Understanding the Cloudy Atmospheres of Brown Dwarfs and Extrasolar Planets

> Mark Marley NASA Ames Research Center

Collaborators: Andy Ackerman, Kerri Cahoy, Mike Cushing, Jonathan Fortney, Richard Freedman, Katharina Lodders & Didier Saumon

Today's Message

- Clouds are exceptionally important
- 3 main cloud modeling approaches to date, one of which is "make them up"
- Applications: properties of the HR 8799 planets & the L to T transition
- Photochemistry
- Lots of room for new ideas & new models

Today's Objects

- Brown Dwarfs (L & T dwarfs)
 - objects with masses intermediate between planets and stars
 - composition similar to giant planets
 - vastly more & higher quality data than exoplanets
- Jovian mass exoplanets, young and old
- Issues broadly apply to terrestrial exoplanets

Burrows et al. 1997

Burrows et al. 1997

Thermal Emission

Hot Jupiters

Importance of Clouds: Reflected Light

Huge influence on Bond Albedo and T_{eq}

Color and albedo are functions of type and depth of clouds. Clouds depend on BOTH internal heat flow (mass, age) and incident flux.

Color and albedo are functions of type and depth of clouds. Clouds depend on BOTH internal heat flow (mass, age) and incident flux.

Color and albedo are functions of type and depth of clouds. Clouds depend on BOTH internal heat flow (mass, age) and incident flux.

Color and albedo are functions of type and depth of clouds. Clouds depend on BOTH internal heat flow (mass, age) and incident flux.

photochemistry

Scattered light Simulated direct images

Cahoy et al. (2009)

Importance of Clouds: Thermal Emission

Brown Dwarf Examples

What do we need to know for atmosphere modeling?

- Cloud Composition
- Particle Sizes
- Vertical (& horizontal) distribution

Lodders (2005)

Size & composition controls the opacity

scat

size distribution

Example

Big particles (~10 μm compared to < 1 μm)

• Mie vs. Rayleigh opacity

Scattering Angle

Monday, January 30, 12

31

Simplest Model

$$\tau_{\lambda} = 75\epsilon Q_{\lambda}(r_c)\varphi\Big(\frac{P_{cl}}{1\,\mathrm{bar}}\Big)\Big(\frac{10^5\,\mathrm{cm\,s}^{-2}}{g}\Big)\Big(\frac{1\,\mu\mathrm{m}}{r_c}\Big)\Big(\frac{1.0\,\mathrm{g\,cm}^{-3}}{\rho_c}\Big).$$

- Can estimate cloud column mass
- Assume hydrostatic equilibrium
- Neglects dynamical effects
- How to compute sizes, vertical extent?
- Need a real model
- Or else guess and test

Cloud Modeling Schools

Top - Down

Helling et al. Microphysics, nucleation, etc. **Fixed** Many examples

Ackerman & Marley

Chemical Equilibrium PHOENIX - DUSTY

Cloud Modeling Schools

Top - Down

Bottom - Up

Helling et al. Microphysics, nucleation, etc. **Fixed** Many examples

Ackerman & Marley

Chemical Equilibrium PHOENIX - DUSTY

Why Not Rossow?

Most extensive body of work on solar system clouds

- Compute timescales, τ, for key cloud processes (nucleation, falling, coagulation, etc.)
- Estimate sizes by comparing $\boldsymbol{\tau}$
- Popular
- Computation of τ's introduces many assumptions
 - Surface tensions, supersaturation, coagulation efficiences, size distributions...
- Results very sensitive to unknowable quantities
- Does not constrain vertical condensate profile

Rossow 1978

Philosophy Behind Ackerman Model

- Needed a global 1D mean cloud model
- Initiated collaboration with Andy Ackerman
- Ackerman is highly skeptical any 1D cloud model is even possible

Philosophy Behind Ackerman Model

- Needed a global 1D mean cloud model
- Initiated collaboration with Andy Ackerman
- Ackerman is highly skeptical any 1D cloud model is even possible

Philosophy Behind Ackerman Model

- Needed a global 1D mean cloud model
- Initiated collaboration with Andy Ackerman
- Ackerman is highly skeptical any 1D cloud model is even possible

Crucial to properly account for sedimentation flux

In terrestrial clouds, large particles transport most of the mass, resulting in thinner and less optically thick cloud decks.

Ackerman Cloud Model

 $-K \frac{\partial q_t}{\partial z} - f_{\text{sed}} w_* q_c = 0$

 f_{sed} parameterizes efficiency of sedimentation relative to turbulent mixing (Jupiter $f_{sed} \sim 3$)

 $f_{sed}w^* = average$ sedimentation velocity of condensate

Model skips over microphysics to give a physically meaningful vertical profile of condensate sizes given assumed growth efficiency.

Ackerman Cloud Model

 f_{sed} parameterizes efficiency of sedimentation relative to turbulent mixing (Jupiter $f_{sed} \sim 3$)

ANDREW S. ACKERMAN AND MARK S. MARLEY¹ NASA Ames Research Center, Moffett Field, CA 94035; ack@sky.arc.nasa.gov, mmarley@mail.arc.nasa.gov Received 2000 October 26: accepted 2001 March $f_{sed}w^* = average$ sedimentation velocity of condensate

Model skips over microphysics to give a physically meaningful vertical profile of condensate sizes given assumed growth efficiency.

Example: Silicate Cloud

Well-mixed cloud, no precipitation

Steady state, precipitating cloud

After Ackerman & Marley (2001)

Other Ingredients

- Chemistry (Katharina Lodders)
- Molecular opacities (Richard Freedman)
- Atmospheric structure (Marley, following McKay)
- Thermal evolution (Didier Saumon)
- With cloud model can predict emergent spectra
- Spectra obtained by collaborators

Tuning Parameters to fit the Cloudiest L dwarfs

Early T Dwarfs

Approach clearly works well, but not perfectly. Does not explain why f_{sed} varies.

How well does this tool work with the directly imaged planets?

Understanding Clouds & the Directly Imaged Planets

(in five years there will be far more data for these objects than the hot Jupiters)

Understanding Clouds & the Directly Imaged Planets

(in five years there will be far more data for these objects than the hot Jupiters)

С

- Luminosities imply $T_{eff} \sim 900$ to 1000 K
- But photometry looks like hotter L dwarfs

Directly Imaged Planets Are Very Cloudy

- HR 8799 b,c,d and 2MI207B look like extensions of L sequence
- Why do low g objects turn blue later?

How Cloudy?

- Emerging conventional wisdom:
 - When compared to "standard" models...
 - HR 8799bcd clouds are "radically enhanced" (e.g., Bowler et al. 2010)
 - Entire "new class" of objects (Madhusudhan et al. 2011)
 - Fits require unusual object radii

Planet	Reference	Mass $(M_{\rm Jup})$	$\log g$	$T_{ m eff}\left({ m K} ight)$	$R(R_{ m J})$	age (Myr)
b^1	Barman et al. (2011a)	0.1 - 3.3	3.5 ± 0.5	1100 ± 100	0.63 - 0.92	30 - 300
	Galicher et al. (2011)	5 - 15 1.8	4 - 4.5 4	1100 = 1000	0.69	30 – 300
	Mad. et al. (2011)	2-12	3.5-4.3	750-850		10 - 150

Currie et al. (2011)	7 - 17.5	4 - 4.5	1000 - 1200		30 - 300
Galicher et al. (2011)	1.1	3.5	1200	0.97	
Mad. et al. (2011)	7-13	4 - 4.3	950 - 1025		30 - 100
This work		4.7 ± 0.3	1070 ± 100		
Currie et al. (2011)	5 - 17.5	3.75-4.5	1000 - 1200		30 - 300
Galicher et al. (2011)	6	4.0	1100	1.25	
Mad. et al. (2011)	3-11	3.5-4.2	850 - 1000		10 - 70
This work		4.5 ± 0.3	1060 ± 110		
	Currie et al. (2011) Galicher et al. (2011) Mad. et al. (2011) This work Currie et al. (2011) Galicher et al. (2011) Mad. et al. (2011) This work	Currie et al. (2011) $7 - 17.5$ Galicher et al. (2011) 1.1 Mad. et al. (2011) $7 - 13$ This work $2 - 17.5$ Galicher et al. (2011) $5 - 17.5$ Galicher et al. (2011) 6 Mad. et al. (2011) $3 - 11$ This work $3 - 11$	$\begin{array}{c cccc} \mbox{Currie et al. (2011)} & 7-17.5 & 4-4.5 \\ \mbox{Galicher et al. (2011)} & 1.1 & 3.5 \\ \mbox{Mad. et al. (2011)} & 7-13 & 4-4.3 \\ \mbox{This work} & 4.7\pm0.3 \\ \mbox{Currie et al. (2011)} & 5-17.5 & 3.75-4.5 \\ \mbox{Galicher et al. (2011)} & 6 & 4.0 \\ \mbox{Mad. et al. (2011)} & 3-11 & 3.5-4.2 \\ \mbox{This work} & 4.5\pm0.3 \\ \end{array}$	$\begin{array}{c ccccc} \mbox{Currie et al. (2011)} & 7-17.5 & 4-4.5 & 1000-1200 \\ \mbox{Galicher et al. (2011)} & 1.1 & 3.5 & 1200 \\ \mbox{Mad. et al. (2011)} & 7-13 & 4-4.3 & 950-1025 \\ \mbox{This work} & 4.7\pm0.3 & 1070\pm100 \\ \mbox{Currie et al. (2011)} & 5-17.5 & 3.75-4.5 & 1000-1200 \\ \mbox{Galicher et al. (2011)} & 6 & 4.0 & 1100 \\ \mbox{Mad. et al. (2011)} & 3-11 & 3.5-4.2 & 850-1000 \\ \mbox{This work} & 4.5\pm0.3 & 1060\pm110 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Planet	Reference	Mass $(M_{\rm Jup})$	$\log g$	$T_{ m eff}\left({ m K} ight)$	$R(R_{ m J})$	age (Myr)
\mathbf{b}^1	Barman et al. (2011a)	0.1 - 3.3	3.5 ± 0.5	1100 ± 100	0.63 - 0.92	30 - 300
	Currie et al. (2011)	5 - 15	4 - 4.5	800 - 1000		30 - 300
	Galicher et al. (2011)	1.8	4	1100	0.69	
	Mad. et al. (2011)	2-12	3.5 - 4.3	750 - 850		10 - 150

33% volume

с	Currie et al. (2011)	7 - 17.5	4 - 4.5	1000 - 1200		30 - 300	
	Galicher et al. (2011)	1.1	3.5	1200	0.97		
	Mad. et al. (2011)	7-13	4 - 4.3	950-1025		30 - 100	
	This work		4.7 ± 0.3	1070 ± 100			
d	Currie et al. (2011)	5 - 17.5	3.75-4.5	1000 - 1200		30 - 300	
	Galicher et al. (2011)	6	4.0	1100	1.25		
	Mad. et al. (2011)	3 - 11	3.5-4.2	850-1000		10 - 70	
	This work		4.5 ± 0.3	1060 ± 110			

 $\tau_{\lambda} = 75\epsilon Q_{\lambda}(r_c)\varphi\Big(\frac{P_{cl}}{1\,\mathrm{bar}}\Big)\Big(\frac{10^5\,\mathrm{cm\,s}^{-2}}{g}\Big)\Big(\frac{1\,\mu\mathrm{m}}{r_c}\Big)\Big(\frac{1.0\,\mathrm{g\,cm}^{-3}}{\rho_c}\Big)$

At lower gravity: cloud base at lower P so less mass to condense but higher in atmosphere

Combining Everything

— planets cool with time

b

Marois et al. (2008)

likely age range of star

- Mass ~ 5 M_{Jup} , T_{eff} = 1000 K, f_{sed} = 2
- "Normal" clouds, similar to warmer L dwarfs
- "Normal" planetary radius as predicted by evolution

Both ~ 10 M_J and fit with normal clouds and self-consistent radii

Moral: cloud model is crucial for data interpretation. Guess and test not adequate.

Marley et al. (2012)

What About the Transition?

In Field Transition is at \sim constant T_{eff}

 $\mathsf{T}_{\mathsf{eff}}$ and (infrared) spectral type adjusted for recently confirmed binaries and newer objects Error bars reflect unknown ages. The coldest object in the plot is the T8 2MASS |04|5-09.

data from Golimowski et al. (2004) & Luhman et al. (2007)

In Field Transition is at \sim constant T_{eff}

 $\mathsf{T}_{\mathsf{eff}}$ and (infrared) spectral type adjusted for recently confirmed binaries and newer objects Error bars reflect unknown ages. The coldest object in the plot is the T8 2MASS |04|5-09.

data from Golimowski et al. (2004) & Luhman et al. (2007)

Mass ~ 5 M_{Jup} , T_{eff} = 1000 K, f_{sed} = 2

Gravity Dependence to Transition

Less clouds

Gravity Dependence to Transition

Less clouds

Gravity Dependence to Transition

Less clouds

May need 3D Simulations to Understand

mt10g50mm00n03 t=130020.1 s

- Waves may be important mechanism that keeps dust aloft
- Interplay of dynamics and clouds only beginning to be explored

Photochemistry

Photochemistry at higher insolation?

Hot Jupiters are Extreme Case

Jupiter at 0.05 AU

- 10,000x higher UV flux
- H, C, O, N, S, P chemistry
- Many pathways to hazes

Conclusions

- Clouds are very important
- Existing models are adequate but there is much room for improvement (talk by Helling)
- Brown dwarfs provide imporant tests
- HR 8799 planets are not strange but rather are consistent with known cloud physics
- Need cloud models to properly interpret data
- Photochemical products also may provide an important source of particulate opacity