

Exoplanetary Atmosphere Retrievals from Transit Spectroscopy

Jae-Min Lee, Leigh Fletcher and Pat Irwin

Atmospheric, Oceanic and Planetary Physics University of Oxford

Exoclimes 2012, Aspen

Sources of uncertainty in transit spectroscopy

IR Emission from secondary transit

What do cause uncertainty in transit spectroscopy

> A small number of measurements

- Secondary eclipse of HD 189733b (only 71 points) (cf. HD 209458b 34 points ?)
- Not enough constraints to say something about the atmospheres
- > Variability in the exoplanet atmospheres
 - Temporal variability
- > Instrument systematics
 - Various transit curve decorrelation methods
 - Noisy measurements
- > Less matured line data for high temperature applications
- Some data available such as HITEMP2010, CDSD-1000 (for CO₂), HITEMP1995, and STDS (for CH₄).
- > Model assumptions
 - Radius of planet (the terminator vs dayside atmosphere)

Motivation : "How to develop an efficient and robust technique for characterising the atmospheric temperature, composition and aerosol properties from transit spectroscopy"

Jae-Min Lee, Leigh Fletcher, Pat Irwin

How to characterise remotely sensed atmosphere

Annu. Rev. Astron. Astrophys. 48:631–72

Jae-Min Lee, Leigh Fletcher, Pat Irwin

What lessons can we learn from the exoplanet spectra available to date?

- How to retrieve the best estimates of temperature structure and composition with reasonable error range
 - \rightarrow Solving the inverse problem probabilistic techniques
 - → Quantifying the degeneracy between properties a myriad of solutions

Maximize information from the given datasets BUT, at the same time, Retain a conservative approach

Jae-Min Lee, Leigh Fletcher, Pat Irwin

- Optimal estimation retrieval (Rodgers 2000, also see Line et al. 2011)
 - Iterative scheme & Bayesian approach ← "Solving the Inverse Problem"

- Covariance matrix analysis formal quantification of uncertainties (diagonal elements) and characterizing degeneracy (off-diagonal)
- Tools to understand the sensitivity of spectra to temperature and composition [i.e. Functional derivatives (or Jacobian), $\partial F(x)/\partial x$]
- **Correlated-***k* **technique** for rapid & accurate radiative transfer

Optimal Estimation Retrieval Scheme

Correlated-k vs. line-by-line

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Best-fitted spectrum to available observations (Spitzer and HST)

Jae-Min Lee, Leigh Fletcher, Pat Irwin

<u>Fisher-test</u> (Ockham's razor) Does addition of molecules really increase fitting quality?

 $H_2O + CO_2$ (simple model) vs. $H_2O + CO_2 + CO + CH_4$ (complex model, confidence levels <<95%)

Enough CO & CH₄ information not provided by the given datasets

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Contribution functions

Temperature profile can be constrained between 2-600 mbar where the contribution functions cover

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Temperature profile can be constrained between 2-600 mbar where the contribution functions cover

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Characterzing degeneracy (a) cross-correlation (b) T vs. all molecules **Cross-correlation** 10-3 $= S_{ii} / (S_{ii} \times S_{ii})^{1/2}$ 10⁻² $\Delta \chi^2/N$ **Temperature Degeneracy** Pressure (bar) The retrieved P-T profiles CO with various mixing ratios CO 10⁻¹ - T(P)−H₂O are presented with --- CH, ----- T(P)-CO2 0.5 $\Delta \chi^2/N < 0.5 (red),$ - - T(P)-CO <1.0(green), <2.0(blue), -- T(P)-CH4 10⁰ respectively. 10^{-3} 10⁻² 10-7 10-8 10-5 10-4 10-1 -0.5 0.0 0.5 1000 2000 Volume Mixing Ratio Temperature (K) c(i,j) (d) T vs. CO, (e) T vs. CO (f) T vs. CH₄ (c) T vs. H₂O CO_2 CH₄ CO H_2O 10⁻³ 10⁻³ Molecular Degeneracy 10-2 10⁻² Each line shows resultant γ^2/N Pressure (bar) with respect to given abundances. Lower bounds of 10-1 10-1 CO and CH₄ uncertainties are unconstrained because of their low contribution to the spectrum. 10⁰ 10⁰ 1000 2000 2000 1000 2000 1000 2000 1000 Temperature (K) Temperature (K) Temperature (K) Temperature (K)

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Retrievals using each measurement

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Retrievals except IRAC3 & MIPS

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Transmission spectrum of HD 189733b

- > HST/NICMOS (Swain et al. 2008) : mostly by $H_2O + CH_4$
- HST/ACS spectrum (Pont et al. 2008) : Rayleigh scattering by MgSiO₃
- > Or extinction effect by haze/cloud?

Jae-Min Lee, Leigh Fletcher, Pat Irwin

Exoclimes 2012

UNIVERSITY OF

Conclusions

✓ Problem

- Various sources of uncertainty : small number of measurements, variability, systematics, line data missing, model assumption
- How to define and characterize degeneracy

✓ Solution

- Retrieval theory plus k-distributions are a powerful combination for rapid analysis of atmospheric spectra
 - Efficiently applicable to large datasets when available
- ✓ How to get better information
 - Large model uncertainties (line data, the presence of gases, vertical gas structures)
 High resolution spectroscopy, broad spectral coverage, and caution!