Exoplanet Atmospheres by Transmission Emission & Phase Curves

David K. Sing

Exoclimes - Aspen 18 Jan 2012

Outline

- Introduction
 - Exoplanets & spectra
- Atmospheres of Transiting Planets
 Transmission
 Emission
 Phase curve
- What's been discovered
- What physical information and quality are possible

1/12/2011 exoplanet.eu David K. Sing

Exoplanet Atmosphere Characterisation by Spectra

Transits

Direct Imaging

Close-In PlanetsWide-Separations $M_{pl}, R_{pl}(\lambda), i, P, a, Flux_{pl}(\lambda, \Phi)$ $asin(i), Flux_{pl}(\lambda)$ Atmo. CompositionAtmo. CompositionClouds/HazesClouds/HazesThermal profileTemperaturesStratospheresThermospheresExospheresExospheres

Escape Dynamics, Winds Photochemistry

Dynamics Chemistry

Planet Bulk Composition

Transiting Planets

Transiting Planets

Transiting Planets

Exoplanet Spectroscopy What Observatories have been used?

		UV	Optical	nIR	IR
Transit	S G	HST -	HST 6 - 10m	HST 8 - 10m	Spitzer -
2 nd Eclipse	S G	-	Kepler, CoRoT 6 - 10m	HST 4 - 10m	Spitzer -
Phase Curves	Տ Մ	-	Kepler, CoRoT	-	Spitzer -

- Field Traditionally Space-based
- Increasing activity from the ground

Transiting Planets What can the observations tell us?

Different methods are Very Highly Complementary

- Transit Transmission Spectra (mbar and lower)
 Composition
 Escape
 Temperatures
 Pressures & Abundances
 Winds
- Secondary Eclipse Emission Spectra (bar to mbar) Temperatures (or albedo)
 Thermal Structure
 Composition & Pressures & Abundances
- Phase Curves (bar to mbar) Non-transiting too Global Temperature Map Winds

Want All methods at All wavelengths for the Strongest Constraints

Transmission Spectra

Composition

David K. Sing

Examples

- First Exoplanet Atmospheric Detection
 '209 Na (Charbonneau et al. 2002; Snellen et al. 2008; Sing et al. 2008)
- '189 Na (Redfield et al. 2008; Huitson et al. submitted)
- '189 Rayleigh scattering (Pont et al. 2008; Lecavelier et al 2008; Sing et al. 2011) silicate haze?

Transmission spectrum

Composition

Can identify Rayleigh scattering (haze) Alkali Metal Na

Transmission spectrum

Composition

Can identify Rayleigh scattering (haze) Alkali Metal Na

60+ orbits HST 100+ hrs Spitzer see poster Husnoo

Overview Identified Atmospheric Constituents

Na CII H_2O , H_1 , H_2 , TiO/VOCO H I, O I, Si III H_2O HD189733b Na Rayleigh-haze H_2O CO_2, HI Wasp-12b Mg II, Metals Molecules Wasp-17b: Na <u>XO-2b:</u> Κ <u>G||2|4</u>: metal-rich/haze <u>G|436</u>: Molecules

HD209458b

confirmed: HST & Subaru confirmed: HST initial: HST initial: VLT initial: HST initial: Spitzer confirmed: HET & HST confirmed: HST confirmed: Spitzer initial: Spitzer; HST initial: HST initial: VLT, CFHT, Spitzer initial: VLT initial: GTC likely: VLT, HST, CFHT, Spitzer initial: Spitzer

Transmission Spectra

Atmospheric Escape

- UV is sensitive to atomic transitions (H, C, Si, O)
- Hot-Jupiters loose mass due to intense stellar irradiation
- Very large Transit depts

HD209458b

Vidal-Madjar et al. (2003, 2004) Linskey et al. (2010) HDI89733b Lecavelier et al. (2010) Wasp-I2 Fossati et al. (2010)

Emission spectrum

Composition Temperatures

Can identify H₂O, CO₂

Grillmair et al. (2008) ~100 hrs Spitzer

Emission spectrum

Temperatures & Albedo

- Thermal Emission flux from planet probes temperature
- Hot-Js ~1000 to 3000 K
- Albedo (optical) & Re-circulation
- Hot-Js often have low albedos (but not always)

Seager & Deming (2010) Cowan & Agol (2011)

ETER

Phase curves

Temperature map Winds

8 µm

- Hot-spot eastward of sub-stellar point
- Eastward jets

Knutson et al. (2007; 2009) 3 & 4.5 μm curves too

Emission & Transmission

Thermal Structure

Huitson et al. submitted 4000 Binned to Depth (km) 2 pixels 3000 Relative Absorption 2000 1000 E 5895 5905 5910 5880 5885 5890 5900 Wavelength (Å)

Transmission

Temp. via scale height Press. via altitude Na: $T_{z=2000 \ km} = 2800 \ K$ Rayleigh: $T_{z=0 \ km} = 1340 \ K$ EVENTMENTITY OF Lee et al. (2011)

Emission

Press. via contribution function Degeneracy Temp. & Abundances

Emission + Transmission + Phase

Thermal Structure

Limb T-P

'189 NO Stratosphere

Dayside T-P

'209 YES Stratosphere

'189 YES Thermosphere '209 YES Thermosphere

Huitson et al. (submitted) Vidal-Madjar et al. (2011a,b)

Charbonneau et al. (2008) Madhusudhan & Seager (2009) Lee et al. (2011) Burrows et al. (2007) Knutson et al. (2008)

Transmission+Emission+Phase Wasp-12b: Hottest of the Hot Jupiters

Lopez-Morales et al. (2010)

Croll et al. (2011)

Campo et al. (2011) Cowan et al. (2011)

Phase Curve

- Large Day/Night Contrast 3000 K Days 1000 K Nights
- Solar or high C/O?

Madhusudhan et al. (2011) Crossfield et al. (2012) David K. Sing

Era of hot-Jupiter Atmo Surveys

Ground

- emission (nIR; e.g. Croll; Snellen)
- transmission
 Optical (e.g Jensen et al. 2011; Sing et al. 2011)

Space

- Spitzer emission+phase (PI Harrington;Knutson;Krick)
- HSTWFC3 transmission+emission (PI Deming)
- HST STIS transmission (PI Sing)

see poster Swain

Beginning Era of hot-Neptunes & super-Earths

GJ1214b

Flat-ish spectra

Small Signals

- small scale heights
- clouds/hazes covering signatures

Future

ETER

M-dwarfs & Very Bright Transits

GJ436

- enhanced CO, reduced CH₄
- issues with stellar variability

Berta et al. (2011) Knutson et al. (2011) Stevenson et al. (2010) Madhusudhan & Seager (2011)

Conclusions

- Now have increasingly "good" constraints for a couple hot-Jupiter atmos
- Era of comparative exoplanets has started with hot Jupiters
- Beginning era for super-Earth & hot-Neptune atmosphere studies

Postdoctoral position on Large HST program

D. Sing (PI) Exeter F. Pont Exeter UC Santa Cruz J. Fortney H. Knutson Caltech G. Ballester UofA A. Showman UofA A. Burrows Princeton A. Lecavelier IAP A.Vidal-Madjar IAP D. Deming Maryland K. Zahnle Nasa Ames S.Aigrain Oxford G. Henry Tennessee

- Height +2000 km +1500 km +500 km 0 -500 km 0 2 μ μμ
- 124 Orbits
- 8 hot-Jupiters (1000 to 3000 K)
- Full high quality optical+nIR spectra from 3000 Å to 1.6μm

500 nr

Wavelengt

Email D. Sing for details

