Simulation and Inversion of Annual Light Curves of a Second Earth

Yuka Fujii Univ. of Tokyo

Hajime Kawahara

Tokyo Metropolitan Univ.

References:

Kawahara & Fujii, ApJ,720,1333 (2010) Kawahara & Fujii, ApJL, 739, L62 (2011) Fujii & Kawahara, in prep.

Corresponding Poster

Hajime Kawahara @Hokkaido

"Remote-Sensing" of Exoclimes

How can we observationally examine the climates / habitat of such far HZ exoplanets?

"Remote-Sensing" of Exoclimes

 Different reflection spectra (Colors)

Non-uniform

Diurnal Variation of the Earth

simulation (e.g.)

E. Ford, S. Seager & E. Turner, 2001

simulated daily variation of Earth (cloudless)

<u>inversion</u> (e.g.) N. Cowan et al. 2009, 2011

derived longitudinal map from observed diurnal variation of Earth

ref.) P. H. H. Oakley & W. Cash, 2009 Y. Fujii, H. Kawahara, Y. Suto, et al. 2010, 2011

How we observe exoplanets

from each pixel depends on the geometry among the pixel, host star, and observer

(e.g. no contribution from pixels not facing on the observer nor from those not being illuminated by the host star)

Formulation

Assuming Lambert scattering, reflectivity of planet is:

Fit light curves with this model with regularization

$$Q = \sum_{i=1}^{N} \frac{|d(t_i) - \sum_j W_j(t_i; \mathbf{w}) m_j|^2}{\sigma_i^2} + \lambda^2 |\mathbf{m} - \mathbf{m}_p|^2$$

$$\frac{\chi^2}{\mathbf{X}^2}$$
regularization term

=> Spin-Orbit Tomography (SOT)

Behavior of Weight Function

Spin rotation

Orbital motion

Testing SOT with Simulated light curves of our Earth

Simulation Scheme

(ref. Fujii+ 2011)

RSTAR6B calculates radiative transfer in the atmosphere

the Earth

INPUT DATA at each pixel:

- Cloud Coverage (daily)
- Cloud Optical Thickness (daily)
- Surface Reflectivity (monthly)
- Snow Coverage (monthly)

from **MODIS** dataset

Annual Light Curves

exposure: 24/30 hr, SN~8 per frame

• Rotation period (ref. Pallé et al. 2008)

Assumptions

- no starlight leakage
- readout noise, dark noise, exozodi
- sharpness ~ 0.08
- throughput*QE ~ 0.5
- @10pc, R=Rearth

SN ~ 8/frame \Leftrightarrow *D* ~ 5m

Effect of Anisotropic Scattering

Phase function of Mie scattering http://omlc.ogi.edu/calc/mie_calc.html

Ref.) Robinson et al. 2010 phase curve of the Earth

Data@phase angle>90° are used

Single-band Mapping

Single-band mapping traces components with high albedo ⇒ Clouds, Snow

Cloud map

Snow map @March

Surface Inhomogeneity

From Aster Spectral Libarary http://speclib.jpl.nasa.gov/

Surface Inhomogeneity

From Aster Spectral Libarary http://speclib.jpl.nasa.gov/

Obliquity Measurement

Planetary obliquity can be also estimated

Obliquity is an essential parameter which controls seasonality

Summary

Spin-Orbit tomography Continuous observation (~1/2 year) helps us understand non-uniform climates of Earth-like exoplanets

- Single-band mapping of the Earth infers the annual mean of cloud/snow distribution.
- 2-band differential mapping of the Earth reveals the land distribution
- 2-band differential mapping bracketing "rededge" enhances vegetation area