RV) are the lower limits of their M ,sin i
value. The grey dash line (right panel) shows the mass-radius relation for R,=M,%4.

Some features in the distribution of the detected exoplanets stand out in Figure 1.1.
The transiting planets are detected at small orbital distances from their host stars (<0.5 AU
so far); this is a bias of the transit method as close-in planets have a larger probability
to fransit. The planets detected by direct imaging have larger orbital distances (>4 AU
so far); this is due to the current performance of the stellar nulling techniques which
detect planets more easily when they are well outside the residual stellar glare. Most
of the exoplanets detected by radial velocity measurements have masses and radii
similar to, or larger than Jupiter; this is because the perturbations caused by massive
planets on their host stars are larger, making these planets easier to detect. The pulsar
fiming method allows the detection of very small planets, smaller than Mercury. The
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fransit, radial velocity and microlensing techniques have so far allowed the detection
of planets down to a few times the size or mass of the Earth. As the instrumental tech-
nology and the data analysis tfechniques evolve and as the on-going surveys monitor
the stars for longer, these observational biases should reduce.

Exoplanets are found with eccentricities ranging from 0 fo 0.97, while in our Solar
System the maximum planet orbital eccentricity is 0.2 (Mercury). Planet-planet and
planet-star inferactions can induce larger orbital eccentricities and inclinations to the
stellar rotation plane.

The sky-projected planet orbital inclination and the sky-projected inclination be-
tween the stellar spin and the planet’s orbit rotation axis, have been measured for
some exoplanets. With the latter, polar or retrograde planet orbits can be identified.
However, as the inclinations are degenerate over the inclination to the plane of the
sky, it is not possible o compare them to the values in the Solar System or in the planet
formation and evolution models.

So far, the exoplanet search surveys have been focussed on solar-type stars (F,.G K
stellar type) and small stars, especially the radial velocity and transit surveys for which
planets give larger amplitude signatures on smaller stars. This is a bias that will be ad-
justed with surveys on massive stars (larger than a few solar masses).

Solar-type stars harbouring giant exoplanets have been found to have a higher
metallicity than the Sun (e.g. Santos et al. 2004). However, the observed population of
planets around different mass and different metallicity stars is foo small to give robust
statistics. Currently, it is not possible to obtain reliable trends in how the number of
planets varies with these stellar properties.
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Table 1.1: Table of the planet parameters and the stellar parameters relevant to deriv-
ing them, Plus the associated observable(s) and observing method(s) used fo derive

the physical parameters.

Parameters

Observables

Method Ref.

Planet
Orbital period P

tfime of fransits

light curve - transit m

Orbital inclination 4 * tr,tr. 6, P light curve - fransit m

Planetary radius 2 (R, /R.) 5 light curve - fransit (1)

Planetary mass ® ((Mpsin i)/ (M +M,)?/?) K, radial velocity curve  (2)

(M, /M.) shape of magn. mircolensing 3

(M, sin 2) pulse delay pulsar timing 4

Orbital semi-major axis (a/R.) tr.tr,0, P light curve - transit (1)

(asini) K, radial velocity curve (@)

(asini) tm microlensing (€))]

(asini) pulse delay pulsar timing ()

(asini) ap, d direct imaging ®)

Orbital eccentricity e Psee light curve - occultation 6)

RV shape radial velocity curve (@)

Argument of periastron w RV shape radial velocity curve ()]

Absorption spectrum ¢ at various A light curve - transit M

Emission spectrum dsec Af various A light curve - occultation )

Ly/L, at various A direct imaging ®)

Thermal emission dsec (lOrge ) light curve - occultation )

Albedo dsec (SMaAll A) light curve - occultation )

Phase function flux ampl., ¢maq light curve - orbit @

Planetary wind speed DPmaz light curve - orbit @)

Spin-orbit angle A, * shape of rossiter radial velocity - transit 5 8

Stellar spin angle © oscill. modes asteroseismology @
Star

Stellar mass M, Tew. log g, [M/H| stellar evolution models  (10)

Stellar radius R, Tew. log g, [M/H] stellar evolution models  (10)

oscill. modes asteroseismology (9

Stellar density (M, /R?) tr.tr,0, P light curve - transit (1)

oscill. modes asteroseismology @

Limb darkening fransit shape light curve - transit m

Stellar rotation period period of spots light curve - stellar spots  (11)

Stellar age rotation period light curve - stellar spots  (11)

Ter. log g, [M/H] stellar evolution models  (10)

Notations: ¢ is the transit duration with the planet disk fully superimposed to the stellar disk, ¢t is the total
transit duration, § is the transit depth, K, is the semi-amplitude of the stellar radial velocity variation due
to the planet, magn. stands for magnification, a is the planet orbital semi-major axis, d is the distance
of the star to the Sun, ampl. stands for amplitude of the deviation, t,, is the fime difference between
the magnification maximum due to the star and the one due to the planet, «,, is the angular distance
between the planet and the star, ¢s.. is the phase in the planet orbit of the mid-occultation relative to
the phase of the mid-tfransit, RV stands for radial velocity, A is the wavelength, §;.. is the depth of the
occultation, L,/L. is the planet-to-star luminosity ratio, ¢ma.. is the phase of the maximum flux in the
planet orbit, oscill. stands for stellar oscillation, Teg is the stellar effective temperature, g is the surface
gravity, (M/H) is the metallicity of the star relative fo the solar metallicity.

Notes: ! projected onto the plane of the sky, 2 relative to the radius of the host star, ® relative to the mass
of the host star, 4 angle between the stellar spin axis and the perpendicular to the planet orbital plane,
projected onto the plane of the sky, 5 Rossiter-McLaughlin effect, perturbation over the radial velocity
curve during the planet transit, ¢ angle between the stellar spin axis and the plane of the sky.

Example of reference: (1) Charbonneau et al. 2000, (2) Mazeh et al. 2000, (3) Bennett 2009, (4) Phillips &
Thorsett 1994, (6) Marois et al. 2008, (6) Charbonneau et al. 2005, (7) Knutson et al. 2007a, (8) Gaudi &
Winn 2007, (9) Kjeldsen et al. 2009, (10) Torres et al. 2009, (11) Aigrain et al. 2008.
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1.3 Characterising exoplanets

The different detection methods allow the measurement of different planet param-
eters, as summarised in Table 1.1. The planet properties measurable from the planet
transit light curve and from the stellar radial velocity curve are described in sections
1.3.1, 1.3.2 and 1.3.3. The main properties of the exoplanets detected to date, and
of their host stars are listed in section 1.2.2. More detailed descriptions of the physi-
cal properties of the detected exoplanets and of their environment can be found in
Perryman (2000) and Baraffe et al. (2010).

1.3.1 Analytic equations to derive the planet parameters from the transit light
curve

Equations for a uniform intensity stellar disk and a planet in circular orbit

Luminosity

I_!U
i5 / Transit

time t;

Luminosity
ﬁ' * Gsec /— % t*+|—p
Occultation <«

time

Figure 1.2: The schematic of a planet transiting its host star (middle) with the corre-
sponding variation in brightness during the transit (fop) and during the occultation
(bottom). The impact parameters b and the transit parameters (6, tr, t7) used in the
equations here after are indicated on this figure.

Seager & Mallén-Ornelas (2003) give a set of simple analytical equations to derive
the following planet parameters: R,/R,. the planet radius relative to the radius of the
host star, a/ R, the orbital distance of the planet relative to the radius of the host star,
the orbital inclination projected 1o the plane of the sky. Under the approximations listed
herafter, these planet parameters can be derived from the following four observables
of the transit light curve: P the orbital period, § the transit depth, ¢t the duration of the
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tfransit when the planet disk is completely inside the stellar disk, and ¢ the total fransit
duration.

1. The planet is in a circular orbit. This is often true for planets close to their star as
tidal inferaction with the star acts to circularise the orbit of the planet.

2. The stellar intensity is uniform across the stellar disk, i.e. the stellar limb darkening
is negligible. This is true at long wavelengths, e.g. the I band (806+149 nm).

3. The planet is dark compared to the central star.

4. The light comes from a single star, i.e the light from the planet host star is not
blended with the light from another star.

To gain a useful insight info the fransit geometry, it is interesting to reproduce here
the analytic equations given by Seager & Mallén-Ornelas (2003) for the planet-to-star
radius ratio R, /R, (equation 1.2), the planet impact parameter b (equation 1.7), the
planet orbital distance relative to the stellar radius o/ R, (equation 1.9), and the planet
orbital inclination projected onto the plane of the sky ¢ (equation 1.12). The planet or-
bital period is measured from the time difference between successive transits, which
requires a light curve with at least two transits. But under the above conditions, Sea-
ger & Mallén-Ornelas (2003) show that if the stellar mass and radius are know (e.gQ.
from spectral type analysis), the transit period can be estimated from a single-transit
light curve (equation 1.15). Under the approximation that M,<<M,, the stellar den-
sity M, /R, can also be derived from the transit light curve (equation 1.13). Under the
assumption that a« >> R,, some of the equations can be simplified (see equations 1.8,
1.10, 1.14, 1.16).

The transit depth § normalised by the stellar luminosity L., assuming no stellar limb dark-
ening, a dark planet, and no stellar blend, is

5= L, — L*, with planet in transit (-I -l)
L,

As L, = nR?F, and Ly, with planet in transit = Lx — ngF*), where R, and F, are the stellar
radius and stellar flux per unit surface area, and R,, is the planet radius, the transit depth
is related to the planet-to-star radius ratio as follows

2
5— (2})) (12)

The transit shape - equivalent to the fransit duration inside the ingress and egress rela-
tive to the total transit duration — can be derived as follows

(sin (tFTr/P))Q _ [ Ry/Ru* — [a/R, cosi]®

W [1 + }2;)/}%*]2 - [CL/R* COSZ']2 (13)
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Under the approximation that a >>R,, tym/P << 1, and as for small z, sinz ~ z, the
equation 1.3 simplifies to

tr) 1= R,/R.J? — [a/R. cosi]?
<tT> [l + Rp/R:J? — [a/Ry cosi]? (1.4

The total tfransit duration ¢ty can be derived as follows

(1.9

tr = — sin —
s a sin ¢

P, (R* VI + R,/R.J* — [a/R. Cosi]2>

Under the approximation that a >>R,, cosi << 1, and as for small z, arcsinx ~ z, and
the equation 1.5 simplifies to

PR, RN (a
= PR Y (o) 06

From equations 1.5 and 1.2, the impact parameter b — projected distance between the
planet and star centres — can be derived from the light curve parameters as follows

(1.7)

a .
b= —cosi =
R,

\/ (1 — /0)2 — [sin? (tpr/P)/ sin? (tm/P)](1 + /)2
1 — [sin? (tpm/P)/sin? (tym/P)]

Under the approximation that a >>R,, ty7/P << 1, and the equation 1.7 simplifies to

1— (tp/tr)? '
The planet orbital distance normalised by the stellar radius a/ R,
a 1+ V6)2 — b2[1 — sin? (tpm/P)] 1.9)
R, sin? (t7m/P) '

Under the approximation that « >>R,, from equation 1.6 and 1.8, a/R, can be ex-
pressed more simply as follows

1/4
a _2P 9 (1.10)

R T 2 2
* tp —tx



CHAPTER 1. INTRODUCTION 23

Using Kepler's 37 law’ (% = Wi%)), where G is the gravitational constant, and un-

der the approximation that M, <<M,, the planet orbital distance a can also be derived

as /3
P2G M,
a:< g ) aim

From the definition of b (equation 1.7), the planet orbital inclination projected onto the
plane of the sky, 7, can be derived as

i=cos ! (b%) (1.12)

Using Kepler's 3¢ law under the approximation that M,<<M,, and equation 1.9, the
stellar density p, defined as follows, can be derived from the light curve parameters.

R,

M, an? (a )3 e <<1+¢5>2—b2[1_sm2 (m/p)])3/2 18

Pr = R3 e e sin? (trm/P)
Under the approximation that a >>R, and that M,<<M,, using Kepler’s 3" law and
equation 1.10, p, can be expressed more simply as follows

2P  §3/4

P = G (=) (119

Under the approximation that M, <<M,, reversing equation 1.13, if the stellar mass and
radius are known, the planet orbital period can be derived from a single-transit light
curve as follows

_ | RiAm (4 V6)2 — b2[1 — sin? (tpm/ P)] 3/2
"o J M. G ( sin? (t7/ P) ) (115)

The equation of P simplifies to the following one, under the approximation that ¢ >>R,,
using Kepler’s 37 law under the approximation that M,<<M, and equation 1.14.

M, Gr (5 — t3)%/?

k] 371 (1.16)

Equations for an eccentric orbit

The equations presented above can be used to derive the planet parameters from
the transit light curve of a planet in a circular orbit. The equation to derive the planet-

"Kepler's 3¢ law: "The square of the orbital period of a planet is directly proportional to the cube of
the semi-major axis of its orbit."
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fo-star radius ratio R,/ R, is the same for a circular and for an eccentric orbit, as the
equation is not dependent on the eccentricity e and the argument of periastron w.
The elements of an eccentric orbit used here after are as defined in Figure 1.3.

v
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Earth (z)

Figure 1.3: Sketch of a planet in an eccentric orbit around its host star. a is the semi-
major axis of the planet’s orbit, r is the planet to star distance, i is the inclination of the
planet’s orbit with regards to the plane of the sky, v is the frue anomaly of the planet
(i.e. the position angle from the periastron of the planet in its orbit), w is the argument
of periastron of the planet’s orbit (i.e. the position angle of the periastron from the
ascending node where the planet moves North through the plane of the sky) and Q is
the longitude of the ascending node (i.e. the angle in the plane of the sky between
the North direction and the ascending node). The North is a reference direction in the
plane of the sky corresponding to the direction of the North pole projected onto this
plane.

Kepler's 15t law® defines the equation of an ellipse. Applied to exoplanets, this gives
the following relation for the star-planet distance r in an eccentric orbit:

_a(l—é€?)
"T 1tecosy (117>
where ais the semi-major axis of the orbit, e is the eccentricity of the orbit (e = /1 — (2) ?

with b the semi-minor axis of the orbit), and v is the true anomaly (the angle between
the direction to the ascending node and the direction to the position of the planet in
the orbit, see Figure 1.3).

8Kepler's 1°¢ law: “The orbit of every planet is an ellipse with the Sun at a focus”
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If the planet transits its host star, the orbital inclination i ~ 90°, and the true anomaly of
the planet at mid-fransit can be simplified to v, = £5 —w ("+" for mid-transit and *-* for
mid-occultation). As cos (+§ —w) = *sinw, the star-planet distance at conjunction r.

can be expressed as
a(l —e?)
= —— 1.1
" l+esinw (1.18)
The impact parameter is b = = cosi (same definition as in equation 1.7 but replacing

a by r.). Using equation 1.18, b can thus be expressed for an eccentric orbit as follows

a ) 1—¢€?
b:iCOS'L <m) (]]9)
This equation compares to the definition of b in a circular orbit (equation 1.7) by multi-
plying this expression by 1—¢_ (“4" for mid-transit and “-* for mid-occultation).

l+esinw

tr and tr for an eccentric orbit should be solved numerically using Kepler’s equations

(Equation 1.27). Winn (2010) proposes, as a good approximation for eccentric orbits, to

multiple ¢t and ¢ (calculated with the eccentric expression of b) by the following factor

which accounts for the altered sky-projected speed of the planet at conjunction:
X(ve) [e=0] V1 —e?)

= - (1.20)
X(yc) 1+ esinw

where X is the position of the planet in the plane of the sky along the axis towards the
ascending node (see Figure 1.3), X (v.) is the velocity of the planet along this axis at
conjunction ("+“ is for mid-transit and the *-" for mid-occultation), and X () [e = 0] is
the value of this velocity for a circular orbit.

Limb darkening

In reality, the stellar luminosity is not constant across the stellar disk. The stellar disk is
brighter at its centre than at its edge. The photons received from the centre of the
stellar disk come from deeper into the stellar atmosphere than those received from
the edge of the disk. A photon coming from deeper into the stellar atmosphere has
a higher temperature and thus appears brighter at the associated wavelength. Thus,
at the corresponding wavelength, the stellar centre appears brighter than the stellar
limb, hence the expression "limb darkening"”.

Using a realistic model of stellar limlb darkening is important when fitting transit light
curves, as the shape of the limb darkening willinfluence the derived planet parameters
(mainly the planet radius and impact parameter on the stellar disk).

There are different limb darkening laws proposed in the literature to model the varia-
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Stellar limb darkening Transit
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Figure 1.4: Left panel: Solar limb darkening in CoRol bandpass with the linear law
(green), the quadratic law (blue), the non-linear 3 parameter law (black), and the non-
linear 4 parameter law (yellow). Right panel: The second half of the phase-folded tran-
sit of a Jupiter-size planet at a/ R, =5 of a solar type star (T,¢=5800K, log g=4.5, (M/H)=0.0)
seen in the CoRoT bandpass with no stellar limb darkening (red), a quadratic stellar limb
darkening (blue) and a linear stellar limlb darkening (green).

fion of intensity across the stellar disk: e.g. the linear law, the quadratic law, the square
root law, the logarithmic law, the non-linear law (Claret 2000), and the 3-parameters
non-linear law (Sing 2010). To date, the most commonly used when fitting transiting
exoplanet light curves are the linear, the quadratic and the non-linear laws. In light
curves with high precision photometry, the linear law is insufficient to correctly repro-
duce the intensity variation over the stellar disk (e.g. Brown et al. 2001). The quadratic
law is valid in certain ranges of stellar effective temperatures; for main sequence stars
this law is accurate within 3% of the transit depth (Mandel & Agol, 2002) which can
become insufficient to model high precision photometry light curves (e.g. bright stars
observed with HST, CoRoT or Kepler). The non-linear law is valid over a large range of
stellar models. The 3-parameter non-linear law was introduced to better reproduce the
limb darkening at small angles 6 (angle between the line of sight and the emergent
intensity). This law is very similar to the non-linear law but does not model a sharp drop
in luminosity at small .

This intensity variation across the stellar disk is calculated from stellar atmosphere
models (e.g. ATLAS9?, PHOENIX'9) where the emergent intensity with regard to the line
of sight is known. This intensity is then passed through different instrumental filters (e.g.
the standard filters in Claret 2000 and Claret 2004, and the CoRol and Kepler filters in
Sing 2010), and fitted with different limb darkening laws to derive the associated limb
darkening coefficients.

"h‘r‘rp://kurucz.horvord.edu/grids.h‘rml
1Uh‘r‘rp://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.h‘rml
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The linear law:

Ip) .

TS (1.21)

The quadratic law:

I(p) . o e

Tn=n el —m—u(l=p (1.22)

The non-linear law:
I(M) :1—Ul(l—Ml/Q)—UQ(l—u)—U3(1—M3/2)—U4(1—M2) (1.23)

I(p=1)
The 3-parameter non-linear law:

I

I(M(i)l) =1 —us(l— ) = ug(1 = p?) —ua(1 = %) (1.24)

where, I(u = 1) is the intensity at the centre of the stellar disk, u = cos(6) with 6 the angle
between the line of sight and the emergent star light, u is the linear limb darkening
coefficients, u, and u,; are the quadratic limb darkening coefficients, and w,, are the
limb darkening coefficients of the non-linear law.

In practice, the choice of which limb-darkening law to use depends on the signal-
fo-noise ratio (S/N) of the transit, the observational bandpass and the stellar type. High
S/N observations allow the shape of the limb darkening to be more accurately con-
strained, and so can justify the usage of a limb-darkening law with more coefficients.

Equations for a non-uniform intensity across the stellar disk

Mandel & Agol (2002) give a list of analytic functions to model fransit light curves
which include limb-darkening (quadratic and non-linear laws). The function to be
used depends on the size (radius) of the planet relative to the star and on the posi-
tion of the planet on the stellar disk. The exact analytic formulae are given in Mandel
& Agol (2002), as well as a simpler version (less computing time) valid for small planets
(%’ < 0.1) where the stellar brightness under the disk of the planet can be approxi-
mated as a constant.

Giménez (2006) also presents analytic functions to model the transit light curves.
There is little difference between their formalism and that of Mandel & Agol (2002).

Throughout this thesis, | perform the modelling of transit light curves using the an-
alytical equations of Mandel & Agol (2002) for transit light curves with quadratic limb
darkening (or linear limb darkening by setting the second coefficient of the quadratic
law to zero). Eric Agol kindly provides an IDL implementation of their formulae!!, which
I made use of in Chapters 2 and 3.

http://www.astro.washington.edu/users/agol
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1.3.2 Analytic equations for the radial velocity variations of a star due to an
orbiting planet

The equations listed in this subsection are based on those given in the Celestial Me-
chanics chapter of J. B. Tatum'2.

The equation for radial velocity variations V' of a star due to an orbiting planet is derived
as:
V = Vo + K, (cos (wx + ) + ecoswy) (1.25)

where 1} is the mean radial velocity of the star-planet centre of mass with regards to the
observer, K, is the semi-amplifude of the radial velocity variations, w, is the argument
of periastron of the star’s orbit around the star-planet centre of mass (w, = w, + ), v
is the true anomaly of the position of the star on its orbit around the star-planet centre
of mass (v, = v, + 1), and e is the eccentricity of the stellar orbit (same as that of the
eccentricity of the planet’s orbit).

Equation 1.25 is a function of the true anomaly which is itself a function of fime. To
solve this equation, the tfrue anomaly needs to be known. This is done by using the
mean anomaly M (equation 1.26) to derive the eccentric anomaly E (equation 1.27),
which is then used to derive the true anomaly v (equations 1.29 and 1.30).

The mean anomaly M at a time t (angle covered at the average angular speed %’T
since the last passage at periastron) is defined as:

2w
M:?(t—T) (1.26)

where P is the orbital period of the planet and T is the fime at the last passage at the
periastron.

The eccentric anomaly E (projection of the frue anomaly on a circle with radius equall
to the orbital semi-major axis) can be derived from Kepler’'s equation:

M=F —esinF (1.27)

where, e is the eccentricity of the orbit.

This equation cannot be solved analytically and is solved numerically, e.g. using the
Newton-Raphson method. This method consists of finding a better value at each itero-
fion using the value found at the previous iteration, the expression of the function and

its derivative: z,1 =z, — ]f,((?;)) . In the present case of deriving the eccentric anomaly

2http://astrowww.phys.uvic.ca/~tatum/celmechs.html
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E. f(E,) = E, — esin E, — M which becomes:

M — e(E, cos E,, — sin E,)
1 —ecosE,

(1.28)

En+1 -

The true anomaly is related to the eccentric anomaly through the following equations:

cosE —e
= - 1.29
cosv 1—ecosFE ( )
_ p2qi
giny - Yi—eisinb (1.30)
1—ecosFE

The mass of the planet M, relative to the mass of its host star M, can be derived as
follows, using the K, measured from the radial velocity curve of the star (see Figure 1.5):

.. 1/3
M, sini _ K. <2P> /1 — 2 (1.31)

(M, + M,)?/3 G

where i is the orbital inclination and G is the gravitational constant. If M, << M, then:

o\ 1/3
M, sini = K, <];]Vé‘> V1 —e? (1.32)
T

When a planet transits in front of its star, it creates during the transit a perturbation in
the radial velocity (RV) variations of the host star (see Figure 1.5). This effect is called
the Rossiter-McLaughlin (RM) effect. The shape of the perturbation depends on the
inclination of the planet’s orbital plane to the stellar spin axis. For fransiting planets
small in mass and/or with large orbits, the planet can create a larger amplitude RM
effect than the RV variations of its star. Combined with the fact that the RM variation
occurs on a shorter timescale than the RV variation, the RM effect will be a useful tool
to confirm the planetary nature of small fransiting planets orbiting in large orbits (Gaudii
& Winn, 2007).
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Figure 1.5: The radial velocity curve of a star orbited by a planet a few times more
massive than the Earth, in a circular orbit (black line). The semi-amplitude of the radial
velocity variation is called K, the period of the variation is the planet orbital period
P. Here, P = 1, K = 1, and the mid-transit is at 0.5d. The dashed-dotted blip is the
spectroscopic transit of the planet, called the Rossiter-McLaughlin effect, which adds
up to the star’s radial velocity curve if the planet transits the stellar disk. Here, the
sky-projected spin axis of the planet’s orbit projected onto the sky is aligned with the
sky-projected stellar rotation axis.

1.3.3 Planetary atmospheres

Transmission spectroscopy of a planet’s atmosphere can be performed during its tran-
sit. Emission spectroscopy of a planet’s disk can be performed during occultation,
where light from the star and the planet can be separated. In addition the planet’s
orbital phase variations can be observed. The above techniques allow the study of
some properties of the planet, such as the chemical composition of the planet’s at-
mosphere, the planet’s atmospheric circulation, the presence of clouds or hazes, the
thermal emission of the planet, and the planet’s albedo.

The transmitted spectrum of the upper atmosphere of an exoplanet is obtained by
observing the transit of the planet in different wavelengths. Some chemical elements
in the atmosphere will strongly absorb particular wavelengths of the starlight that pass
through the planet’s atmosphere, this makes the planet appear larger at these wave-
lengths. This type of observations has been performed from space using the Hubble
Space Telescope (HST).

When planets are occulted by their star, the loss in received brightness is due to
the planet’s emission being obstructed by the star. The planet’s emission has a com-
ponent of stellar reflected light and a component of thermal emission. The thermal
emission of the planet can be studied by measuring the depth of the occultation at
long wavelengths (e.g. in the I band and at redder wavelengths) where it dominates
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over the stellar reflected light component. The first approximation made to derive the
temperature of the planet, is to consider that the planet emits like a black body. In re-
ality, if some of the planet’s thermal flux is absorbed by molecules in its atmosphere, at
this wavelength the depth of the occultation will appear smaller, thus giving a smaller
temperature. Observing the occultation at multiple long wavelengths would allow the
observation of the shape of the planet’s black body due to thermal emission, and to
derive a more readlistic planet temperature. For instance, observations of the occulta-
tion of some fransiting exoplanets have been made from space with the Spitzer Space
Telescope (SST), and from the ground with the Very Large Telescopes (VLT) and soon
the Gran Telescopio Canarias (GTC).

When observing the occultation of an exoplanet at shorter wavelength (e.g. in
the optical), the dominant component of the planet emission is the stellar reflected
light. The depth of the occultation due to the loss of the stellar light reflected by the
planet, allows one to derive the albedo of the planet. However, if the planet’s thermal
emission is not negligible at the observed wavelength, the albedo cannot be uniquely
calculated from the depth of the planet’s occultation at only one wavelength. If mul-
tiple short and mid wavelength observations of the depth of the planet’s occultation
can be performed, then the wavelenght distribution of reflected stellar light and of
the planet thermal emission can be obtained. These two components of the planet’s
flux can then be separated from each other, and both the albedo and the thermal
emission can be extracted. For instance, observations of exoplanet occultations in
the opftical have been performed from space using CoRol and Kepler, and from the
ground using the VLT for instance.

Differential spectroscopy consists of taking the spectrum of the light received from
the star-only during the planet’s occultation, and from the star-and-planet when the
planet emerges from the occultation. By comparing the two spectra, one can extract
a low-signal emission spectrum of the planet.

When the photometric orbit of the exoplanet is followed from one fransit to the
next, the orbital phases of the planet — variation in flux due to the varying visible frac-
fion of the planet’s day-side — can be observed. At long wavelengths, if the phase
of the maximum of this modulation is shiffed from the phase of the planet’s occulta-
fion, it indicates that strong winds in the planet’s atmosphere are blowing the point of
maximum heat on the planet away from the point directly facing the host star. This
is a measurement of the planet’s atmospheric circulation. At short wavelengths, the
phase modulation of the planet depends on the properties of the particle reflecting
the light. Ice has a uniform phase function as it has the same intensity seen from dif-
ferent angles, whilst water has a more complicated phase function, as for instance
oceans appear darker seen from directly above than from an angle.

The amplitude of all the effects mentioned above can be two orders of magnitude
smaller than the planet’s tfransit signal (depending on the eccentricity of the orbit, the
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size of the planet and its distance to the host star), and their observation requires high
precision photometry (large collecting areq, stable instruments).

1.4 Challenges for the detection and characterisation of exo-
planets

Limitations in the detection and characterisation of an exoplanet can come from dif-
ferent sources, and depend on each planet, star and instrument used. For instance,
the characterisation of CoRoT-7b is limited by stellar activity affecting the measure of
the mass of the planet, whilst the characterisation of the OGLE planets is limited by the
poor determination of the stellar parameters due to the star’s faintness.

1.4.1 Stellar systems mimicking planetary transits

Stellar systems mimicking planetary fransits create false alarms in the search for transit-
ing exoplanets. The systems of stars that can create planetary-fransit-like light curves
are listed bellow.

Small stars, brown dwarfs and gas giant planets have similar sizes, so have similar
tfransit depths in a light curve. However, as these objects have different masses, they
can be differentiated using radial velocity measurements of their host stars to derive the
mass of the transiting object. OGLE-TR-122 is an example of a planetary-like candidate
discovered using the transit method and confirmed by radial velocity measurements
to be a low mass star (Pont et al., 2005).

If the host star is a giant star, a Jupiter-like transit depth (1%) would be caused by
a stellar companion and not a planet. This is due to the fact that the transit depth
gives the radius of the companion relative to the radius its host star, so for the same
fransit depth, a larger star means a larger companion. This false detection can be
ruled out from the tfransit light curve which allows one to derive an estimate of the
stellar density ME/3/R* (Seager & Mallén-Ornelas, 2003), giant stars being less dense
than main sequence stars as they have a larger radius.

Grazing binaries are another source of false detections as only a fraction of the disk
of the fransiting star crosses the stellar disk, causing the fransit to be shallower and thus
more planetary-like. These events can be identified from the light curve by analysing
the shape of the transit, as grazing binaries have V-shaped transits and planetary tran-
sits are more U-shaped (due fo limb darkening and radius ratio).

An eclipsing binary pair blended with a third star physically associated (friple sys-
tfem) or aligned by chance in the line of sight (background or foreground eclipsing
binaries), can mimic a planet transit light curve as the real depth of the eclipse is di-
luted by the light of the third star. A case of an eclipsing binary pair blended with a third
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star can be identified by detecting a double peak when cross-correlating the spec-
fra of the blended stars with model stellar spectra, or by resolving the blend with high
spatial resolution imaging (e.g. WASP-9b was retracted from the list of planets as later,
through spectroscopy, identified as the member of a stellar binary). For high precision
photometry light curves, another method is fo compare the stellar density derived from
the light curve (equation 1.13) with the stellar density derived from the observed spec-
fral type; if the two are very different it indicates that the transit is diluted by the light of
another star (Seager & Mallén-Ornelas, 2003).

Colour photometry can also be used to differentiate between a planetary fransit
and an eclipsing binary (e.g Tingley 2004) as the transit depth of planets will be quasi
colour independent (the planet is dark compared to its host star), while the fransit of
a star is colour dependent and will have different depths at different wavelengths.

1.4.2 Systematics

The noise in a light curve is not purely gaussian (white noise), but has a component
of correlated noise (red noise, Pont et al. 2006) mainly due to atmospheric effects for
ground observations (e.g. scintillation, fransparency variations, over-flights of satellites
and planes, moon), or to instrumental effects for space observations (e.g. hot pixels
due fo cosmic rays, telescope jitters due to thermal shocks or battery ignitions).

Systematics in the transit light curve reduce the detectability of planets and limit the
characterisation of the planet. These systematics can be instrumental, and/or atmo-
spheric when observing from the ground. For instance, in the detailed analysis of the
CoRoT light curves in Chapter 4, hot pixels create systematic noise which are difficult
to filter out in an automated way and which affect the detection of low amplitude
signals such as secondary eclipses and planet orbital phases.

1.4.3 Stellar activity

Stellar variability is another source of correlated noise superimposed onto the planet
signal in the stellar light curve and radial velocity curve.

Stellar variability is caused by physical processes which have different time scales.
Stellar magnetic activity, i.e. variations in magnetic field lines over time, is the main
cause of stellar variation. The magnetic field is created by the dynamo effect of mov-
ing charged parficles in the stellar plasma, e.g. due to differential rotation between
the stellar core and the stellar convective envelope for main sequence stars. The dif-
ferential rotation also causes magnetic lines to twist and break allowing the material
frapped in the field of the broken magnetic line to rise and emerge from the stellar
surface carrying hot material out, and cooled material back into the stellar surface.
The regions where the hot material emerges from the sub-surface, along the field lines,
appear brighter (plages). The regions where the cooled material sinks back into the
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stellar surface, along the field lines, appear darker (spots). As the star rotates, the stellar
spots and plages appear and disappear on the visible side of the star, which changes
the stellar brightness at the timescale of the stellar rotation. The number of spots and
plages also evolve in time over longer timescales (e.g. the 11-years solar activity cy-
cle). These magnetic-field-induced stellar variations produce photometric and spec-
troscopic stellar variability on tfime scales from days to weeks (stellar rotation) and from
month to years (stellar activity cycles). The amplitudes of these variations are larger
than the that of the two other processes described hereafter, and is comparable or
larger than the amplitude of planetary transits.

Stellar granulations arise from the convection of hot material being brought from the
stellar subsurface to the surface, due to thermal difference between the two surfaces.
This process creates variations in stellar brightness at shorter time scales (hours).

Stellar oscillations are due to the displacement of stellar material under the convection
which produces pressure and gravity waves on the material of the stellar surface. This
process creates stellar variability at higher frequencies (minutes).

Stellar activity is dependent on stellar type/mass, and stellar age. This dependence
comes from the infernal structure of the star along with the presence, size, and position
of a stellar convective envelope. Stars with smaller convection envelopes (e.g. mas-
sive stars emitting more flux), will show smaller level of activity.

The dependence on stellar age comes from the stellar rotation rate driving the dif-
ferential rotation between the stellar core and the convective envelope, which is the
magnetic field production mechanism for main sequence stars (stars with a hydrogen
burning core). Stars rotating faster display a higher activity level. Young stars have
larger rotation rates (i.e. are more active) as they have gained angular momentum
through contraction under the gravity.

The dependence on mass also comes from the ability for the star to form a radiative
core, as radiative pressure will halt the stellar confraction. The stars then stop gaining
angular momentum, and the dissipation of its angular momentum (e.g. though disk
locking) will force the star to spin down, thus reducing the activity level for older stars.
Lower mass stars (M, <0.5M) will not start the hydrogen burning phase, will not de-
velop a radiative core, and will maintain their acftivity level longer. As a comparison,
the Sun (G-type on the main sequence) is a relatively aged star, it is a slow rotator and
has a low level of activity.

Favata & Micela (2003), Schrijver & Zwaan (2000) and Aigrain et al. (2004) provide de-
tailed information on the dependency of stellar activity with stellar type, mass and age,
and on the physical processes behind the different timescales of the stellar activity.

The photometric and radial velocity amplitude of stellar variability can easily be
larger than the amplitude of the signal of a planet, which can affect the detection
of the later by creating false alarms and reducing the amplitude of the real signal,
especially in the regime of small planets (see Jenkins 2002 for a study on the impact of
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solar-like variability on the detectability of fransiting exoplanets). Stellar variability also
hinders the characterisation of the detected planets as it adds correlated noise to the
planet signal, reducing the precision and altering the accuracy of the derived planet
parameters.

As the star rotates, a stellar spot on its surface will hide a part of the stellar sur-
face rotating towards us and then a part rotating away from us, creating red-shifted
and blue-shifted perturbations respectively. To identify radial velocity variations due
to stellar activity and remove it to some extent, several tfechniques are combined (see
Boisse et al. 2009 for a detail explanation and application of these techniques). To av-
erage over the high frequencies of the stellar activity due to oscillations for instance,
longer exposures (~1h) can be taken. To remove the stellar activity components due
to granulation, a boxcar smoothening (few hours) can be applied. The stellar activity
component due to spots and plages are more difficult to remove as their amplitude
in radial velocity can be larger than that of the planet signal. Techniques to identify
radial velocity variations due to stellar activity at long times scales include the pho-
tometric follow-up of the star simultaneous to the radial velocity measurements, the
analysis of the correlation between the radial velocity variations and the variations in
the bisector of the cross-correlation peak of the stellar spectra, or with the variations in
Call H&K lines, H,, line and Hel line (spectroscopic indices for stellar activity).

Different filters are used by different feams to remove the photometric stellar vari-
ability from the stellar light curves due to the flux variations intrinsic to the star. Unfortu-
nately, these filters degrade the information on the fransit shape, as the fransit signal
and the stellar activity frequency domains overlap. This results in the physical param-
eters of the planet being mis-estimated. This is discussed in the Chapter 2 and a new
method to filter the stellar variability with minimum alteration to the transit signal is then
presented.

The stellar variability can also affect the observation of the atmosphere of the exo-
planet. The variation in stellar flux due to the activity is chromatic, so the multi-wavelength
observations of the planet’s transit and occultation need to be performed over an in-
terval of time shorter than the timescale of the stellar variability.

1.4.4 Uncertainties on the planet parameters

The uncertainties in the mass, radius, and inclination of a planet depend on the uncer-
fainties of the host star’'s mass and radius (M., R,), on the uncertainties on the transit
parameters (6, tr, t7), and on the uncertainties on the radial velocity measurements.
For large planets (larger than Jupiter), the uncertaintfies on the planet mass and ro-
dius are mainly due to the uncertainties on the stellar parameters. For smaller planets
(smaller than Uranus) around active stars, the uncertainties on the planet mass and
radius can be dominated by the uncertainties on the fransit parameters. Figure 1.6
shows the contribution to the uncertainties in a planet’s mass and radius coming from
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the stellar parameters (in blue) and from the transit parameters (in black).
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Figure 1.6: Mass-radius diagram of the tfransiting planets discovered to date (May
21th 2010) with the error bars on the planet’s mass and radius with the contribution
from the uncertainties in the transit parameters (black) and the contribution from
the uncertainties in the stellar parameters (blue). The planet masses and radii are
taken from http://www.inscience.ch /transits/, except for CoRol-7b which is taken from
http://exoplanet.eu/catalog-transit.php. The uncertainties in the planet parameters due
to the stellar parameters are calculated by propagating the uncertainties in the stellar
parameters assuming the measurements for the transit and radial velocity curves have
No uncertainty.
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1.5 Instruments for the detection and characterisation of transit-
ing exoplanets

1.5.1 Current

CoRol (COnvection ROtation and planetary Transits), is a French-ESA (European Space
Agency) satellite with 27-cm diameter mirror and a 3x3¢ field of view. It has been in or-
bit around the Earth since December 2006 and searches for short period exoplanets
with radii down to few times that of the Earth. CoRoT looks at stars with V magnitude in
therange 11to 16V, in 4 different areas in the galactic plane each year (20 to 150 days
on each field). In this thesis, the light curves of the CoRoT planets are studied.

Kepler is a NASA (National Aeronautics and Space Administration) satellite with a 95-
cm diameter mirror and a 10¢ field of view. It has been in an Earth-trailing heliocentric
orbit since March 2009 and searches for exoplanets similar to the Earth in ferms of size,
orbital distance and stellar host type. Kepler looks at stars with V magnitude in the
range of 9 to 16, in a single area of the sky (continuously for 3.5 years).

In 2009, CoRoT found a close-in Earth-like planet around a solar type star, and Kepler is
expected to detect several more of these. Follow-up observations of these objects, for
mass measurement and atmosphere characterisation, are challenging as these plan-
ets are small compared to their host stars. For smaller stars, e.g. M-dwarfs (~0.1Mg,
~0.1R,. ~3000K), an Earth-size planet in the habitable zone'? will have a larger radius
ratio and mass ratio with its star and will be closer to the star, making its transit and grav-
itational tug easier to detect. The atmosphere of these Earth-size planets will also be
easier to detect through fransmission spectroscopy as the atmosphere can be thicker
for lower mass, lower gravity planets. MEarth is a ground-based mission with a set of
eight 40-cm telescopes searching for super-Earths around small stars. ROPACS (Rocky
Planets Around Cool Stars) is a network using the UKIRT (United Kingdom Infrared Tele-
scope) to search for transiting planets around cool stars.

SuperWASP (Wide Angle Search for Planets) and HATNet (Hungarian Automated Tele-
scope Network) are ground based missions searching for transiting exoplanets around
bright stars across the sky (~9 mag).

Precise radial velocity measurements are currently done with the HARPS spectrograph
on the 3.6 m telescope at ESO-La Silla Observatory in Chile, and with the HIRES (High
Resolution Echelle Spectrometer) spectrograph on the 10m Keck-1 telescope at the
Keck Observatory in Hawaii. With these current high-resolution spectrographs, stellar
radial velocity variations down to 0.3 to 1ms~! can be detected, which corresponds
to the signal of a close-in Super-Earth planet.

Other spectrographs with precision down to 10ms—! are used in the search and follow-
up of exoplanets, such as SOPHIE at the Observatoire de Haute Provence in France

¥The habitable zone around a star is defined as the range in distance from the star where water can
be inits liquid state
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which is optimised for the search for exoplanets.
Figure 1.7 shows the planet detection limits for different insfruments with different pho-
tometry and radial velocity precisions, and different lengths of survey.
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Figure 1.7: Diagram of the planet mass A, versus orbital semi-major axis a of the ex-
oplanets discovered by Jan 26th 2010 with the fransit method (blue, green, and or-
ange dots) and with the radial velocity method (black and pink dots). The diagonal
black lines mark the detection limits in planet mass-separation for a planet around
a (Mg.Re) star using instruments with precision in radial velocity measurements of
10ms~!(dashed-dotted line), 1ms~!(dashed line), and 10cms~!. The diagonal green
and orange lines mark the detection limits in planet mass-separation for a planet
around a (Mg, R) star using CoRol and Kepler respectively. These lines are drawn
for an observation of at least two transits with combined signal-to-noise ratio of 20, in a
light curve with a photometric precision of 200ppm for CoRoT (Aigrain et al., 2009) and
10ppm for Kepler (Jenkins et al., 2010) — ppm = parts per million, 100ppm = 0.1 mmag.
The vertical lines mark the upper limits in planet to star separations — detection of at
least fwo orbital periods to secure the periodicity of the signal — due fo the finite duro-
tion of the surveys: 30 years of radial velocity data (black), 4 years of continuous Kepler
observations (orange), and 150 days of continuous CoRoT observations (green).
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1.5.2 Future of the transiting exoplanet search and characterisation

The future of the characterisation of exoplanets lies with bigger telescopes, as a larger
collecting area means more photons and thus a lower level of photon noise. The future
insfruments will also need fo be more stable to reduce the level of correlated noise.
For insfance a more stable wavelength calibration for a spectrograph will allow the
detection of fainter radial velocity variations. The future in the detection of Super-
Earth atmospheres using the fransit method lies in the new target choice of near-by
(brighter) small host stars (larger planet-to-star radius ratio).

Near future: The JWST (James Webb Space Telescope), estimated to be launched
in 2014, is a cooled infrared telescope with a segmented 6-m diameter mirror which
will observe the transits of known exoplanets at various infrared wavelengths to study
the atmosphere of Super-Earths orbiting small stars. The ground-based ELTs (Extremely
large Telescopes), include the E-ELT (European-Extremely Large Telescope) 42-m tele-
scope, the GMT (Giant Magellan Telescope) equivalent to a 25-m telescope, and the
TMT (Thirty Meter Telescope), and will allow follow-up study from the ground of even
more of the detected exoplanets (atmosphere, albedo, etc). The building stage of the
E-ELT is estimated to start in 2010 for a start of operations planned for 2018. Future spec-
tfrographs, such as CODEX on the E-ELT, are being designed to reach precision down to
0.01ms~! which will allow the detection of radial velocity signals of Earth-like planets.
To improve the precision in radial velocity measurements, new wavelength calibration
techniques are needed and are being developed, such as the Laser Comb.

And after: The next generation of space mission searching for transiting exoplan-
ets are being designed to look for the nearest transiting planets, targeting the bright
stars (9th to 11th magnitude) across the whole sky. These missions include the PLATO
mission (PLAnetary Transits and Oscillations of stars) and the TESS mission (Transiting Ex-
oplanet Survey Satellite). They will use an array of small cameras with large fields of
view and high resolution CCDs to monitor large areas of the sky. If funded, they should
be launched from 2015 onwards. In a more distant future, proposed missions include
TPF (Terrestrial Planet Finder) and Darwin, which are space missions with telescopes
and/or instruments flying in formation in space. These missions are designed to study
the light from the exoplanets themselves, using infrared nulling interferometry or visible-
light coronography to suppress the light from the planet host star without affecting the
light from the planet, therefore increasing the planet-to-star light ratio. If funded, these
missions should be launched after 2020.

Foreseen challenges: For next generation telescopes and instfruments, the chal-
lenges of studying small exoplanets which will limit the precision of their measurements
include, physical processes such as the level of stellar activity for transits and radial ve-
locities studies, and the level of dust emission for direct imaging. The solution to these
limiting factors, if any, will most likely be in the development of new data processing
and analysis techniques. From an instrumental point of view, the challenges are in
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the improvement of the precision of the radial velocity measurements in the optical
(for Earth-size planets around solar-type stars) and in the infrared (for Earth-size plan-
ets around M-dwarfs), and in the improvement of the nullifying techniques to better
suppress the stellar light for the direct imaging of exoplanets.

1.6 This thesis

1.6.1 Motivations

The radius R, and the mass M, of an exoplanet can be ascertained when measur-
ing both the flux and the radial velocity variations of the parent star due fo its orbiting
planetary companion. Improving the precision of observational planet masses and
radii is important for both planet structure and planet formation models. The internal
structure of a planet can be studied by comparing its mass and radius to model predic-
tions of planets with different composition. Determining planet structure is important
to derive observational statistics on planet types, which can then be compared to the
predictions of planet formation models. Seager et al. (2007) show that to determine
the composition of planets smaller than Uranus, error bars of less than 2% on the planet
parameters are required. The current uncertainties on planet masses and radii are of
order 10%. Improving these measurements is thus vital fo help confirm the models.

As mentioned in Section 1.4.3, a side effect of the current photometric variability
filters is that optimal stellar variability filtering, changes the shape of a transiting planet’s
light curve, and so the planet’s properties derived from that light curve. As for small
planets, the major source of uncertainty comes from the tfransit light curve, improving
the processing of the light curve before deriving the planet parameters is essential. The
first motivation of the thesis is thus to design a stellar variability filter that filters out the
stellar variability whilst reconstructing the original tfransit signal as much as possible. This
should enable us to derive more precise planet parameters from the transit light curve.

As seen in Section 1.4.4, the major contributor to the uncertainties of the planet
parameters for large planets, are the precision of the stellar mass and radius which are
derived from the stellar parameters inputed into the stellar evolution models. Thus, the
second motivation of this thesis is to reduce the uncertainty of the stellar atmospheric
parameters, starting with the stellar effective temperature which is used to derive the
other parameters.

1.6.2 Structure

In Chapter 2, | present a new stellar variability filter, the Iterative Reconstruction Filter
(IRF), and discuss its performance on simulated data. In Chapter 3, | re-derive the
planet parameters of the first seven CoRol planets using the IRF-filtered light curves.
A by-product of the IRF is the reconstruction of all signals at the orbital period of the
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planet. In Chapter 4, | search for secondary eclipses and orbital phase variations in the
IRF-filtered light curves of CoRoT-1b and CoRoT-2b. In Chapter 5, | present a new tem-
perature calibration to derive stellar effective temperatures using ratios of equivalent
width of spectral lines, and re-derive the effective temperatures of the first nine CoRoT
planet host stars. In Chapter 6, | combine the outcomes of the two new techniques
presented in this thesis, i.e light curve filtering using the IRF and T, determination using
calibrated equivalent width line ratios, by re-deriving the planet parameters of CoRol-
2b using a Markov Chain Monte Carlo (MCMC) on the IRF-filtered light curve. This
approach takes into account the prior knowledge on the stellar temperature, taken
as the equivalent width T, derived in Chapter 5. In Chapter 7, | susmmarise what has
been discovered in this thesis (fechniques developed, results, comparison with the lit-
erature and implication to the physics of the planets) and | finish with a few words on
future prospects.



Chapter 2

Transit signal reconstruction

This chapter focuses on improving the planet parameters by improving the accuracy
of the transit signal.The motivation for a new stellar variability filter is presented in Sec-
tion 2.1. The lterative Reconstruction Filter, the new post-detection stellar variability filter
developed during this PhD thesis, is presented in Section 2.4, and tested over simulated
data. The performance of the filter is then discussed in Section 2.5.

The work presented in this chapter was published in Alapini & Aigrain (2009).

2.1 Motivation

As smaller and lower-mass planets become increasingly detectable, thanks to space-
based transit searches and improvements in ground-based radial velocity instruments,
the uncertainties arising from the transit and radial velocity fits are expected 1o be-
come more important. A specific problem arises when the transits become comparo-
ble in depth with the amplitude of the intrinsic brightness fluctuations of the host star.
The amplitude of these variations can be several orders of magnitude greater than the
transit signal, particularly for terrestrial planets and/or active stars, and they can occur
on fimescales significantly shorter than the orbital period of the planet (Fig. 2.1, black
curve). Stellar variability can thus hinder the detection of planetary transits (Aigrain
et al., 2004). A number of ‘pre-detection’ filters have been developed to tackle this
problem.

Pre-detection filters aim to remove stellar variability in light curves to improve the
detectability of transits, without any prior knowledge of the fransit signal except for the
fact that stellar variability typically occurs on longer time scales (hours to days) than
the transit signal (minutes to hours). All of the fechniques tested in the first CoRoT blind
test (Moutou et al., 2005), which range from simple Fourier-domain low-pass filters to
slightly more sophisticated implementations involving simultaneous fitting of hundreds
of low-frequency sinusoids, or time-domain nonlinear iterative filtering (Aigrain & Irwin,
2004), exploit this difference. These filters proved effective in removing stellar variability
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to facilitate the detection of transits but, as pointed out in Moutou et al. (2005) and
Bonomo & Lanza (2008), they deform the shape of the transits.

The performance of several of these filters in terms of transit detection was evalu-
ated in the context of first CoRoT blind test, a hare-and-hounds exercise involving 1000
simulated CoRoT light curves containing various transit-like signals, stellar variability and
instrumental noise. This test showed that the most successful filters recover a detection
threshold close to that obtained in the presence of instrumental noise only, except for
a few cases involving the most active and rapidly rotating stars simulated.

However, these filters also have the property of modifying the shape of the transit
signal (Moutou et al., 2005; Bonomo & Lanza, 2008), and would destroy any signal at
the period of the transit occuring on longer timescales than a few hours.

After introducing, in Sect. 2.2, the simulated data set used for test purposes through-
out this chapter, in Sect. 2.3 the effect on the transit signal of a benchmark pre-detection
filter, the nonlinear iterative filter of Aigrain & Irwin (2004), is quantified. Described in
Sect. 2.4 is the iterative reconstruction filter designed in this thesis, evaluating its effect
on the fransit signal. The IRF is a post-detection filter that uses the knowledge of the
transit period to reconstruct signals at that period while filtering out signals at other
timescales. The impact of these two filters on the accuracy of planet parameter mea-
surements are compared in Sect 2.5, and the main results are summarised in Sect 2.6.

2.2 Data set

2.2.1 BT2 light curves

The starting dataset used in this study is a sample of 236 simulated CoRoT light curves
taken from the second CoRoT blind test (hereafter BT2; Moutou et al. 2007), which was
carried out to compare methods for discriminating between planetary transits and
grazing or diluted stellar eclipses. Twenty six (26) of these light curves have planetary
tfransits and 210 have eclipsing binary signals. We selected for this study of transit de-
formation only the BT2 light curves with planetary transits.

The production of the light curves followed roughly the same steps as that for the
first CoRoT blind test (BT1), described in detail in Moutou et al. (2005), incorporating
transits simulated with the Universal Transit Modeler (UTM', Deeg 2009), instrumentall
noise simulated using the CoRoT instrument model (Auvergne et al., 2003), and stellar
variability curve simulated using a combination of the methods of Lanza et al. (2004)
and Aigrain et al. (2004). The stellar variability modelled in the BT2 light curve is pes-
simistically strong both in terms of amplitude and times scale. The CoRol data show
that most stars are not quite so variable (Aigrain et al., 2009). An updated version of the
CoRoT instrument model was used in the BT2, incorporating more realistic satellite jitter

1See http://www.iac.es/galeria/hdeeg/.
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and enabling the production of 3-colour light curves, though the 3 bandpasses were
summed in the present study to construct a ‘white’ light curve. The two approaches,
used in the BT1 to model stellar variability, were merged in the BT2 using the scaled spot
model of Lanza et al. (2004) to simulate rotational modulation of active regions and
the stochastic model of Aigrain et al. (2004) to simulate granulation. The simulated
fransits correspond to planet radii ranging from 0.2 to 1.1 Ry, orbital periods from 2.6
to 11.0d, and impact parameters from 0.25 to 0.88.

As in the BT1, the flux in each aperture was modelled as arising from two stars, only
one of which contained a transit-like signal. This is to reflect the fact that there is almost
always one or more background star in the CoRol aperture. This has the effect of
diluting the transit signal, and to account for it we subtract from each BT2 light curve
a constant corresponding to the fraction of the median flux contributed by the star
which is not eclipsed (see Tab. 2.1 for contaminant fluxes (percentages of total flux)
corrected from each BT2 light curve studied).

An example of a light curve with transit from the BT2 is shown in Fig. 2.1. The full set
of light curves is shown in Fig. 2.8.

Table 2.1: Table of flux percentages coming from a contaminant star, for each of the
BT2 light curve studied. Each light curve was corrected from the contaminant flux,
before deriving transit and planet parameters. The fraction of flux coming from a con-
taminant star in each colour channel (CoRoT red, green and blue) was given in the
parameter file used to build the BT2 light curves. For each light curve, the total con-
taminant flux was computed as the median of the sum of the contaminant fluxes in
each colour channel, normalised by the median of the total flux.

BT2 contaminant  BT2 contaminant
LC n° flux (%) LC n° flux (%)

1056 02 177 0.6
110 0.1 186 0.3
126 22 192 0.8
131 90.6 193 13.1
133 0.2 196 0.9
135 0.1 200 3.3
145 23 208 1.8
162 0.3 220 1.9
154 1.9 223 774
162 0.1 225 0.6
165 911 233 0.6
169 0.5 236 14

2.2.2 Reference light curve sample

As the data is simulated, each component of the signal is known and can be stud-
ied individually. Thus two sets of reference light curves were constructed, using only
the transit signal (no noise, no stellar variability) and the transit signal with instrumen-
tal noise only (no variability). We use the first set to evaluate the reference values of
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Figure 2.1: BT2 light curve (black), in which transit signal of a Saturn-like planet orbiting a
particularly active Sun-like host star with an orbital period of 4.576 d. Transit signal only
(blue) and with instrumental noise (grey) plotted underneath for comparison. Left:
unfolded light curves. Right: phase-folded versions.

the parameters derived from transit fits. These could have simply been deduced from
the input parameters given to the fransit modelling software UTM when simulatfing the
light curve. However, there can be differences between those and the parameters
recovered from the fransit fit due to the fitting process, rather than to the noise, and
we wish to keep those effects, which are not specifically of interest here, separate from
the effects of the stellar and instrumental noise. The second set was used to provide a
benchmark for how well one can measure the parameters of interest in the presence
of instrumental (white) noise, i.e. if the stellar variability was removed perfectly. These
reference sets are shown in blue and grey respectively in Fig. 2.1.

After visual analysis of our two reference sets of light curves, we discarded two of
the 26 light curves, where the transits were so small as to be undetectable even in the
light curves with no stellar variability, as such cases would not realistically reach the
post-detection stage.

2.3 Quantifying transit deformation with the Non-linear lterative
Filter

In this section, we quantify the impact of the deformation caused by the nonlinear
iterative filter (NIF) of Aigrain & Irwin (2004) on the derived planet parameters. The
NIF performance as a pre-detection filter was recently compared to a range of other
published methods (Bonomo & Lanza, 2008), and it emerged as the method of choice
among those compared, which makes it a suitable benchmark for the present work.
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2.3.1 Definition of the NIF

The NIF has been extensively used at a pre-detetection / transit search level. Here we
briefly describe the main steps of the NIF, we refer the reader to Aigrain & Irwin (2004)
for further details.

The NIF separates stellar variability from the transit signal in the time domain, using
an iterative procedure with the following steps:

1. apply ashort base-line (here we use 7 data-points, ~1 hour) moving median filter
fo smooth out the white noise and reduce the sharpness of any high-frequency
features in the data;

2. apply a longer base-line moving median filter (here we use 24 hours, NIF tfrade of
point to remove stellar variability while keeping away from the transit time domain
in these light curves) to the output of the step (1), followed by a shorter base-line
(here we use 2 data-points, ~17 minutes) boxcar filter (moving average);

3. subtract the output of step (2) from that of step (1) and evaluate the scatter of
the residuals as o = 1.48 x MAD:; 2

4. flag all outliers differing by more than no from the continuum;

5. return to step (2) and repeat the process, interpolating over any flagged data
points before estimating the continuum and excluding them when estimating
the scatter of the residuals, until convergence is reached (typically less than 3
iterations);

6. subtract the final continuum from the original light curve.

As the procedure converges, more and more of the in-transit points become flagged
at step (4), so that the effect of the transits on the final continuum estimate is minimal.
However, the choice of long base-line for the moving median filter in step (2) and of n
in step (4) must reflect a tfrade-off between appropriately following the stellar variations
and incorporating too much of the transit signal when evaluating the continuum. This
frade-off results in some of the transit signal been unavoidably filtered along with the
variability. For the value of n in step (4), one would normally use n = 3 to flag more
in-transit points. In the case of the BT2, some light curves contain very strong and rapid
variability. Thus, using a low n would clip not only in-fransit points but also out-of-fransit
points where the variability is too rapid to be well modelled by the continuum estimate
(e.g. Fig. 2.2 left, green curve compared to black one). Hence, we used a large n

°The MAD is the median of the absolute deviation from the median of the points, in other words it is
the median of the absolute value of the residuals from the median. 1.48*MAD is the equivalent of the
standard deviation when using the median of the points rather than the mean. In this thesis, the use of the
median and ¢=1.48*MAD is preferred to the mean and the standard deviation, as the first combination
is more resilient to outliers in the data due to the way it is calculated.
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(180) in this study, which effectively means no points are clipped and convergence
occurs at the first iteration.

2.3.2 NIF quantitative impact on transit parameters

We applied the NIF to our sample of 24 BT2 light curves. The post-NIF light curves are
shown in green on Figs. 2.2 and 2.8. Clear variability residuals are visible in the unfolded
post-NIF curves, corresponding to sections of the light curve where the variability is too
rapid to be filtered adequately. The phase-folded light curves also show that the shape
of the fransits is affected by the filter. In practical terms, the transit appears both shorter
and shallower than before filtering.
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Figure 2.2: Asin Figure 2.1 but the NIF-filtered light curve is now shown in green. The right
panel shows that the NIF filtering reduces well the amplitude of the variability (green
compared to black). The left panel shows that the NIF difficultly filters out fast stellar
variability (spikes in green curve).

We then folded all light curves at the period of the injected fransits and performed
least-squares fits of trapezoidal models o the results to estimate the basic transit pa-
rameters: depth ¢, internal and external duration d; and d, (respectively excluding and
including ingress and egress), and the phase ¢. The light curves were normalised such
that the out-of-eclipse level is always 1. The same folding and frapeze fitting procedure
wass applied to the two reference sets described in Section 2.2.2.

In 4 of the BT2 light curves (Fig. 2.9), the stellar variability was so strong that, after
applying the NIF, the phase-folded transits were barely detectable, and meaningful fits
to these transits impossible. These 4 light curves were excluded from the comparison
sample between the reference and filtered versions of the light curves.

We list the measured values of the transit parameters (4, d;, d.) of direct relevance to
the determination of planet parameters for all 20 light curves in Fig. 2.8 (transit param-
eters in Tab. 2.2). We also show, in Fig. 2.3, cumulative histograms of the relative error
o(0) =10 — 6y|/00. where 6 is the parameter of interest and the subscript 0 refers to the
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Figure 2.3: Cumulative histograms of the relative error o (see text for exact definition)
on the fransit parameters measured from frapezoidal fits to the light curves with no
variability (grey), and to NIF-filtered light curves (green). Upper panel: fransit depth 4;
middle panel: external duration d, (fotal transit duration); lower panel: internal duration
d; (duration in full-transit). ¢ > 1 when a parameter is mis-estimated by more than its
frue value.

value measured from the reference light curve with fransits only (no noise), contrast-
ing the NIF case (green dashed line) to the case with no variability (black solid line).
The median relative errors obtained with the NIF over our sample are onr () = 12%.
ontr(de) = 10% and onir(di) = 52%, indicating that the planet parameters would be
seriously affected if derived from NIF-filtered light curves. We note that the internal du-
ration d; tends to be systematically underestimated even for the reference set of light
curves with no stellar variability. This bias is due to the white noise in the data smoothen-
ing the edges of the transit and making it appear more grazing, i.e with smaller orbital
inclination so a shorter fransit internal duration d;.

We therefore set out to develop a new post-detection filter: an alternative algo-
rithm, hereafter referred to as ‘reconstruction filter’, designed to remove variability at
other periods than that of the fransit and preserve the fransit signal, once the transit
period has been deftermined.
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2.4 A new stellar variability filter: the Iterative Reconstruction Fil-
ter

In an aftempt to avoid the undesirable effects of the NIF on the fransit shape, an itera-
tive reconstruction filter (IRF, Alapini & Aigrain 2009) was develop to remove the stellar
variability post transit detection whilst altering the fransit signal as little as possible using
the knowledge on the planet orbital period.

2.4.1 Definition of the IRF

The IRF is an iterative approximation of the full signal at the period of the transit. It
uses the NIF to simultaneously estimate the continuum variation (i.e., stellar variability).
Let {Y (i)} (wherei =1, ..., N, N being the number of data points in the light curve)
represent the observed light curve (which is assumed to be normalised), {A(i)} the
detfrended light curve and {F'(i)} the signal to be filtered out. We give the main steps
of the IRF below:

1. Select aninitial estimate for {F(i)}. {F (i)} = 1 is adopted as the initial estimate of
the stellar variability, instead of a closer estimate using a median filter for instance.
This is to avoid removing some transit signal before its first evaluation by the IRF,
as this signal would never have been evaluated by the IRF as part of the fransit
signal and the IRF will not know that it has to be recovered.

2. Compute a corrected time-series Y (i) = Y (i) /F(i).

3. Estimate {A(i)} by folding {Y (i)} at the transit period and boxcar averaging it in in-
tervals of a fixed duration in phase units (binning is used to reduce high frequency
noise). For the BT2 light curves, a duration of 0.09% of the phase was found to be
suitable (this value was selected by frial and error, longer duration implying lower
noise in the estimate of {A(i)} but more distortion of the transit signal).

4. Unfold {A(i)} to obtain {A(i)}. Compute a new estimate of {F(i)} by applying
the NIF (described in Section 2.3.1) to {Y (i)/A(i)}. The baseline for the median
filter used in the NIF at this step can be chosen on a case-by-case basis, and can
be significantly shorter than in the pre-detection case, because it is applied to a
light curve from which most of the transit signal has been removed. In the present
study, we adopt a baseline of 12 hours, the rest of the NIF parameters being the
same as in Section 2.3.1.

5. Return to step (2) with the new estimate of {F (i)}, and iterate until the condition
|D,;—1 —D;| < 10~ is satisfied for two consecutive iterations, where j is the iteration
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number (initialisation at j = 0), and

S [V (0)/A5(0) - F ()

;= N -1

In the case of the BT2 light curves, the convergence was reached after 4 iterations
(i.e D; was calculated up o j = 6).

The final detrended light curve is given by {Y (i)/F (i)}, where {F (i)} is the last (presum-
ably best) estimate of the stellar variability. The steps of the IRF are sketched out in
Figure 2.4.
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Figure 2.4: Flow chart of the IRF. {Y' (i)} represents the observed light curve, {A(i)} the
detrended light curve and {F(i) } the signal fo be filtered out. i is the data points index
(1 to N) and j is the iteration index.
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2.4.2 Comparison with the Trend Filtering Algorithm (TFA)

This algorithm is in some ways analogous to the TFA (Kovdacs et al., 2005) in post-detection
mode. For clarity, we briefly list the main similarities and differences between the two
algorithms.

e The TFA is designed to remove systematic tfrends which are common to large num-
bers of light curves in the fransit surveys, rather than stellar variability which is in-
dividual to each object. Both algorithms work by decomposing each light curve
into three components: the signal of interest {A(i)} (the transits), the signal fo be
filtered out {F(i)} (the systematics in the case of the TFA and the stellar variabil-
ity in the case of the IRF), and the residuals. In the TFA, the signal fo filter out
(systematics) is modeled as a linear combination of a number of template light
curves selected from the survey sample. In the IRF, the signal to filter out (stellar
variability) is taken as the continuum of the light curve estimated with the NIF. In
this analogy, the NIF would be equivalent to TFA in pre-transit-defection mode.
When used in reconstruction mode (post-detection), both methods make use of
the knowledge of the transit period to iteratively improve the evaluation of the
fransit signal and of the signal fo be filtered out (which is assumed not to be peri-
odic).

e Whereas {F(i)} and { A(i)} are treated additively in the TFA, they are treated mul-
tiplicatively here since the signal to be filtered out is intrinsic to the star, and the
planet blocks out a certain fraction of the flux emitted by the star. This results in a
different initialisation of {F(i)}. In Kovacs et al. (2005), the first estimate of {F (i)}
is obtained from the pre-detection implementation of the TFA. In the IRF, it would
be counter-productive to use the NIF-filtered light curve as the initial estimate of
{F (i)}, since we have shown that the NIF affects the transit signal we are trying
to reconstruct (see Section 2.3.2), so the initial estimate of {F (i)} is taken to be
constant at 1.

e Finally, the IRF treats high frequency effects by smoothing the phase-folded signal,
while the TFA treats them by filtering out common outlier values.

24.3 Performance of the IRF on the BT2 transits

The IRF was applied to the 24 BT2 light curves described in Section 2.2, with the filtering
parameters described in Section 2.4.1. The red curves in Fig. 2.5 and Figs. 2.8, show the
light curves after applying the IRF.

As shown in Fig. 2.5, the IRF preserves any signal at the period of the fransit. If the
stellar variability contains power at this period, it is also preserved, inducing a flux gradi-
ent around the transit which must be removed before fitting the transits. This correction
setting the out-of-tfransit level constant at 1, was done by fitting a 2°4 order polynomial
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fit — the lowest-order found fo give satisfactory results — to the data about the phase-
folded transit. The data used for the polynomial fit are two segments, each lasting 0.1
in phase, and offset by 0.15 in phase from the center of the transit on either side. This
is a significant improvement over the common practice of performing a local poly-
nomial fit to the vicinity of each transit, since the latter option has many more free
parameters (one set of free polynomial parameters per transit, rather than one for the
entire light curve). Fig 2.5 right panel gives an example of polynomial fit of the contin-
uum about the transit (black segment superimposed to red curve) and of the resulting
re-normalised transit (orange).
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Figure 2.5: IRF-filtered light curve is red. Black and grey same as Fig. 2.1, plotted for
comparison; the black curve is the starting point, the grey curve is the level of clean
filtering we want to reach. These graphs show that the IRF conserves all variations af the
period of the fransit. The right panel shows that the IRF recovers the fransit signal better
than the NIF in Fig. 2.2. The IRF-filtered transit can be corrected from the non-constant
local continuum by dividing it by a 2nd order polynomial fit about the fransit (black line
superimposed 1o the phase-folded IRF-filtered fransit signal). The locally re-normalised
fransit is shown in orange.

The fransit parameters were then estimated from a frapezoidal fit to the resulting
phase-folded transit, in the same way as described in Section 2.3.1 for the NIF case. The
results are listed in Tab. 2.2 and shown as the red dash-dot curves in Fig. 2.6. For the 20
BT2 transit light curves which were also used to evaluate the performance of the NIF, the
IRF gives median relative errors of oirp(d) = 3%, orr(de) < 1074% and orp(d;) = 42%,
representing a significant improvement over the NIF case. Additionally after applying
the IRF, in 2 of the 4 cases which are not included in the comparison sample as the
tfransits were barely detectable after applying the NIF (Fig. 2.9), the transits are now
clearly detectable and yield meaningful fits. In the two other light curves, the IRF-
filtering gives a light curve closer to the reference version than the NIF, but the fransits —
already hidden in the instrumental noise in the reference set — stay barely detectable
even in the IRF-filtered version.

Looking at Fig. 2.6, we see that while a relative error on the transit depth in excess of
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Figure 2.6: Same legend as Fig. 2.3 but for the IRF.

10% (essentially precluding any meaningful constraints on the planet structure) occurs
in 60% of the cases studied with the NIF, it occurs in only 5% of the cases with the IRF.
Similarly, the NIF yielded o(d) < 3% (potentially allowing discrimination between differ-
ent kinds of evolutionary models as well as a reliable basic structure determination) in
only 15% of the cases, but the IRF did so in 50% of the cases.

It is also clear that the external transit duration is recovered near-optimally in the
light curves treated with the IRF, with o(de) < 0.1% in 80% of the cases and o (d.) < 10%
in 95% of the cases, compared to a significantly decreased performance with the NIF.
However, although the IRF also systematically improves the determination of the inter-
nal fransit duration compared to the NIF, this improvement is much less significant, and
the relative errors remain large (more than 10% for 80% of the cases studied). This im-
plies that the IRF would probably not significantly increase the number of cases where
both internal (27 to 37¢ contact) and external (1%t to 4" contact) duration can be
determined precisely enough to break the degeneracy between system scale and
inclination, and thus to constrain the stellar density in a model-independent fashion.

2.5 Discussion on the IRF performance

2.5.1 Star-planet parameters

Although the basic trapezoidal fits performed in the previous two sections provide a
quick estimate of the degree of deformation of the fransit signal due to the variabil-
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ity filtering process, one would in practice perform a full transit fit based on a physical
model of the star-planet system. Mandel & Agol (2002) provided an analytical formu-
lation which has become very widely used for such purposes, and was also used to
generate the tfransits injected in the BT2 light curves.

We used the quadratic limb darkening prescription of Mandel & Agol (2002) to fit
fransit models to the 20 BT2 transit light curves where the transits were clearly detectable
with both filters. We also performed these fits on both reference sets described in Sec-
tion 2.2.2, as well as on the BT2 light curves themselves after applying the NIF on one
hand, and the IRF - followed by a polynomial fit to the region around the transit (as
described in Section 2.4.3) — on the other hand. The best transit fits were derived using
MPFIT, an IDL implementation of the Levenberg-Marquardt algorithm?. The parameters
of the model used are the transit epoch Ty, the period P, the system scale a/ R, (where
a is the semi-major axis), the star-to-planet radius ratio R, /R, the orbital inclination i
(orimpact parameter b = a cosi/Rs), and the quadratic limb-darkening coefficients u,
and uy. In this study, we fixed the period and limb-darkening coefficients at the values
used to build the light curves?. The initial epoch was taken directly from the trapezoidal
fits. The initial value for a/ R, was derived from the period using Kepler’s 3'4 law, assum-
ing Rs = Ry and Mg = Mg. In order to ensure convergence in both grazing and full
tfransits we selected, after some trial and error, an initial inclination corresponding to
an impact parameter b = 0.7. We assumed zero eccentricity in all cases (all the transit
light curves in our sample were simulated for circular orbits).

The results of the transit fits are listed in Table 2.3, while the fits themselves are shown
in Figures 2.8 and 2.9. They are also compared in cumulative histogram form in Fig. 2.7.
Instead of the relative error o, we show the absolute error £ = |6 — 6y| = o x 6y with
respect to the no noise case (subscript 0), for § the key planet parameters R,/ Rs. a/R;
and b.

The IRF provides an overall improvement over the NIF in all three parameters, re-
ducing the median of {(R,/Rs) from 0.007 to 0.003, £(a/Rs) from 1.7 to 1.0, and &(b)
from 0.07 to 0.04 for b. For comparison, the corresponding median values for the case
with no variability are 0.003, 1.4 and 0.07 respectively. However, the situation is not as
defined as when viewed in terms of transit parameters: there are a few cases where
the NIF gives a better match with the parameters obtained from the noise-free light
curves, and even cases where the largest error occurs in the light curves containing
instrumental noise only. In an attempt to understand the reason for this, we examined
all the light curves one by one (Figures 2.8 and 2.9). The light curves separate fairly

3MmprIT is kindly provided by C. Markwart on http: / /cow.physics.wisc.edu/~craigm/idl/fitting.html

4Visual examination of the phase-folded light curves revealed that the folding was not perfect even
in the no noise case, suggesting that the period values used may have been slightly inaccurate. We
attempted to refine the periods but did not succeed. It seems that the observation dates in the light
curve files themselves, rather than the periods, suffer from a small rounding error. It is not possible to
remedy this problem without re-generating the entire light curve set, but it is not expected to affect the
results strongly, and any effect would be common to all versions of a given light curve.
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naturally into three broad classes:

1. cases where the IRF performed better than the NIF (fransit shape and derived
planet parameters closer 1o the shape and parameter obtained in the absence
of stellar variability): light curves 126, 162, 169, 196, 200, and 223. These are cases
where the original light curves contain large amplitude, short fimescale stellar
variability (active and rapidly rotating stars).

2. cases where the NIF performance was already satisfactory, and the IRF gives re-
sults similar to the NIF: light curves 145, 1562, 186, 193, 208, 225, and 233.

3. cases where, while the transit reconstructed with the IRF appears closer to the
original than the transit in the NIF-treated curve, the fitted parameters are not
significantly improved or worsened: light curves 131, 133, 135, 154, 177, 192, 220.
These are typically low signal-to-instrumental noise transits, where it becomes dif-
ficult to break the degeneracy between impact parameter and system scale.
The radius ratio is typically less affected, except in the highest impact parameter
cases (grazing transits).

Thus, we can see that where the limiting factor was stellar variability, the IRF is very
successful in improving the errors on the planet parameters. As might be expected,
the improvement is minor or non-existent where the limiting factor was the signal-to-
white noise or the grazing nature of the transits.
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Figure 2.7: Cumulative histograms of the absolute error £ on the planet parameters de-
rived from the light curves with no variability (grey), NIF-filtered (green) and IRF-filtered
(red). The planet to star radius ratio R, /R, is plotted in the upper panel, the planet
orbit to stellar radius ratio a/ R, in the middle panel, and the impact parameter b in the
lower panel.

2.5.2 Application to orbital signal reconstruction

The fact that the IRF preserves any signal at the period of the transit has positive conse-
quences: it implies that potentially interesting signals, such as secondary eclipses, re-
flected light variations, or thermal emission variations, are preserved. The IRF therefore
presents itself as an interesting tool to detect these signals. However as the remaining
variations at the period of the transit after IRF-filtering can also be due to stellar variabil-
ity signal at the planet’s orbital frequency, any detection of planet phase variations will
need to be analysed carefully. The residual stellar variability at the orbital period of the
planet is a worse problem for the detection of the phase curve than for the detection
of the secondary eclipse as the latter happens on a shorter timescale.

As the BT2 light curves were not built with any of these orbital signals, the study of
the IRF performance in detecting planet orbital signals will have to be done on another
sample of light curves.

2.5.3 Potential application to transit detection

Another potential application of the IRF would be at the detection stage. Among the
24 light curves of our sample, there were 2 where the transit signal was larger than
the instfrumental noise but where the residual stellar variability after NIF-filtering was too
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stfrong to perform any kind of meaningful fit. Naturally, these events were not detected
in the NIF-filtered light curves during the original blind test for which the light curves
were generated. There are two more cases which we did include in our 20-strong
comparison sample, as their fransits after NIF-filtering could still be fitted, but for which
fransits were not detected in the original exercise: light curves 192 and 200. After ap-
plying the IRF, two of these 4 cases became detectable® (light curves 165 and 200),
the other 2 cases remained undetectable due to the level of instrumental noise. Using
the IRF as part of the detfection process might therefore enable the detection of tran-
sits which would otherwise be missed around particularly active stars. However, since
the IRF would have to be run at each trial period, and is relatively computationally
intensive, this would require a very large amount of CPU time unless the algorithm can
be significantly optimised. However, as radial velocity measurements are also affected
by stellar activity (which induces radial velocity jitter and line bisector variations at the
rotation period of the star), the new photometry detections will be difficult to follow-up
in radial velocity, so it is not clear at this stage if the above CPU investment would be
justified.

2.6 Conclusion

In the absence of a prior knowledge of the planet’s orbital period, the fransit and the
stellar signal cannot be separated effectively if they overlap too much in the frequency
domain. Because of this, commonly used pre-detection stellar variability filters, such as
the NIF, alter the fransit signal, causing systematic errors in the resulting star and planet
parameters. We have quantified this effect using 20 CoRoT BT2 simulated light curves
including transits, instrumental noise and stellar variability. We found that the effect on
the transit signal can be very significant, leading fo errors on the star-planet radius ratio
of up to 50%.

We thus developed the IRF to fake advantage of the strictly periodic nature of plan-
etary transits (in the absence of additional bodies in the system) to isolate the transit
signal more effectively, following a method similar to the TFA algorithm previously de-
veloped for the reconstruction of fransits in the presence of systematics. The IRF re-
quires accurate knowledge of the fransit period. We evaluated the performance of
the IRF relative to the NIF and the no variability light curves by comparing a) the tran-
sit parameters from trapezoidal fits, b) the star-planet parameters from analytic transit
fits, and ¢) the light curves themselves by visual examination. The results can be sum-
marised as follows: the transits reconstructed with the IRF are systematically closer to
the no variability case than the NIF-processed fransits, and the improvement in the
fransit depth and duration can be very significant particularly in cases with large am-

5The detectability of the events was evaluated using the transit search algorithm of Aigrain & Irwin
(2004), which was used in both CoRoT blind tests.
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plitude and high frequency stellar variability. However, the full fransit fits are affected
by other factors including instrumental noise and the well known degeneracy between
system scale and impact parameter, which dominate the final parameter estimates in
approximately one third of the cases in our sample, or about half of the cases where
the IRF provided a visual improvement over the NIF. The IRF will be most useful when
applied to light curves which are strongly affected by stellar variability. The improve-
ment in the planet parameters is likely to be better seen when the signal-to-noise ratio
—for other noise than the stellar variability — of the light curve is high, as the noise allows
degenerate solutions to the transit fit and thus keeps us fromn measuring the realimpact
of the IRF.

The IRF preserves any signal at the period of the transit, which implies that potentially
interesting signals, such as secondary eclipses, reflected light variations, or thermal
emission variations, are preserved.

Any power in the stellar variability signal at the frequency corresponding to the
planet’s orbital period is also preserved by the IRF. If required, this remaining variability
can be removed locally using polynomial fits about the desired phase, but it is likely
to limit the extent to which the IRF can be used to recover signals associated with the
planet which vary continuously in phase.
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2.7 Appendix

2.7.1

Best-fit parameters to BT2 transits

Table 2.2: Transit parameters (fransit depth §, total fransit duration d., and internal fransit
duration d;) derived from trapezoidal fits o the light curves with transit signal only (‘'no
noise’), transit signal and instrumental noise only (‘no stvar’), the BT2 light curves fil-
tered using the pre-detection nonlinear iterative filter CNIF"), and the same light curves
filtered using post-detection iterative reconstruction filter CIRF").

LC period S de/P d; /P
(days) no noise no stvar NIF IRF no noise no stvar NIF IRF no noise no stvar NIF IRF

126 4576 0.00501 0.00495 0.00326  0.00504 0.0153 0.0153 0.0138 0.0153 0.0064 0.0064 0.0084  0.0079
131 6.880 0.00477 0.00469 0.00437 0.00448 0.0134 0.0121 0.0108 0.0121 0.0056 0.0017 0.0098  0.0098
133 8.128 0.00168 0.00161 0.00155  0.00160 0.0058 0.0058 0.0047 0.0057 0.0016 0.0010 0.0026  0.0015
135 3.733 0.00155 0.00148 0.00144  0.00152 0.0147 0.0147 0.0147 0.0147 0.0062 0.0062 0.0073 0.0090
145 5.557 0.00938 0.00949 0.00931 0.00923 0.0167 0.0153 0.0167 0.0167 0.0054 0.0064 0.0067 0.0086
162 7.360 0.00185 0.00185 0.00158 0.00176 0.0115 0.0125 0.0104 0.0115 0.0060 0.0065 0.0090  0.0071
164 10.987 0.00056 0.00065 0.00054  0.00061 0.0172 0.0172 0.0155  0.0237 0.0088 0.0038 0.0067 0.0051
162 4171 0.00933 0.00922 0.00585  0.00894 0.0167 0.0167 0.0138 0.0167 0.0037 0.0037 0.0074  0.0070
169 5.195 0.00772 0.00770 0.00504  0.00769 0.0209 0.0209 0.0191 0.0209 0.0066 0.0066 0.0109  0.0107
177 7.339 0.00271 0.00267 0.00252 0.00260 0.0209 0.0209 0.0191 0.0209 0.0066 0.0046 0.0090  0.0107
186 4.373 0.00683 0.00679 0.00649  0.00690 0.0209 0.0209 0.0191 0.0209 0.0087 0.0087 0.0134 0.0127
192 3.915 0.00085 0.00102 0.00071 0.00076 0.0086 0.0094 0.0078 0.0078 0.0029 0.0023 0.0078  0.0070
193 6.763 0.00749 0.00747 0.00847 0.00858 0.0167 0.0167 0.0167 0.0167 0.0070 0.0070 0.0065  0.0086
196 4.608 0.01378 0.01384 0.00509  0.01288 0.0248 0.0248 0.0201 0.0248 0.0127 0.0127 0.0201 0.0175
200 5.995 0.00317 0.00313 0.00185  0.00311 0.0095 0.0095 0.0059  0.0086 0.0023 0.0023 0.0052 0.0038
208 4.064 0.00313 0.00301 0.00278 0.00302 0.0267 0.0267 0.0242 0.0267 0.0136 0.0136 0.0158  0.0162
220 7.253 0.00215 0.00212 0.00181 0.00216 0.0230 0.0250 0.0210  0.0230 0.0050 0.0030 0.0148  0.0140
223 5.237 0.00771 0.00736 0.00065  0.00761 0.0184 0.0184 0.0088 0.0200 0.0059 0.0059 0.0082 0.0102
225 2.613 0.01061 0.01053 0.01032 0.00998 0.0344 0.0344 0.0311 0.0344 0.0073 0.0073 00224 0.0174
233 3.083 0.00461 0.00460 0.00431 0.00459 0.0153 0.0153 0.0153 0.0153 0.0035 0.0035 0.0040  0.0049

Table 2.3: Star-planet parameters (planet to star radius ratio R,/ R.. system scale a/R,,
and impact parameter b) derived from full fransit fits. The columns corresponding to
the 4 sets of light curves used in the fits are labelled as in Table 2.2.

LC period Ry /Ry a/R, b
(days) no noise no stvar NIF IRF no noise no stvar NIF IRF no noise no stvar NIF IRF
126 4576 0.0799 0.0800 0.0698  0.0817 12.27 12.09 13.14 11.89 0.862 0.870 0.858  0.872
131 6.880 0.0760 0.1687 0.0779  0.0749 15.64 9.64 10.65 12.30 0.825 1.058 0.893  0.873
133 8.128 0.1389 0.2836 0.0557 0.0642 17.70 15659 2099  20.65 1.074 1.233 0.961 0.979
135 3.733 0.0469 0.0369 0.0372  0.0393 10.00 20.34  20.62 16.75 0.916 0.422 0.397 0.676
145 5.657 0.1050 0.1044 0.1080 0.1079 14.35 14.24 13.34 13.38 0.788 0.795 0822  0.820
162 7.360 0.0481 0.0476 0.0495  0.0475 15.48 15.80 13.29 16.35 0.860 0.836 0908  0.865
154 10.987 0.0263 0.0313 0.0323  0.0245 11.54 9.24 8.50 2347 0.829 0914 0933  0.023
162 4171 0.1335 0.1245 0.1102 0.1272 10.91 1113 11.58 11.21 0.927 0.910 0.911 0.913
169 5195 0.0918 0.0921 0.0781 0.0925 12,61 12.36 11.84 12.25 0.720 0.736 0750  0.735
177 7.339 0.0486 0.0555 0.0549  0.0549 17.53 10.92 11.66 11.83 0.150 0.794 0760  0.749
186 4.373 0.0839 0.0872 0.0869  0.0876 12.71 11.21 11.69 11.69 0.667 0.760 0738 0.735
192 3.915 0.0504 0.0488 0.0152  0.0240 10.97 12.64 12.09 8.51 0.988 0.978 0.656  0.926
193 6.763 0.0904 0.0929 0.0990  0.0996 15.26 13.90 14.60 14.42 0.723 0.780 0759  0.764
196 4.608 0.1162 0.1160 0.0970 0.1150 11.87 11.91 14.47 11.98 0.546 0.533 0.000  0.547
200 5.995 0.0860 0.3645 0.0444  0.0755 14.59 1210 2272 15.91 0.965 1.290 0916  0.945
208 4.064 0.0582 0.0588 0.0597 0.0592 9.33 9.30 8.63 8.93 0.710 0.716 0.780  0.763
220 7.253 0.0475 0.0436 0.0433  0.0462 10.71 12.86 15.67 12.93 0.722 0519 0.019  0.550
223 5.237 0.0976 0.0811 0.0452 0.1008 11.33 19.75 18.84 9.82 0.835 0.017 0.231 0.854
225 2.613 0.1033 0.1028 0.1017 0.0989 8.28 8.22 8.59 8.84 0.624 0.625 0575  0.552
233 3.083 0.1426 0.1500 01414 0.1378 9.29 9.38 9.30 9.23 1.020 1.029 1.020 1012
2.7.2 Full BT2 light curve sample
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Figure 2.8: The 20 BT2 light curves in the comparison sample (left:unfolded; right :
phase-folded section around the transit). The light curve number is shown on the plots
in the left column (original BT2 numbering scheme) and the planet to star radius ratio
(rr), system scale (ss), and impact parameter (b) in the right column.
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Figure 2.9: The 4 BT2 transit light curves where the transit was undetectable after apply-
ing the NIF and miningfull fits to the resulting transits were not possible. Same legend as
Fig. 2.8. These transits became boarder-line detectable in the IRF-filtered light curves.



Chapter 3

IRF applied to the transit of CoRoT
planets

In this chapter, the IRF is applied to the CoRoT light curves of the first seven planets
and brown dwarf discovered by CoRol. The phase folded transits of the IRF-filtered
light curves are fitted to derive the planet parameters using a Levenberg-Marquardt
algorithm and the analytical fransit models of Mandel & Agol (2002). The results are
compared to the parameters published in the planet/brown dwarf discovery papers.

Some of the work presented in this chapter has been published: in Fridlund et al.
(2010) for the work on CoRoT-6b and in Léger et al. (2009) for the work on CoRoT-7b.
The IRF was used as an independent analysis of the transit light curves. The method was
optimised further since these publications, especially in the understanding (strengths
and limitations) of the IRF and of the techniques used 1o find the best model to the
fransit.

3.1 Description of the CoRoT data

3.1.1 Instrument

CoRoT (Convection, Rotation and planetary Transits)! is a modest scale mission (626 kg
satellite, 80 million euros in cost) primarily funded by the French space agency CNES
(Centre National d'Etude Spaciale), with contributions from ESA (European Space
Agency), Belgium, Austria, Germany, Spain and Brazil. The satellite was launched on
December 27th 2006 into a polar orbit at ~ 900 km of altitude.

CoRoT is the first space-based telescope designed for high precision photometry with
long time coverage after MOST? (150 days for the long runs and 20-30 days for the
short runs, with duty cycle greater than 93%). Aigrain et al. (2009) evaluated the noise

10Official CoRoT website: http://corot.oamp.fr
°The MOST (Microvariability and Oscillations of STars telescope) satellite, launched in 2003, has a diam-
etfer of 15cm and stares at each single field for about 30 days.
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level of real CoRol data on 2h timescale at 0.1 mmag and T mmag for R magnitude
of 11.5 and 16 respectively. CoRal is designed to perform two types of science: stellar
seismology (fo study stellar interiors), and exoplanet fransits search. In this thesis, we
are interested in the planet-finding channel of CoRol. Over the nominal duration of
the mission, in the exoplanet channel, CoRoT will have observed over 12000 stars (V
> 16.5) per run. CoRol nominal duration is three years, and has been extended for
another three years. CoRoTl operates at half field of view since March 2009, due to a
problem effecting two of its four CCDs.

The felescope is afocal and has a 27 cm diameter primary mirror and a baffle (to pre-
vent reflected light from the Earth reaching the CCDs). CoRoT has two 6-month viewing
zones each year, pointing from April to October towards the galactic anti-centre (RA
~ 6"50™, DEC ~ 0°) in the constellations of Aquila and Serpens Caput, and from Octo-
ber to April towards the Galactic centre (RA ~ 18"50™, DEC ~ 0°) in the constellation
of Monoceros.

In the exoplanet channel, there are two 2048 x 2048 pixels CCDs with a combined field
of view of 1.3° x 2.6°. A bi-prism, placed in the optical path, disperses the light and pro-
vides a very low-resolution spectrum of each star (light divided into blue, green and
red channels). Thisis infended to help identify fransit like events caused by stellar binary
systems or stellar activity, as stellar dependent effects are chromatic while planetary
fransits are not.

A general description of the CoRoT science objectives can be found in Baglin et al.
(2006), and a fechnical description of CoRoT in Boisnard & Auvergne (2006) and in the
CoRoT instrument handbook3. Auvergne et al. (2009) describe the CoRoT satellite in
flight performance.

3.1.2 Light curve generation

The different levels of light curve generation are summarised in Baudin et al. (2006).

Treatment on board

Due to a limited telemetry rate (1.5 Gbit per day), aperture photometry is performed
and co-added on board the satellite and then downloaded to Earth. The raw data
(time stamped aperture photometry of each star) received on Earth are labelled NO
data.

As the image of each star (PSF, point spread function) is tear-shaped due to the diffrac-
tion through the bi-prism, the aperture photometry is done with a fear-shaped mask
- chosen among 256 templates depending on the star magnitude, tfemperature and
position on the CCD but fixed for each star during a given run. A mask has typically
between 50 and 100 pixels. For most of the stars, all the light falling inside the mask

3CoRoT instrument handbook: http://corotsol.obspm.fr/web-instrum/payload.param/
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(white light, 300 to 1000 nm) is infegrated on board and downloaded to Earth. For a
selection of up to 5000 stars with R magnitude less than 15, the mask is divided into
three bands (blue, green and red channels), the light is integrated within each band
and three colour stellar flux is computed on board and downloaded to Earth.

The integration time of each exposure is 32 s. The aperfure photometry is co-added on
board every 512 s. For 500 selected stars showing sharp flux variations (potential transit
candidates), the 32 s rate is downloaded fo Earth.

Treatment on the ground

On the ground, the NO photometry is pipeline-processed to correct (and/or flag) an-
ficipated astrophysical and instrumental noise effects (e.g. background, high energy
particles during the crossing of the South Aflantic Anomaly, satellite jitter, outliers e.g.
images of debris or high energy particles). The pipeline also transform the CoRoT time
stamps into HJD (Heliocentric Julian Date), and the electron counts into stellar flux. The
flux-time series (the light curves) are then produced for each star, these data are la-
belled N1.

Information from preliminary observations (e.g. stellar magnitude) are added as key-
words in the header of the N1 data. The resulting files are labelled N2. The N2 data are
ready for scientific analysis and released to the CoRoT Co-Investigators a few months
after the end of each run and to the public? a year later.

The steps of the N1 to N2 data was also infended to correct for common noise sources
identified in all the N1 light curves (e.g. using SysRem described in Tamuz et al. 2005 and
Mazeh et al. 2009), but this is in practice implemented on the N2 data by the CoRoT
scienfific team on a case to case basis.

With practice on the real CoRol data, additional noise effects affecting all the light
curves have been identfified, such as:

e the temperature variation of the satellite when it passes through the Earth’s shadow
cone causing satellite pointing jitters and stellar flux drops as some flux falls out-
side the aperture mask. This effect can be corrected as it is a systematic effect
affecting simultaneously all the stars and hence their light curve, with a method
such as was described in Mazeh et al. (2009). Points in the light curve affected by
this effect are flagged in the new N2 data (N2v2). The data used in this chapter
are from the previous N2 data.

e hoft pixels which are due to high energy particle hits on some pixels. These hits
affect the electronic response of the pixels which translates info sharp flux jumps
and flux decay in the light curve. This effect is more difficult to systematically
correct from. Drummond et al. (2008) discuss methods to tackle this issue but
none so far can be used in a fully automated way.

4CoRoT data archive: http://idoc-corot.ias.u-psud.fr
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When solutions to correct these noise effects are kown and well tested, corrections to
these effects are included to the pipeline producing the N2 level light curves.

The photometry used in this chapter was performed using the latest version of the
CoRoT reduction pipeline. This new version of the pipeline uses the information about
the instfrument’s PSF and the cenfroids of the stars measured in the asteroseismology
channel to correct the effects of the satellite jitter in the white light curve.

3.1.3 Additional light curve pre-processing

The light curves used in this chapter are the N2 data. In these light curves, several
common effects are present:

e upward outliers due to high energy particle hits (such as during the South Atlantic
Anomaly crossing) causing an increase in the background level

e downward outliers due to the satellite entry and exit from the Earth’s shadow
causing a temporary loss of pointing accuracy resulting in a drop in flux

¢ long term downward trend due to instrumental performance decay or pointing
drift

e variations on fimescales of days to weeks caused by rotational modulation of
active regions on the stellar surface

e sudden discontinuities called “hot pixels" caused by high energy particles hits on
one or more pixels temporally affecting the sensitivity of these pixels. The decay
of the pixel back to its original non-excited level can be smooth or sudden

The approach adopted here to correct for these effects is the following. The upward
and downward outliers are identified by an iterative non-linear filter (Aigrain & Irwin,
2004), also described in Chap 2 Section 2.3.1) consisting of 5 iterations with a 5-points
boxcar filter, a T-hour median filter and a 3¢ outliers identification. The downward
outliers are flagged by the N2 pipeline. The flagged outliers are removed from the light
curve.

The long tferm downward trend, the smooth decay after “"hot pixels” and the stellar
flux modulation are modelled and corrected using the iterative reconstruction filter
(IRF, Alapini & Aigrain 2009, also described in Chap 2, Section 2.4.1), with the filtering
fimescales adapted to each stellar variability signal and transit signal. The IRF has the
advantage of using only two free parameters which are the smoothing lengths used to
estimate the signal at the planet’s orbital period and the signals at other timescales —
including the stellar variability. The former represents a compromise between reducing
the noise and blurring out potential sharp features associated with the planet, and the
latter between removing the stellar signal and affecting the planetary signal.

The iterative reconstruction filter works on uniformly sampled light curves so any part of
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each light curve sampled at 32 s is resampled to 512 s before running this filter.

The iterative reconstruction filter cannot thoroughly remove very sharp flux variations
such as those caused by “hot pixels' (the residuals of these hot pixels are visible at a
1073 level in the phase-folded light curve), so the regions of light curve affected by
sharp flux variations are clipped out before running the IRF.

3.1.4 Planetary transit detection and confirmation

The light curves from each run are systematically searched for planetary transits and
priority-ranked by several teams (France: LAM, IAS, LESIA, LUTH; UK: Exeter; Germany:
DLR, K&hin; Spain: IAC; ESA: ESTEC; Austria: Graz). Each detection team uses its own set
of pre-processing, de-trending and transit search tools (Moutou et al. 2005 describes
most of them). Each team ranks the detected planetary-transit-like events with the
same criteria: transit depth (planet-candidate to star radii ratio), signs of binary nature
(secondary eclipses, ellipsoidal variations, transit depth different in the three colours),
transit shape ("U" for central fransits, “V" for grazing transits). The rankings are automat-
ically merged to extract a list of high quality candidates for follow-up.

The follow-up consists of: ground-based in and out of transit photometry at high spa-
cial resolution to spatially resolve the stars falling in the CoRoT aperture mask and iden-
tify which star is being eclipsed, multiple radial velocity measurements to derive the
planet-candidate to star mass ratio, and a high resolution, high signal to noise spec-
trum of the host star to derive precise stellar parameters and hence precise planet
parameters.

The parameters measured for each CoRoT planet are the orbital period P, the epoch
of the centre of the first transit observed T;. the planet orbital to plane-of-view incli-
nation i, the orbital distance to stellar radius ratio a/R.. and the planet to star radii
ratio R,/R,. Some stellar parameters can also be derived from the light curve: the
stellar mass to radius ratio M, /3 /R, (derived directly from a/R, and P), the star rotation
period P,., and the stellar limb darkening coefficient u, (linear law) and w; (second
coefficient in quadratic law).

3.2 Primary transit parameters with the IRF-filtering

The work in this section was performed on the CoRoTl space-photometry of the stars
harbouring the first six planets and the first brown dwarf discovered by the CoRoTl mis-
sion.

3.2.1 Method

We filter the light curve with the IRF (definition in Chap. 2, Sec. 2.4.1) to remove the
flux variation intrinsic to the star. By default, the IRF is run with a bin size of 0.0006 in
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phase (IRF binsize parameter, which controls the smoothing length used to estimate
the phase-folded transit signal), and with a convergence limit of 1 10~%. The cvlim
parameter sets the convergence criterion. At each iterafion, the residuals of the light
curve with the last estimate of the stellar variability and the transit signals removed
are compared with those of the previous iteration. cvlim is the maximum difference
allowed between these two sets of residuals. To explore the performance of the IRF in
evaluating the stellar variability signal with a given time scale (IRF timescale parameter,
which controls the smoothing length used to estimate the stellar variability), fwo values
of this parameters are tested systematically: 0.50 and 0.25. timescale=0.10 days is also
fested to see how the IRF behaves in the case of extreme filtering.

CoRoT has a large PSF due to the defocussing of the telescope and the prism in
the opftical path. It used different aperture masks (60 to 100 pixels each) to extract the
photometric fime series of the stars. Offen in CoRoT photometry, a second star falls
into the mask of the target star, contaminating the light of the latter. This is the case for
the CoRoT light curves of the host stars of CoRol-2b, CoRoT-3b, CoRol-4b, CoRoTl-5b
and CoRoT-6b, with the following respective fractions of contaminant flux: 5.6+0.3 %
(Alonso et al., 2008), 8.2+0.7 % (Deleuil et al., 2008), 0.3+0.1 % (Aigrain et al., 2008), 8.4%
(Rauer et al., 2009), and 2.84+0.7 % (Fridlund et al., 2010). The transit of a planet in a
light curve contaminated by the flux of another star, appears shallower. Thus, the flux
from the contaminant star should be removed before deriving the planet parameters
from the fransit light curve. In this chapter, this is done by subtracting the fraction of the
contaminant (e.g. -0.056 for 5.6%, the uncertainty on this flux is faken into account in
the error estimate of the best fransit model) from the normalised IRF-filtered light curve,
and re-normalising the resulting light curve.

When an out-of-fransit variation around the phase-folded IRF-filtered transit signall

is observed, a 2 order polynomial (y = a + b = + ¢ z2) is fitted about the phase-folded
IRF-filtered transit and divided into the transit. The phase range each side of the transit
used to evaluate the polynomial fit is (0.015,0.025) for orbital period P > 10d, (0.04,0.08)
ford < P < 10d, and (0.1,0.2) for orbital period P < 4 d.
The transit signal (corrected from the polynomial slope about the phase-folded transit
when necessary) is then fitted using the analytical formulation of Mandel & Agol (2002).
The method used to find the best fit to the transit light curve is non-linear least squares
method, the Levenberg-Marquardt algorithm.

Best fit with the Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is a method to efficiently find a local minimum in
a nonlinear y? space, given a good first estimate.

This thesis makes use of an IDL implementation of the Levenberg-Marquardt algorithm
called MPFIT® and written by Craig Markwardt (Markwardt, 2009). MPFIT takes as in-

5h’r’rp://wvvw.physic:s.wisc:.edu/ craigm/idl/fitting.html
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put a model function and the list of parameter values to be tried, evaluates the model
for each of these parameters, returns the residuals of the data, and moves in the pa-
rameter space to find the minimum in y? using a combination of Newton’s method
(adjusting search direction according to the curvature, i.e. the second derivative) and
steepest-descent method (adjusting the steps according to the value of the gradient,
i.e. the first derivative).

The limitation of the Levenberg-Marquardt method is that if the x? space has several
local minima and the initial guess are not close the true minimum, the algorithm might
find alocal minimum in the x? space and not the frue minimum. This is a problem when
dealing with a complex x? space, in which case using a Markov Chain Monte Carlo
(Section 6.1) to find the tfrue minimum is a more robust approach.

The adjusted parameters are the epoch of the first fransit in the CoRoT light curve Ty,
the system scale a/R,. the inclination between the planet orbital plane and the plane-
of-view i, and the planet-to-star radii ratio R, /R,. Also simultaneously adjusted are .
and u_, combinations of limb darkening coefficients (uy = u, + up ANA u— = ug — up
where u, and u;, are the quadratic limb darkening coefficients. The choice of the
quadratic law was made as it follows the limb darkening of a star better than a linear
law, without adding too many additional free parameters. The eccentricity and angle
to periastron are fixed to 0. The transit period is fixed to the value in the discovery pa-
per of the planet, or to a refined value when needed. If a refined value of the period
is needed, it is determined using Aigrain & Irwin (2004) transit search algorithm with a
small period search window around the value in the planet discovery paper.

Uncertainties on the parameters
Estimating the uncertainties on the derived parameters can be done in several ways:

e Alonso et al. (2008) evaluate the uncertainty on the planet parameters of CoRoT-
1b using a booftstrap analysis. They randomly shuffle a fraction of the residuals,
re-add the transit model and re-evaluate the planet parameters. They do this
several thousand times and estimate the uncertainty on each planet parameter
as the standard deviation of the values taken by this parameter. This method
accounts for the white noise in the data.

e Aigrain et al. (2008) evaluate the uncertainties on the planet parameters of CoRoT-
4b using a correlated bootstrap approach. They randomly shuffle intervals of the
residuals of a chosen length (e.g. 1.12h avoiding aliases with periodic signals such
as the satellite and Earth orbits), re-add the transit model and re-evaluate the
planet parameters. They do this several hundred times and estimate the uncer-
tainty on each planet parameter as the standard deviation of the values taken
by this parameter. The fact that each interval is shuffled in its entirety preserves
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the correlated noise on hourly timescales. This method thus accounts for both the
white noise and the correlated noise in the data.

e Rauer et al. (2009) derive the planet parameters of CoRoT-5b using a Markov
Chain Monte Carlo (MCMC) procedure. The uncertainty on a parameter is tfaken
as the standard deviation of its posterior distribution. The uncertainties take into
account the shape of parameter space around the best model.

Out of these three methods to derive the uncertainties, the Iater is the most robust.
This approach is studied in Chapter 6. In the current chapter, the method adopted is
similar to the second one. The uncertainties on the parameters of the best transit fit
are evaluated by removing this fit from the IRF-filtered light curve, circularly permuting
the residuals, re-inserting the best fransit fit, re-fitting the resulting transit signal, doing
the above 100 times, and evaluating the standard deviation of the parameters of the
best fit for each parameter. Circularly permuting the residuals conserve the correlated
features in the data and take them and the white noise info account when evaluating
the uncertainfties.

When the light curve was corrected from the light of a contaminant star, the uncer-
tainty on the contaminant flux should be taken into account in the derivation of the
uncertainties associated o the planet parameter. This is done by adding to each reali-
sation of the noise (as described above) a constant drawn from a Gaussian distribution
with zero mean and standard deviation equal to the uncertainty on the contaminant
flux and re-normalising the resulting light curve. The uncertainties on the planet pa-
rameters are then derived from the different realisations as described previously.
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3.2.2 CoRol-1b

CoRol-1b is a Jupiter-like planet orbiting its solar type host star in 1.5 days. This planet
was observed with CoRoT for 55 days from February 6th 2007. The light curve was sam-
pled every 512 s for the first 28 days, and then every 32 s for the remaining 24.7 d. The
discovery of this planet was published in Barge et al. (2008). Radial velocity measure-
ments were performed with SOPHIE® to confirm the planetary nature of the transiting
companion. Further radial velocity measurements of the planet were performed with
HARPS’ to derive a precise mass for the planet. Table 3.1 lists the parameters derived
for CoRol-1b and its host star.

The period was refined using Aigrain & Irwin (2004) transit search algorithm. The new
best period found is 1.5091897 days, this is the value that was used below for the IRF
and the transit fits. The IRF cannot correct sharp flux variations, so before running the
IRF, the points before HDJ-2451545=2594 and after HDJ-2451545=2638 were cut out.
The IRF was run with the default values and the IRF-filtered fransit signals were fitted, as
described in Section 3.2.1. The resulting IRF-filtered light curves along with their transit
fit are shown in Fig. 3.2, and the planet parameters in Table 3.1.
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Figure 3.1: CoRoT-1's light curve (grey), re-binned with outliers clipped out (black).

SSOPHIE: 40000-resolution echelle spectrograph on the 1.93m telescope at the Observatoire de Haute
Provence, France

"HARPS: 100000-resolution echelle spectrograph on the 3.6m telescope at ESO La Silla Observatory,
Chile
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Figure 3.2: The IRF-filtered tfransit light curve of CoRol-1b. Left panel: the IRF-filtered
fransit light curve with timescale=0.5 d (grey) superimposed on the pre-processed light
curve (black), unfolded (tfop panel) and phase-folded (bottom panel). Right panel:
the IRF-filtered light curve with timescale=0.5 d (grey), 0.25 d (blue) and 0.10 d (orange).
The black lines are the best fits to each IRF-filtered transit, the planet parameters de-
rived from these fits are shown in Table 3.1.

Table 3.1: Host star and planet parameters of CoRol-1b.

Barge et al. (2008) this study

Star IRF0.5d IRF 0.25d IRFO.1d
RA (J2000) 06" 48™ 19.17°
Dec (J2000) -03° 06’ 07.78"
Vinag 13.6
vsing (kms™1) 52+10
Terr (K) 5950 + 150
log g 4,25+ 0.30
[Fe/H] -0.3+0.25
M, (Mg) 0.95+0.15
R, (Rp) 111+ 0.05
From light curve
P (d) 1.5089557 £ 0.0000064 1.5091897 (iixed) 1.5091897 (fixed) 1.5091897 (fixed)
Tp-2454159 (d) 0.4532 4+ 0.0001 0.45265 + 0.00007 0.45265 + 0.00007  0.45269 + 0.00008
Ry, /Ry 0.1388 + 0.0021 0.1433 + 0.0005 0.1432 + 0.0006 0.1437 + 0.0008
a/R. 492 +0.08 456 +£0.04 457 £0.04 4.54 +0.05
i(°) 85.1 +0.5 83.1 £0.3 83.1£0.3 83.0+0.3
Uq 042 +0.34 0.49 +£0.02 0.49 +£0.02 0.51 £0.02
up 029 +£0.34 0 0 0
e 0 (fixed) same (fixed) same (fixed) same (fixed)
M7 (Mo Re) 0.887 + 0014

0.42 £+ 0.05 0.55 4+ 0.03 0.55 4+ 0.03 0.55 £ 0.03
Planet
Mp (Myyp) 1.08 £0.12

Ry (Ryup) 1.49 + 0.08
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3.2.3 CoRoTl-2b

CoRoT-2 is an active solar-type star, its light curve is shown in Figure 3.3. CoRol-2b
is a Jupiter-like planet orbiting its host star in 1.7 days. This planet was observed with
CoRoTl nearly continuously for 152 days fromn May 16th 2007. The discovery of this planet
was published in Alonso et al. (2008). Radial velocity measurements of the star were
performed with SOPHIE, CORALIE® and HARPS to confirm the planetary nature of the
fransiting companion and derive the mass of the planet. Figure 3.3 shows CoRoTl-2's
light curve, and table 3.2 lists the parameters derived for CoRoT-2b and its host star.

The IRF was run with the default values and the IRF-filtered transit signals were fitted,
as described in Section 3.2.1. The resulting IRF-filtered light curves along with their tran-
sit fit are shown in Fig. 3.4, and the best fit planet parameters in Table 3.2.
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Figure 3.3: CoRoTl-2’s light curve. Same legend as Figure 3.1.

8CORALIE: 50000-resolution echelle spectrograph on the Euler 1.2m telescope at ESO La Silla Observa-
tory, Chile
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Figure 3.4: The IRF-filtered transit light curve of CoRoT-2b. Same legend as Figure 3.2

Table 3.2: Host star and planet parameters of CoRoT-2b.

Alonso et al. (2008) this study

Star IRF0.5d IRF 0.25d IRFO0.1d
RA (J2000) 19h 27™ 06.5°
Dec (J2000) 01° 23/ 01.5”
Vinag 12.57
Tegr (K) 5625 + 120
M, (Mg) 0.97 £ 0.06
R, (Rp) 0.902 +0.018
From light curve
P (d) 1.7429964 + 0.0000017 same (fixed) same (fixed) same (fixed)
Tp-2454237 (d) 0.53562 + 0.00014 0.53535 + 0.00003 0.53541 4 0.00002 0.53547 + 0.00002
Ry/Rs 0.1667 4 0.0006 0.1663 £ 0.0008 0.1663 4 0.0007 0.1662 4+ 0.0007
a/Rx 6.70 +0.03 6.42 +0.04 6.38 +0.03 6.37 £+ 0.03
i (°) 878 £ 0.1 86.8 £0.2 86.6 £0.2 86.6 £0.1
Ugq 0.414+0.03 0.47 +£0.03 0.45+0.02 0.43 +0.02
up 0.06 £0.03 0.03 £ 0.08 0.07 £ 0.06 0.11 £ 0.06
e 0 (fixed) same (fixed) same (fixed) same (fixed)

1
M7 (Mo Ro) 1,099 + 0.005
b 0.26 +0.01 0.36 +0.02 0.37 +£0.04 0.38 +0.02
Planet
Mp (Myyp) 3.31 £0.16
Ry (Ryup) 1.465 + 0.029
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3.2.4 CoRoT-3b

CoRol-3b is a low mass brown dwarf (BD) with a Jupiter radius and 21 Jupiter masses,
orbiting its host star in 4.2 days. This planet was observed with CoRoT nearly continu-
ously for 112 days from May 26th 2007. The discovery of this planet was published in
Deleuil et al. (2008). Radial velocity measurements of the star were performed with
SOPHIE, TLS?, CORALIE, HARPS, and SANDIFORD'0 to confirm the nature of the transit-
ing companion and derive its mass. The parameters of CoRoT-3b are refined in (Triaud
et al., 2009). Table 3.3 lists the parameters derived for CoRoT-3b and its host star.

Before running the IRF, the points affected by sudden jumps in flux before 2698 days,
from 2737 10 2741 days and from 2745 to 2748 days (in HID-2451545), were cut out, The
IRF was run with the default values as described in Section 3.2.1. Before fitting the tran-
sit, for each of the IRF-filtered versions of CoRoT-3's light curve, a correction from the
local slope about the phase-folded transit needed to be applied. A 2"¢ order poly-
nomial function was fitted about the phase-folded IRF-filtered light curve and divided
info the phase-folded transit. The IRF-filtered fransit signals, with their local polynomial
fit removed, were then fitted as described in Section 3.2.1. The resulting IRF-filtered light
curves along with their fransit fit are shown in Fig. 3.6, and the best fit planet parameters
in Table 3.3.
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Figure 3.5: CoRoT-3’s light curve. Same legend as Figure 3.1.

?30000-resolution echelle spectrograph on the 2-m Alfred Jensch telescope in Tautenburg, Germany
1960000-resolution echelle spectrograph on the 2.1m Otto Struve telescope at the McDonald Observa-
tory, Texas, USA
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Figure 3.6: The IRF-filtered transit light curve of CoRol-3b. Same legend as Figure 3.2.
The red lines (top right panel) are the 27¢ order polynomial fits about the phase-folded
IRF-filtered transits that were used 1o produce the corrected phase-folded fransits (bot-
tom right panel) which were then fitted to derive the planet parameters.

Table 3.3: Host star and planet parameters of CoRoT-3b.

Triaud et al. (2009) this study

& Deleuil et al. (2008) IRF 0.5d IRF 0.25d IRF0.1d
Star
RA (J2000) 19h 28™ 13.26°
Dec (J2000) 00° 07> 18.7”
M, (Mg) 1.37 9-0%
Ry (Ro) 1.540 o073
Teg (K) 6740 + 140
logg 4.22 +0.07
[Fe/H] -0.02 £+ 0.06
From light curve
P (d) 42567994 *0-0000039 same (fixed) same (fixed) same (fixed)
Tp-2454283 (d) 0.13388 +0-00022 0.13945 £0.00022 0.13947 £0.00022  0.13937 £ 0.00022
Ry/Rx 0.06632 *5-50063 0.0680 £0.0014  0.0676 +£0.0014  0.0678 & 0.0015
a/Rx 7.96 033 7.36 = 041 7.39 £+ 0.47 7.38 £+ 0.52
i(°) 86.1 101 85.1+0.8 851410 851412
Uq 0.23 £ 0.09 0.20 £0.27 023 £0.25 025+024
up 0.33 +0.09 0.38 +0.39 0.34 +£0.39 0.31+0.38
M (Mo, Re) 0.71 + 004
b 0.54 1013 0.63 +0.15 0.63 +0.17 0.63 +0.20
From radial velocities
e 0.008 19993 0 (fixed) 0 (fixed) 0 (fixed)
w (°) 179 + 170 0 (fixed) 0 (fixed) 0 (fixed)
Planet
My, (MJup] 21.23 tg:?é
Rp (RJupJ 0.9934 4——8:822
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3.2.5 CoRoTl-4b

CoRoT-4b is a gas-giant planet orbiting its host starin 9.2 days. This planet was observed
with CoRol nearly continuously for 58 days from February 6th 2007. The discovery of this
planet was published in Aigrain et al. (2008). Radial velocity measurements of the star
was performed with SOPHIE and HARPS to confirm the planetary nature of the transiting
companion and derive the mass of the planet. Table 3.4 lists the parameters derived
for CoRoT-4b and its host star.

Before running the IRF, the points affected by sudden jumps in flux before 2595 days
(in HID-2451545) were cut out. The IRF was run with the default values as described in
Section 3.2.1. Before fitting the transit, for each of the IRF-filtered versions of CoRoT-3's
light curve, a correction from the local slope about the phase-folded transit needed
to be applied. A 24 order polynomial function was fitted about ((-0.008,0.008) phase
range) the phase-folded IRF-filtered light curve and divided from the phase-folded
fransit. The IRF-filtered transit signals, with their local polynomial fit removed, were then
fitted as described in Section 3.2.1. The resulting IRF-filtered light curves along with their
transit fit are shown in Fig. 3.8, and the best fit planet parameters in Table 3.4.

normalised flux

2600 2610 2620 2630 2640
HJD — 2451545.0

Figure 3.7: CoRoT-4’s light curve. Same legend as Figure 3.1.
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Figure 3.8: The IRF-filtered transit light curve of CoRoT-4b. Same legend as Figure 3.6
Table 3.4: Host star and planet parameters of CoRoT-4b.
Aigrain et al. (2008) this study
& Moutou et al. (2008) IRF 0.5d IRF 0.25d IRF 0.1d

Star
RA (J2000) 06" 48™ 46.70°
Dec (J2000) -00° 40’ 21.97"
Rimag 13.45
Prot (d) 8.87 £ 1.12
M, (Mg) 116 T003
Ry (Ro) 117 1903
vsini (kms—1) 64+10
Terr (K) 6190 £+ 60
log g 4.41 +0.05
From light curve Bayesian range
P (d) 9.20205 + 0.00037 same (fixed) same (fixed) same (fixed)
Tp-2454141 (d)  0.36416 % 0.00089 0.36434 +0.00022  0.36440 £ 0.00021  0.36439 4 0.00020
Ry/Ru 0.1047 *5-00%% 01000-01125  0.1056 £ 0.0011 0.1064 =+ 0.0012 01054 £ 0.0011
a/Rx 17.36 T0-98 1430 17.80 16.84 +0.35 16.66 + 0.39 16.82 +0.34
i (°) 90.000 *+9-099 87.708 - 90.000 89.2+04 89.1+0.4 89.3+0.4
Uq 0.44 J_rg‘_}g 0.00 - 1.00 0.48 £0.08 0.50 £ 0.09 0.45+£0.08
up - -0.04 £0.17 -0.06 £0.18 0.05+£0.18

1/3
Ms— (Mo.Ro) 0.899 +0.003 0741 -0922
e 0.0+£0.1 0 (fixed) 0 (fixed) 0 (fixed)
b 0.0 f8:83 0-057 022+014 026 +0.14 020+0.13
Planet
My (Myyp) 0.72 +0.08
Rp (Ryup) 119 fgigg
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3.2.6 CoRoTl-5b

CoRoT-5b is a Jupiter-size planet orbiting its host star in 4 days. This planet was observed
with CoRoT nearly continuously for 112 days from October 24th 2007. The discovery of
this planet was published in Rauer et al. (2009). Radial velocity measurements of the
host star were performed with SOPHIE and HARPS to confirm the planetary nature of the
tfransiting companion and derive the mass of the planet. Table 3.5 lists the parameters
derived for CoRoTl-5b and its host star.

Before running the IRF, the points affected by sudden jumps in flux before 2858 days,
(time as displayed in Fig 3.9), were cut out. The IRF was run with the default values as
described in Section 3.2.1. Before fitting the transit, for each of the IRF-filtered versions
of CoRoTl-3’s light curve, a correction from the local slope about the phase-folded
transit needed to be applied. A 2"¢ order polynomial function was fitted about ((-
0.008,0.008) phase range) the phase-folded IRF-filtered light curve and divided from
the phase-folded transit. The IRF-filtered transit signals, with their local polynomial fit
removed, were then fitted as described in Section 3.2.1. The resulting IRF-filtered light
curves along with their transit fit are shown in Fig. 3.10, and the best fit planet parame-
ters in Table 3.5.
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Figure 3.9: CoRoTl-5's light curve. Same legend as Figure 3.1.
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Figure 3.10: The IRF-filtered transit light curve of CoRoT-5b. Same legend as Figure 3.6

Table 3.5: Host star and planet parameters of CoRoTl-5b.

Rauer et al. (2009) this study

IRF 0.5d IRF 0.25d IRF0.1d
Star
RA (J2000) 06" 45™ Q73
Dec (J2000) 00° 48’ 55"
Vinag 14.0
M, (Mg) 1.00 £+ 0.02
R« (Rp) 1.186 + 0.04
Terr (K) 6100 + 65
logg 4.189 +0.03
[Fe/H] -0.25 + 0.06
From light curve
P (d) 4,0378962 + 0.0000019 same (fixed) same (fixed) same (fixed)
To-2454400 (d) 0.19885 + 0.0002 0.19843 + 0.00015  0.19846 + 0.00015  0.19799 + 0.00018
Ry/R. 0.12087 *0-6002% 0.1135 + 0.0021 01139400024  0.1135 4 0.0022
a/Rx 8.97 +0.31 9.39 + 0.20 9.40 + 0.20 9.39 +0.24
i (°) 85.83 1999 85.7 £0.2 85.7 £02 85.7 £02
Uq 0.308 fixed 0.13 +£0.33 0.24 +0.36 0.19 £0.34
up 0.308 fixed 0.69 + 0.45 0.54 + 0.50 0.62 +0.48

1

M,gfs (Mo.Re) 0.843 + 0.024
b 0.90 *522 0.714+0.05 0.714+0.05 0.71 £ 0.06
From radial velocities
e 0.09 *5:89 0 dfixech 0 dfixech 0 dfixech
w () -128 1289 0 (fixed)) 0 (fixed)) 0 (fixed)
Planet

Mp (Mjyup) 0.467 tg:(ég;
Ry (RJup) 1.388 tgigig
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3.2.7 CoRoT-6b

CoRoT-6b is a Jupiter-size planet orbiting its host star in 8.9 days. This planet was ob-
served with CoRoT nearly contfinuously for 144 days from April 15th 2008. The discovery
of this planet was published in Fridlund et al. (2010). Radial velocity measurements
of the host star were performed with SOPHIE to confirm the planetary nature of the
tfransiting companion and derive the mass of the planet. Table 3.6 lists the parameters
derived for CoRoTl-6b and its host star.

Before running the IRF, the points affected by sudden jumps in flux before 3031 days,
and from 3152 to 3163.54 days (fime as displayed in Fig 3.9), were cut out. The IRF was
run with the default values as described in Section 3.2.1. Before fitting the transit, for
each of the IRF-filtered versions of CoRoTl-6's light curve, a correction from the local
slope about the phase-folded transit needed to be applied. A 27¢ order polynomial
function was fitted about the phase-folded IRF-filtered light curve and divided into the
phase-folded transit. The IRF-filtered transit signals, with their local polynomial fit re-
moved, were then fitted as described in Section 3.2.1. The resulting IRF-filtered light
curves along with their transit fit are shown in Fig. 3.12, and the best fit planet parame-
ters in Table 3.6.
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Figure 3.11: CoRoT-6's light curve. Same legend as Figure 3.1.
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Figure 3.12: The IRF-filtered transit light curve of CoRoTl-6b. Same legend as Figure 3.6

Table 3.6: Host star and planet parameters of CoRoT-6b.

Fridlund et al. (2010) this study
IRF 0.5d IRF 0.25d IRF0.1d
Star
RA (J2000) 18P 44m 17.4928
Dec (J2000) 06° 39’ 47.95"
Vinag 13.9
M, (Mg) 1.055 + 0.055
R, (Rp) 1.025 + 0.026
Ter (K) 6090 £ 70
log g 43 4+0.1
[Fe/H] -0.24+01
From light curve
P (d) 8.886593 + 0.000004 same (fixed) same (fixed) same (fixed)
To-2454595 (d) 0.6144 4+ 0.0002 0.61434 +0.00013 0.61424 4+ 0.00013  0.61323 =4 0.00040
Ry /Ry 0.11687 + 0.00092 0.1147 £ 0.0015 0.1150 £ 0.0014 0.1185 =4 0.0050
a/Rx 17.9 £ 0.3 17.62 4+ 0.42 17.51 £ 0.42 16.39 + 1.16
i (°) 89.1 £0.3 88.9 0.3 88.9 0.3 88.4 + 0.5
Ug 0.35+0.14 018+ 0.10 0.17 +£0.10 0.06 £ 0.16
up, 023 +0.14 0.52 +0.21 0.54 +0.21 0.69 +0.35
1/3

Mgf (Mo .Ro) 0.993 + 0.018

0.28 (0-0.56) 0.32+0.10 0.34 +0.10 0.45 +0.20
From radial velocities
e <0.1 O (fixed) O (fixed) 0 (fixed)
Planet
My (Myyp) 2,96 + 0.34
Ry (Ryup) 1.166 £ 0.035
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3.2.8 CoRoTl-7b

CoRol-7b is a Super-Earth planet orbiting its host star in 0.85 days. The discovery of this
planet was published in Léger et al. (2009). Due to the small size of the planet and
the activity level of its host stars, confirming this planet with its mass derived from ro-
dial velocity measurement was a very challenging task. The planetary nature of this
planet was thus first claimed with an upper limit on its mass < 21 Mg (based on radial
velocity measurements with SOPHIE) and intensive ground-based follow-up (photom-
etry, imaging, spectroscopy) to exclude probability of the transits been stellar eclipses.
Later, HARPS radial velocity follow-up (Queloz et al., 2009) revealed CoRoTl-7 as a mul-
tiple planetary system. Table 3.7 lists the parameters derived for CoRoT-7b and its host
star.

The IRF was run as described in Section 3.2.1 but with a bin size of 0.0024 in phase (IRF
binsize parameter) and a convergence limit of 1. 10~8 (IRF cvlim parameter). The three
smoothing timescales to estimate the stellar variability were also fested (IRF timescale
parameter): 0.50, 0.25 and 0.10 days. The IRF-filtered fransit signals were then fitted as
described in Section 3.2.1. For the fits, because of the low signal-to-noise ratio of the
fransit, the values of the quadratic limb darkening parameters were fixed to the values
in CoRoT-7b discovery paper (Léger et al., 2009) — and not adjusted as done for the
other planets. The resulting IRF-filtered light curves along with their fransit fit are shown
in Fig. 3.14, and the best fit planet parameters in Table 3.7.
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Figure 3.13: CoRoT-7's light curve. Same legend as Figure 3.1.
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Figure 3.14: The IRF-filtered transit light curve of CoRol-7b. Same legend as Figure 3.2

Table 3.7: Host star and planet parameters of CoRoT-7b.

Léger et al. (2009) this study

& Queloz et al. (2009) IRF 0.5d IRF 0.25d IRF 0.1d
Star
RA (J2000) 06" 43™ 49.0°
Dec (J2000) -01° 03’ 46.0”
Vinag 11.668 4+ 0.008
Togr (K) 5275+ 75
log g 450+ 0.10
[Fe/H] +0.03 £+ 0.06
Spectral Type GOV
My (Mg) 0.93 +0.03
R, (Ro) 0.87 £0.04
From light curve
P (d) 0.853585 =+ 0.000024 same (fixed) same (fixed) same (fixed)
Ty-2454398 (d) 0.0767 £0.0015 0.07726 +0.00037 0.07716 +£0.00031 0.07682 + 0.00030
Ry /R, 0.0187 £ 0.0003 0.0184 4+ 0.0013 0.0182 +£0.0012 0.0186 = 0.0015
a/Rs 4,27 +0.20 413+ 14 431+ 1.2 470+ 1.3
i (°) 80.1 £0.3 793+ 111 80.1 £ 8.8 819+ 126
Ugq 0.40 same (fixed) same (fixed) same (fixed)
up 0.20 same (fixed) same (fixed) same (fixed)
b 0.73 £0.06 0.77 ©-n 0.74 ©-1 0.66 ©-1
From radial velocities
e 0 0 (fixed) 0 (fixed) 0 (fixed)
Planet
My (Mg) 48 +0.8
R, (Rg) 1.68 £+ 0.09
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3.2.9 Discussion

For all the objects studied in this chapter, except CoRol-6b, the parameters derived
from the IRF-filtered light curves with different timescale are consistent with each other
within 1o (o being the uncertainty on the parameter). This shows that IRF-filtering down
to timescale=0.25 days still preserves the fransit shape within the noise limit, but smaller
timescale values affect the fransit shape in some cases.

Compare to the planet/brown dwarf parameters published in the discovery of the
first seven CoRoT planets/brown dwarfs, the adjusted planet parameters and quadratic
limb darkening coefficients, derived from the fitting of the IRF-filtered transit light curve
using a Levenberg-Marquardt algorithm, are consistent within 1o for CoRoT-2b, CoRoT-
4b, CoRol-6b and CoRol-7b, consistent within 20 for CoRoT-3b, and different (outside
the 20 range) for CoRoTl-1b and CoRoT-5b.

The difference in the limb darkening coefficients is expected to confribute to the
difference in the planet parameters, in particular for R,/ R,. This can explain the cases
where the parameters derived in this chapter are different by more than 20 from the
parameters published in the discovery paper of the respective planets.

The errors bars derived in the chapter are smaller for CoRoT-1b and CoRoTl-4b, larger
for CoRol-7b, and similar for the other planets and the brown dwarf. Fitting the limb
darkening on a light curve with not enough photometric precision increases the error
bars on all the other parameters. The alternative approach is to fix the limb darkening
coefficients to the value derived from stellar atmosphere models for the stellar atmo-
spheric parameters of the host star (T.g, log g, (M/H)), in the observed filter (here, the
CoRoTl bandpass), and a chosen limb darkening law. Claret (2000) and Claret (2004)
give tables of limb darkening coefficients for different standard filters and Sing (2010)
for CoRol and Kepler bandpasses. The larger uncertainties found for the planet pa-
rameters of CoRoT-7b are more representative of the noise level in the light curve than
the values publishes in the planet discovery paper. For CoRoT-1b and CoRol-2b, the
smaller uncertainties derived for the planet parameters can come from a reduction in
the noise of the filtered transit light curve achieved with the IRF.

In CoRoT-2's light curve, IRF-filtered with timescale = 0.5 days, some high frequency
variations can be seen. What causes these features is not well understood. They often
appear when binning the phase folded light curve with a section of the light curve
shiffed (not in phase) from another one, forinstance due to an inaccurate transit period
or wrong time stamps.

In CoRoT-3,4,5 ’s light curves, residual stellar variability at the planet orbital period
can be seen even after IRF-filtering down to timescale = 0.10 days. Thus, the rotation
period of these stars must be close to a multiple of the orbital period of their transiting
planet, making the residual stellar variability difficult fo separate from the fransit signal.
The additional variability at the orbital period of the planet could be caused by a
planet-star interaction.
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In CoRoT-6's light curve, IRF-filtered with timescale = 0.10 days, there is a drop in flux
(~5% of the transit depth lasting for ~0.015 phase units) just before the transit. This
feature affects the evaluation of the transit shape and thus the derived planet param-
eters, which can be seen in the larger difference in the planet parameters derived.
This feature is likely to have been created by the IRF (see explanations in Chapter 4,
Section 4.2.4).

3.3 IRF performance on CoRoT space data

For all the planets, the IRF allows filtering of stellar variability fo lower time scales (down
to 6 h) without affecting the shape of the phase folded transit. This is a significant
improvement from standard filters that would have affected the fransit signal with this
level of filtering.

For all the planets, the difference between the planet parameter values in the liter-
ature and those derived with the IRF-filtered light curves (timescale 0.50 and 0.25 days)
is within the error bar associated to each parameter. This shows, on one hand, that the
IRF is performing well as it is not affecting the transit shape, and on the other hand, that
the traditional variability filtering method, such as those used in the discovery papers,
are appropriate for the levels of stellar variability in those light curves. The improvement
in the planet parameters after IRF-filtering was more obvious in the CoRoT BT2 simulated
data used in Chapter 2. This reflects the lower level of stellar activity (lower amplitude,
longer timescales) of stars with planets discovered by CoRol, compared to the activity
level modelled in the simulated data. The apparent lower activity level of stars with
planet could also be a detection bias, as planets around active stars are more difficult
to detect.

3.3.1 Limitations

The IRF is a post-detection method, it requires a prior knowledge of the period of the
signal to be reconstructed, it cannot be used without a good estimate of this period.

The IRF reconstructs the signal in its phase folded shape, and therefore its direct
product is an average over dll the individual transits and has lost the information on
transit shape variation with time due to perturbation by another planet for instance.
Another approach would need to be taken o study such time-variations.

3.3.2 Future work

Adjusting the limb darkening coefficients simultaneously has an influence on the value
of R,/ R, derived from the transit. It will be inferesting to see how the parameters com-
pare with the values in the planet discovery papers, for the same model of the limb
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darkening. This will allow to check the difference in trans