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Star

hot Jupiter
~0.05 AU ~ 10 R*

Mercury
0.39 AU

Earth
1 AU

~1% of stars host hot Jupiters

Sun: LUV ~ 10-6 Lbol
x103 during T Tauri phase planets occupy a large 

phase space
Mp, Rp, a, L∗, LUV,∗, e, Ṁw, Bp

initial atmosphere
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Two classes of escape mechanisms:
Each can be thermal or non-thermal

“hydrodynamic”“kinetic”

bulk outflow of a 
collisional fluid

exobase

loss to space of 
individual atoms

hydrodynamic escape
Roche lobe overflow

ram pressure stripping

Jeans escape
non-thermal processes, often 

mediated by B-fields

limits of thermal escape
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UV photons heat the upper 
atmosphere by photoionization

hot Jupiters cannot be evaporated, in spite of early results using 
“energy-limited escape” models meant for young Earth and Venus

e-

p+

collisions 
distribute energy 

from ejected 
electron 

UV photon

Before: After:

H



Ruth Murray-Clay:  Atmospheric Escape

What generates a Parker wind?

fluid,
isothermal

pressure @ ∞ > 0:
bad!

hydrostatic
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What generates a Parker wind?

fluid,
isothermal

pressure @ ∞ > 0:
bad!

accelerates the gas 
outward

energy for PdV work in 
outward flow comes 
from this assumption

v
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Parker winds flow through a critical point

xsonic point: cs ~ vesc

De Laval Nozzle

Von Braun with the 
Saturn V rocket

rs

T ↓:  

Ṁ = 4πr2ρv ↓
rs = GMp/(2c

2
s) ↑

exponential dropoff
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Drop isothermal assumption
still assume fluid (collisional)

n0 ∼

1

σH
atτ~ 1 :

heating from photoionization
sets lower boundary condition

only photoionization heating 
and pdV work

deposited primarily

P ~ nanobars,
altitude set by lower atmosphere 
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Drop isothermal assumption
still assume fluid (collisional)

n0 ∼

1

σH
atτ~ 1 :

FUV

hν0

σν0
n0 ∼ n

2
+αrec

For high UV flux:

heating from photoionization
sets lower boundary condition

only photoionization heating 
and pdV work

deposited primarily

P ~ nanobars,
altitude set by lower atmosphere 
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Conduction

Watson et al. 1981

T

r

low UV flux regime
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Radiative cooling

can kill flow altogether if too high

τ~ 1

T ~ 10^4 K 

T ~ 10^3 K 

EUV Ly α 

X-ray H3+
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I haven’t cared about the exobase!
If FUV low ⇒ many scale heights to sonic point;

no longer collisional & model isn’t self-consistent

intermediate between
hydrodynamic escape & 

Jeans escape:

conduction

fluid outflow

modified Jeans
escape

v < cs
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Hot Jupiter
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 hydrodynamic wind

Hot Jupiter
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Sonic point
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Teff ≈ 1300K 
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Photoionization base (τUV = 1)

Sonic point
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Teff ≈ 1300K 
1 bar surface of planet

Photoionization base (τUV = 1)

Sonic point

Roche lobe radius

Rp ~ 1010 cm 

1.1 Rp

2-5 Rp 

4.5 Rp 

Twind ≈ 10,000 K 

H2

H, H+, He

 hydrodynamic wind

Hot Jupiter
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Teff ≈ 1300K 
1 bar surface of planet

Photoionization base (τUV = 1)

Sonic point

Roche lobe radius

exobase

Rp ~ 1010 cm 

1.1 Rp

2-5 Rp 

4.5 Rp 

mean free path = scale height

Twind ≈ 10,000 K 

H2

H, H+, He

 hydrodynamic wind

Hot Jupiter
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Hydrodynamic Escape Equations

Momentum:

Mass continuity:

Energy:

Ionization equilibrium:

n0

Fν0
e−τ

hν0

aν0
= n

2
+αrec +

1

r2

∂

∂r
(r2

n+v)

∂

∂r
(r2ρv) = 0

Solved using a relaxation code

ρv
∂v

∂r
= −

∂P

∂r
−

GMpρ

r2
+

3GM∗ρr

a3

ρv
∂

∂r

[

kT

(γ − 1)µ

]

=
kTv

µ

∂ρ

∂r
+ εFν0

e−τaν0
n0 + Λ
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Hydrodynamic Escape Equations

Momentum:

Mass continuity:

Energy:

Ionization equilibrium:
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2
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µ
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Tidal Gravity

Photoionization heating 
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Consistently solves ionization and energy equations.
Can be used for different regimes.
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General boundary conditions

• Critical (sonic) point of transsonic wind (2 conditions)
• ionization fraction at depth is small
• density at depth is large enough that τ>> 1
• temperature at depth is < 104 K
• self consistent optical depth to ionization
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Solution for the current HD 209458b

FUV = 450 erg/cm2/s

hν0 = 20eV

Mp = 0.7 MJ

Rp = 1.4 RJ

ρbase = 4x10-13 g

Tbase = 1000 K

fbase = 10-5

τsp = 0.0046

Murray-Clay et al. 2009
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Energy and ionization balance

Solar FUV T Tauri FUV 
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Mass-Loss Rates: Dependence on UV Flux

Ṁ =
πFUV(3RP)3

GMp

Ṁ ∼ 1010 g/s

HD 209458b:
main sequence

~ 1% loss

HD 209458b:
T Tauri

~ 0.1% loss

Ṁ ∼ 3 × 1012g/s

Murray-Clay et al. 2009
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Mass-Loss Rates: Dependence on UV Flux

Ṁ =
πFUV(3RP)3

GMp

ionization energy

εFUV

x

Ṁ ∼ 1010 g/s

HD 209458b:
main sequence

~ 1% loss

HD 209458b:
T Tauri

~ 0.1% loss

Ṁ ∼ 3 × 1012g/s
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Mass-Loss Rates: Dependence on UV Flux

Ṁ =
πFUV(3RP)3

GMp

ionization energy

ionization
radius

εFUV 1RP

xx

Ṁ ∼ 1010 g/s

HD 209458b:
main sequence

~ 1% loss

HD 209458b:
T Tauri

~ 0.1% loss

Ṁ ∼ 3 × 1012g/s

Murray-Clay et al. 2009
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Mass-Loss Rates: Dependence on UV Flux

Ṁ =
πFUV(3RP)3

GMp

ionization energy

Lyα cooling

ionization
radius

εFUV 1RP

xx

Ṁ ∼ 1010 g/s

HD 209458b:
main sequence

~ 1% loss

HD 209458b:
T Tauri

~ 0.1% loss

Ṁ ∼ 3 × 1012g/s

Murray-Clay et al. 2009
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Vidal-Madjar et al. 2003
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The wind cannot directly generate enough absorption at 
±100 km/s to reproduce measurements of HD 209458b.

Murray-Clay, Chiang, & Murray 2009
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NASA NASA

What about the stellar wind and the 
planetary magnetic field?
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Possibilities to explain the observations:
• charge-exchange in the shock or planetary magnetosphere generates 

high-velocity neutrals
• 3D effects increase the neutral column

Stone & Proga 2009
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Both the stellar wind ram pressure and magnetic 
fields can reduce and/or shape mass loss

wind

star hot Jupiter



Ruth Murray-Clay:  Atmospheric Escape

Low mass gas giants and the atmospheres of 
solid planets can be significantly depleted

0.0 0.2 0.4 0.6 0.8 1.0
Planet Mass (MJ)

0.00

0.02

0.04

0.06

0.08

0.10
Fr

ac
tio

n 
of

 M
as

s L
os

t O
ve

r 1
0 

G
yr

Neptune

ice giants

“super Earth”

HD 209458b

gas giants

planet is 0.05AU from a solar mass star
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planetary 
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Charbonneau et al. 2009
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Atmospheric escape 
is crucial to 

characterization of 
planetary 

atmospheres

Charbonneau et al. 2009

Super-Earths or 
mini-Neptunes?
Super-Earths vs. 
mini-Neptunes:

primordial atmosphere 
vs. ongoing outgassing 

and loss
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Summary

• Given UV fluxes typical of hot Jupiters orbiting Sun-like 
stars, atmospheric escape is ~ hydrodynamic and 
“energy limited” with r = Rp for observed exoplanets if 
they have hydrogen-dominated atmospheres, but for 
smaller radii, beware.

• At lower UV fluxes, beware!

• At higher UV fluxes, beware!

• A practical guide to estimating Mdot for hydrogen-
dominated atmospheres given FUV, Rp, and Mp will be 
available soon.


