Hydrodynamic Escape from Highly Irradiated Atmospheres

Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics

Earth

 $1 \, \mathrm{AU}$

~1% of stars host hot Jupiters

hot Jupiter ~0.05 AU ~ 10 R*

Sun: $L_{UV} \sim 10^{-6} L_{bol}$ x10³ during T Tauri phase Mercury \, 0.39 AU

,' planets occupy a large phase space $M_p, R_p, a, L_*, L_{UV,*}, e, \dot{M}_w, B_p$,' initial atmosphere ,'

Two classes of escape mechanisms:

Each can be thermal or non-thermal

"kinetic"

loss to space of individual atoms

"hydrodynamic"

bulk outflow of a collisional fluid

exobase

Two classes of escape mechanisms:

Each can be thermal or non-thermal

loss to space of individual atoms

"hydrodynamic"

bulk outflow of a collisional fluid

exobase

limits of thermal escape

Jeans escape non-thermal processes, often mediated by B-fields hydrodynamic escape Roche lobe overflow ram pressure stripping

UV photons heat the upper atmosphere by photoionization

hot Jupiters cannot be evaporated, in spite of early results using "energy-limited escape" models meant for young Earth and Venus

What generates a Parker wind?

fluid, isothermal pressure @ $\infty > 0$: bad!

hydrostatic

What generates a Parker wind?

V

fluid, isothermal

> energy for PdV work in outward flow comes from this assumption

pressure @ ∞ > 0: bad! / accelerates the gas outward

Parker winds flow through a critical point Τ↓: $r_s = GM_p/(2c_s^2) \quad \uparrow$ sonic point: c_s ~ v_{esc} $\dot{M} = 4\pi r^2 \rho v \quad \downarrow$ De Laval Nozzle rs exponential dropoff Von Braun with the Saturn V rocket

Drop isothermal assumption

still assume fluid (collisional)

heating from photoionization sets lower boundary condition

deposited primarily 1at $\tau \sim I$: $n_0 \sim \frac{1}{\sigma H}$ only photoionization heating and pdV work

P ~ nanobars, altitude set by lower atmosphere

Drop isothermal assumption

still assume fluid (collisional)

heating from photoionization sets lower boundary condition

deposited primarily 1at $\tau \sim I$: $n_0 \sim \frac{1}{\sigma H}$

For high UV flux: $\frac{F_{\rm UV}}{h\nu_0}\sigma_{\nu_0}n_0\sim n_+^2\alpha_{\rm rec}$

only photoionization heating and pdV work

P ~ nanobars, altitude set by lower atmosphere

Conduction

T ~ 10^3 K

can kill flow altogether if too high

I haven't cared about the exobase!

If FUV low \Rightarrow many scale heights to sonic point; no longer collisional & model isn't self-consistent

intermediate between hydrodynamic escape & Jeans escape:

Hot Jupiter

1 bar surface of planet

 $R_{p} \sim 10^{10} \text{ cm}$

Hot Jupiter

Mass continuity:

$$\frac{\partial}{\partial r}(r^2\rho v) = 0$$

Momentum:
$$\rho v \frac{\partial v}{\partial r} = -\frac{\partial P}{\partial r} - \frac{GM_{\rm p}\rho}{r^2} + \frac{3GM_*\rho r}{a^3}$$

Energy:
$$\rho v \frac{\partial}{\partial r} \left[\frac{kT}{(\gamma - 1)\mu} \right] = \frac{kTv}{\mu} \frac{\partial \rho}{\partial r} + \epsilon F_{\nu_0} e^{-\tau} a_{\nu_0} n_0 + \Lambda$$

Ionization equilibrium:

$$n_0 \frac{F_{\nu_0} e^{-\tau}}{h\nu_0} a_{\nu_0} = n_+^2 \alpha_{\rm rec} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 n_+ v)$$

Solved using a relaxation code

Mass continuity:

Ionization equilibrium:

$$\frac{\partial}{\partial r}(r^2\rho v) = 0$$

Momentum: $\rho v \frac{\partial v}{\partial r} = -\frac{\partial P}{\partial r} - \frac{GM_{\rm p}\rho}{r^2} + \frac{3GM_*\rho r}{a^3}$

Energy:
$$\rho v \frac{\partial}{\partial r} \left[\frac{kT}{(\gamma - 1)\mu} \right] = \frac{kTv}{\mu} \frac{\partial \rho}{\partial r} + \epsilon F_{\nu_0} e^{-\tau} a_{\nu_0} n_0 + \Lambda$$

Photoionization heating + Lyα cooling

$$n_0 \frac{F_{\nu_0} e^{-\tau}}{h\nu_0} a_{\nu_0} = n_+^2 \alpha_{\rm rec} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 n_+ v)$$

Solved using a relaxation code

Solved using a relaxation code

Solved using a relaxation code

Consistently solves ionization and energy equations. Can be used for different regimes.

General boundary conditions

- Critical (sonic) point of transsonic wind (2 conditions)
- ionization fraction at depth is small
- density at depth is large enough that $\tau >> 1$
- temperature at depth is $< 10^4$ K
- self consistent optical depth to ionization

Solution for the current HD 209458b

Murray-Clay et al. 2009

 $F_{UV} = 450 \text{ erg/cm}^2/\text{s}$

Energy and ionization balance

Solar FUV

T Tauri <u>FUV</u>

Mass-Loss Rates: Dependence on UV Flux Murray-Clay et al. 2009

Mass-Loss Rates: Dependence on UV Flux Murray-Clay et al. 2009

HD 209458b: main sequence \sim 1% loss $\dot{M} \sim 10^{10}$ g/s

Mass-Loss Rates: Dependence on UV Flux Murray-Clay et al. 2009

HD 209458b: main sequence $\sim 1\%$ loss $\dot{M} \sim 10^{10}$ g/s

Mass-Loss Rates: Dependence on UV Flux Murray-Clay et al. 2009

HD 209458b: main sequence \sim 1% loss $\dot{M} \sim 10^{10}$ g/s

The wind cannot directly generate enough absorption at ±100 km/s to reproduce measurements of HD 209458b.

-100 km/s 100 km/s

Vidal-Madjar et al. 2003

Murray-Clay, Chiang, & Murray 2009

What about the stellar wind and the planetary magnetic field?

NASA

NASA

Stone & Proga 2009

Possibilities to explain the observations:

- charge-exchange in the shock or planetary magnetosphere generates high-velocity neutrals
- 3D effects increase the neutral column

Both the stellar wind ram pressure and magnetic fields can reduce and/or shape mass loss

Low mass gas giants and the atmospheres of solid planets can be significantly depleted

Atmospheric escape is crucial to characterization of planetary atmospheres

Charbonneau et al. 2009

Atmospheric escape is crucial to characterization of planetary atmospheres

Charbonneau et al. 2009

Atmospheric escape is crucial to characterization of planetary atmospheres

Charbonneau et al. 2009

Summary

- Given UV fluxes typical of hot Jupiters orbiting Sun-like stars, atmospheric escape is ~ hydrodynamic and "energy limited" with r = R_p for observed exoplanets if they have hydrogen-dominated atmospheres, but for smaller radii, beware.
- At lower UV fluxes, beware!
- At higher UV fluxes, beware!
- A practical guide to estimating Mdot for hydrogendominated atmospheres given FUV, R_p, and M_p will be available soon.