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Cold vs. Hot Jupiters
Radiative
Convective

Cold Jupiter Hot Jupiter

Size (mostly) determined by entropy (adiabat) of 
convective interior.
Radiative layer mediates cooling & contraction



Recipes to Inflate Hot Jupiters
(b/c irradiation not enough)

Ideas:

Add Heat

Slow Cooling

Mechanisms:

Tides

Winds

Hydrodynamic Dissipation

Ohmic Dissipation

Mechanical Greenhouse

Opacity effects



Energetics of Hot Jupiter 
Inflation

Matters where & efficiency

0.1% in convective interior 
(Bodenheimer et al. 2001)

1% near “surface” 

between 1- 40 bars             
(Guillot & Showman 2002)

At convective boundary:
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Figure 5. Zonal-mean zonal winds for our nominal HD 189733b simulation at
solar abundance. This is the same simulation as in Figure 4. Scale bar gives
speeds in m s−1.
(A color version of this figure is available in the online journal.)

On average, the dayside is hotter than the nightside, but the
dynamics distorts the temperature pattern in a complex manner
(Figure 4). Perhaps most importantly, the hottest regions do not
occur at the substellar longitude; instead, advection associated
with the equatorial jet shifts the hottest regions downwind
(eastward) of the substellar point by ∼50◦. This point has been
previously emphasized by Showman & Guillot (2002); Cooper
& Showman (2005), and Showman et al. (2008a). Moreover, the
coldest regions do not occur at the equator but instead within two
broad gyres centered at latitudes of ±40◦–50◦ and longitudes
∼60◦–80◦ east of the antistellar point—a phenomenon not seen
in our previous simulations with simplified forcing (Showman
et al. 2008a). The horizontal wind speed is almost zero near
the center of these gyres, so air parcels trapped there have
long residence times on the nightside. This allows them to
experience a large temperature drop due to radiative cooling. In
contrast, air within the equatorial jet has only a short residence
time (typically ∼1 day) on the nightside because of the fast
jet speeds, leading to only modest temperature decreases via
radiative cooling. Interestingly, the temperature structure shows
substantial longitudinal variability even at pressures as great as
1 bar.

As compared to our previous simulations with simplified
forcing (Showman et al. 2008a), our current HD 189733b
simulations exhibit modest lateral temperature contrasts. The
horizontal temperature differences reach ∼450 K at 1 bar and
∼750 K at 1 mbar (Figure 4). In contrast, in our previous
simulations forced by Newtonian heating/cooling (Showman
et al. 2008a), the day–night temperature differences reached
nearly 900 K at 100 mbar and 1000 K at 10 mbar. The smaller
values in our present simulations, which can be attributed to our
usage of realistic radiative transfer, have major implications for
light curves and spectra (Section 3.2).

Note that the global-scale temperature structure exhibits sig-
nificant vertical coherency throughout the observable atmo-
sphere (Figure 4). Although the detailed structure varies be-
tween levels, the hottest regions lie east of the substellar point
throughout, with the longitudinal offset of the hottest region
varying only modestly between pressures of 1 bar and 1 mbar.
Likewise, the locations (though not the shape) of the coldest re-
gions also maintain coherency across this pressure range (blue
regions in Figure 4). At first glance, this vertical coherency is
surprising, because idealized radiative calculations have shown

that the radiative time constant should vary by orders of magni-
tude over this pressure range (Iro et al. 2005; Fortney et al. 2008;
Showman et al. 2008a). At pressures where the radiative time
constant is comparable to the time for wind to advect across
a hemisphere, one expects a significant offset of the hottest
regions from the substellar point (Showman & Guillot 2002).
However, at low pressures where the expected radiative time
constants are much shorter than plausible advection times, one
expects the temperature patterns to track the stellar heating, with
the hottest region occurring close to the substellar point (Cooper
& Showman 2005; Knutson et al. 2007). Indeed, precisely this
height-dependent pattern is seen in published three-dimensional
simulations that force the flow with a simplified Newtonian
heating/cooling scheme, which relaxes the temperature toward
the radiative-equilibrium temperature profile over the expected
radiative timescale (Showman et al. 2008a; Fortney et al. 2006a;
Cooper & Showman 2005, 2006).

So what causes the vertical coherency in our current sim-
ulations? The simple arguments described above—in which
the temperature approaches radiative equilibrium if radiation
times are less than advection times—implicitly assume that the
radiative-equilibrium temperature profile can be independently
defined and that it has a structure reflecting that of the insola-
tion, with the greatest radiative-equilibrium temperature at the
substellar point. However, this argument neglects the fact that,
in real radiative transfer, the radiative-equilibrium temperature
profile itself depends on the dynamical response and can involve
radiative interactions between different levels.10 To illustrate,
suppose the small heating rates at ∼1 bar lead to a hot region
shifted east of the substellar point (as seen in Figure 4, bottom
panel). Upwelling infrared radiation from these hot, deep re-
gions will warm the entire overlying atmosphere, leading to a
temperature pattern at low pressure that has similar spatial struc-
ture as that at higher pressure. These effects were ignored in our
previous studies adopting Newtonian cooling (Showman et al.
2008a; Fortney et al. 2006a; Cooper & Showman 2005, 2006),
but they are self-consistently included here and can explain the
vertical coherency in Figure 4 despite the large expected ver-
tical variations in radiative time constant. Nevertheless, our 5
and 10-times-solar HD 189733b simulations (and especially the
HD 209458b simulations with TiO and VO opacity to be dis-
cussed in Section 5) exhibit less vertical coherency than shown
in Figure 4.

Despite these quantitative differences, our current simulations
lie within the same basic dynamical regime as our previous
three-dimensional simulations driven by Newtonian cooling
(Showman et al. 2008a; Cooper & Showman 2005, 2006). In
all these cases, the flow exhibits a broad, eastward equatorial jet
with westward flow at high latitudes; eastward displacements of
the hottest regions from the substellar point (at least over some
range of pressures); and a gradual transition from a banded flow
at depth to a less-banded flow aloft. Moreover, in all these cases,
the flow structures have horizontal lengthscales comparable to
the planetary radius, consistent with the large Rhines scale
and Rossby deformation radius for these planets (Showman &
Guillot 2002; Menou et al. 2003; Showman et al. 2008b).

Figure 6 (top panel) illustrates the diversity of vertical tem-
perature profiles that occur. Red (blue) profiles lie equatorward
(poleward) of 30◦ latitude. This is for our nominal HD 189733b

10 A more rigorous way of stating this is that one cannot define a radiative
equilibrium temperature structure in isolation from the dynamics. In that case,
the comparison-of-timescales argument fails and one must solve the full
radiative-dynamical problem, as we are doing here.
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Observational 
Clues / Tests

Only HOT Jupiters are inflated

above Tirr = 1000 K

also Demory & Seager (2011)

Easier to inflate (and 
evaporate?) lower mass 
planets (Bodenheimer et al. 2001)

Evidence of period 
dependence of Kepler size 
distributions (Youdin 2011)

The Astrophysical Journal Letters, 736:L29 (5pp), 2011 August 1 Miller & Fortney

Figure 1. Planet radius as a function of average incident stellar flux. Planets
are colored according to their mass. Model planet radii are plotted for a 1 MJ
planet at 4.5 Gyr without a core (solid) and with a 25 M⊕ core (dotted; Fortney
et al. 2007; Miller et al. 2009). Although the extra heating source is not well
determined, it is clear that it is more important at larger incident fluxes. We
choose a cutoff of 〈F 〉 < 2 × 108 erg s−1 cm−2 in order to obtain the largest
sample of non-inflated planets. This corresponds to a planetary Teq ! 1000 K.
(A color version of this figure is available in the online journal.)

elements are uniformly mixed with hydrogen and helium and the
planet is fully convective (mixed model). The primary heavy-
element composition is a mixture of 50% rock and 50% ice
using the equation of state (EOS) ANEOS (analytic equation of
state; Thompson 1990). By considering the two extreme cases of
having all of the heavy-element masses in the core or envelope,
we bracket possible interior models of giant planets. For Jupiter,
models that match gravity field constraints generally find that
most of its heavy elements are in the envelope while for Saturn
most are in the core (Fortney & Nettelmann 2010).

A complete description of the thermal evolution model can
be found in Fortney et al. (2007) and Miller et al. (2009).
Briefly, planets are composed of up to three components: (1) an
inert core, (2) an adiabatic convective envelope (where heavy
elements may be mixed in), and (3) a solar-metallicity non-
gray atmosphere model (Fortney et al. 2007) that includes the
atmospheric extension to the transit radius. The primary effect of
heavy elements either in the core or in the convective envelope
is mainly to decrease the planet’s radius at every time.

For each planet, the amount of heavy elements is determined
under the constraint that the predicted model transit radius
agrees with the observed radius at the observed age and incident
flux. The average incident flux that a planet receives is given by

〈F 〉 = L∗

4πa2
√

1 − e2
, (1)

where L∗ is the luminosity of the star, a is the semi-major axis
of the orbit, and e is the eccentricity of the orbit. This analysis
was performed on all planets that met our average incident
flux cut 〈F 〉 < 2 × 108 erg s−2 cm−2 and had a mass greater
than 20 M⊕—since our model is primarily designed to describe
giants with masses greater than Neptune.

Note that these heavy-element masses should be taken as
minimum masses since if the planet is internally heated or
if higher atmospheric opacities (due to metal-enhanced atmo-
spheres) slow the cooling (Ikoma et al. 2006; Burrows et al.
2007), then a planet would have more heavy elements than
found here.

The required heavy-element mass to fit the radius is deter-
mined as the average of the layered and mixed cases. Each of

Figure 2. Stellar metallicity and inferred planet heavy-element mass for
exoplanets within our incident flux cut. The required heavy elements are from the
“Average Case” in Table 1. (See the text.) Planets are numbered corresponding
to the entries in Table 1. The rarity of gas giants around metal-poor stars is
well established (Fischer & Valenti 2005). Using a least-squares fit, we find the
relation log MZ = (0.82 ± 0.08) + (3.40 ± 0.39)[Fe/H] and a reduced χ2 value
of 1.95. The fit excludes HAT-P-12b (planet 13) and includes Jupiter and Saturn.
However, we do not expect this relation to hold at the lowest metallicities, where
it may become flat at ∼ 10–15 M⊕.
(A color version of this figure is available in the online journal.)

the observed system parameters (Rp, age, a, Mp) has an associ-
ated error on its published value. The propagated error on the
heavy-element mass (σH ) is given by
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where σRp
, σAge, σa , and σMp

are the observationally determined
errors in planet radius, system age, semi-major axis, and
planet mass respectively. The derivatives ∂Mc

∂X
(calculated at

the observed planet parameters assuming core heavy elements)
describe the sensitivity of the predicted heavy-element mass
with respect to changes in a given parameter, X. The final term
of the expression is the uncertainty due to the unknown structure
of the planet. Mc and Menv are the predicted heavy-element
masses if the heavy elements are within the core or the envelope,
respectively.

We use the metallicity of the star [Fe/H] as given in each paper
in Table 1. For each system, we compute the heavy-element
mass fraction Zstar ≡ 0.0142 × 10[Fe/H]—assuming that the
total heavy-element composition of other systems scales with
their iron abundance, normalized to the solar metallicity as in
Asplund et al. (2009).

3. FINDINGS

In Figure 2, we plot the stellar metallicity, [Fe/H], against the
planet heavy-element mass for each of these systems. Using a
least-squares fit, we find that log MZ = (0.82 ± 0.08) + (3.40 ±
0.39)[Fe/H] for stars with [Fe/H] > −0.05. The reduced χ2

value of 1.95 implies that not all of the scatter can be explained
by observational error. We expect a fairly flat relation (the dotted
line in Figure 2) at subsolar stellar metallicity if 10–15 M⊕ of
heavy elements are needed to trigger planet formation. In Table 1
we list the planets and observed parameters used. For each
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Ohmic Dissipation

Surface winds induce currents 
which dissipate (at depth?)

J = � ( v ! B + E )

Applied to SS (Liu et al. 2008)   
and to Hot Jupiters

Upper atmosphere crucial 
for wind driving/damping 
(Perna, Menou, Rauscher 2010, etc.)

Global models study inflation
19
87
Ap
J.
..
31
6.
.8
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K

Kirk & Stevenson (1987)

Batygin & Stevenson (2010)
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Figure 3. Side view cross section of induced current due to zonal wind flow.
The interior vector field, plotted with small arrows, is a quantitative result of
the model. The large semi-transparent arrows are illustrations. The yellow shell
in the inset represents the region to which we confine the zonal flow (10–0.03
bars). The orange region denotes the region of interior heating.
(A color version of this figure is available in the online journal.)

it penetrates the interior of the planet and completes the loop
(Figure 3).

The general induction equation can be written as

∂ !B
∂t

= −!∇ × λ( !∇ × !B) + !∇ × (!v × !B), (4)

where !B is the magnetic field and λ ≡ 1/µ0σ is the magnetic
diffusivity (Moffatt 1978). We express the magnetic field as
a dipole background component and an induced component:
!B = !Bdip + !Bind with ∇ × !Bdip = 0. This assumes no dynamo
generation in the region. The induced magnetic field will tend
to point in the same direction as the velocity field, so we can
make the approximation !v × !B ≈ !v × !Bdip. We assume that the
prescribed velocity field and the background magnetic field are
not strongly modified by the induced field, i.e., Rm ≡ vL/λ ! 1,
an assumption satisfied in our models with T " 1700 K. Finally,
we seek a steady-state solution, so we require ∂ !B/∂t = 0. With
these assumptions, the induction equation simplifies to

!∇ × λ( !∇ × !Bind) = !∇ × (!v × !Bdip). (5)

We can “uncurl” this equation and use Ampere’s law !∇ × !B =
µ0 !J to recover Ohm’s law:

!Jind = σ (!v × !Bdip − !∇Φ). (6)

By continuity, ∇ · !J must vanish. As a result,

!∇ · σ !∇Φ = !∇ · σ (!v × !Bdip). (7)

If the conductivity takes on an exponential form, there exists
an analytical solution for Φ and in our models, we confine
the atmospheric flow to the region where conductivity is
exponential. In the interior region, the electric potential is also
governed by the above equation, with the right-hand side set to

zero. However, since the interior conductivity does not take on a
simple analytical form, the above equation there must be solved
numerically.

We take a nominal value for the “strength” of the field at the
surface of the planets to be ‖B‖R = 10−3 T, approximately the
value expected from scaling the field via the Elsasser number
Λ ≡ σB2/2ρΩ ∼ 1, where Ω is the planetary rotation rate
(assumed tidally locked). The magnetic field scaling argument
based on energy flux also suggests a similar value (Christensen
et al. 2009). For comparison, Jupiter’s surface field is ‖B‖Rjup =
4.2×10−4 T (Stevenson 2003). We approximate the zonal wind
as v ∝ vm sin(θ )φ̂ where vm is the maximum speed attained by
the wind and set vm = 1 km s−1 (see the Appendix for more
details).

Once we have the solution for the current, we can compute
the total Ohmic dissipation rate below some radius r:

P =
∫ ∫ ∫ !J 2

σ (r)
dV . (8)

In order to satisfy continuity, the magnitude of the current
density must be constant along its path in the interior. As a
result, it is apparent from the above equation that most of the
dissipation takes place in the upper layers of the planet, where
conductivity is not too great, and the solution is insensitive to the
details of the conductivity profile in the deep interior, as long as it
remains high. The Ohmic heat that is generated in the convective
envelope of the planet replaces gravitational contraction and is
lost by radiative cooling at the radiative/convective boundary.
Consequently, to ensure a null secular cooling rate, we need the
Ohmic dissipation rate to at least compensate for the radiative
heat flux at the radiative/convective boundary (Clayton 1968).

4. MODEL RESULTS

It has been shown that extrasolar gas giants require between
10−6 and 10−2 of the irradiation they receive to be deposited
into the adiabatic interior to maintain their radii (Bodenheimer
et al. 2001; Burrows et al. 2007a; Ibgui et al. 2010), although
the exact number depends on the metallicity of the atmosphere
and the mass of the heavy element core in the interior of
the planet.1 Under the assumption of solar metallicity and
no core, HD209458b requires 3.9 × 1018 W, Tres-4b requires
8.06 × 1020 W, and HD189733b requires no heating at all
(Burrows et al. 2007a; Ibgui et al. 2010). Within the context of
our model, HD209458b and HD189733b are easily explained.
To adequately explain Tres-4b however, we require an enhanced
(10×solar) metallicity in the atmosphere to reduce the required
heating down to 5.37 × 1019 W.

Table 1 presents a series of models with various temperatures,
helium contents, and metallicities of the planets under consider-
ation. Upon inspection, it is apparent that the global heating rate
scales exponentially with temperature, and as a square root of
the metallicity. Both of these scalings can be easily understood
by noting that scaling the conductivity profile by a multiplica-
tive factor causes a corresponding change in dissipation while
Equations (1) and (2) relate temperature and metallicity (i.e., f)
to the conductivity.

It is also noteworthy that the models with a simulated core
produce approximately the same amount of heating as the

1 If the dissipation is concentrated higher up in the atmosphere, 10–100×
more heating is required (Guillot & Showman 2002).



Inflating Hot Jupiters with 
Ohmic Dissipation

Fixed wind profile (to 10 bars)

Hot Jupiters bloated for fixed 
dissipative efficiency " 1%

Consistent with Guillot & Showman (2002)

Fixed efficiency and calculated 
conductivity means...

vwind ! B adjusts to what is 
required

Batygin, Stevenson & 
Bodenheimer (2011)

ε = 1%



Large B-fields Required
Conductivities 

revised downward 
by 103 :

0.1 S/m → 10-4 S/m
0.001

0.1

10

1000

105

P (bars)
10710510310

103

105

σ (S/m)

conve
ctiv

e

rad
iati

ve

1 MJup  

Teff =1400K

t = 5 Gyr

10

R = 1.14 RJ

ε = 0%

R = 1.35 RJ

ε = 5%

R = 1.31 RJ

ε = 3%

R = 1.24 RJ

ε = 1%

10-3

10-1

10-1

Batygin et al. (2011, ApJ)

corrected (v3, arXiv)

�∼ρv2φH/(τLσSBT
4
eff )

∼ 0.01(
ρ

0.1kg/m3 )(
vφ

1km/s
)2(

H

1000km
)(
1500K

Teff
)4(17)

τL = ρ/σB2 ∼ 10
6
(

ρ

0.1kg/m
3 )(

0.1S/m

σ
)(
10−3T

B
)
2
sec.

(8)

A damping time-scale of the same functional form was

BSB11 scalings... ... then imply

10 G

{ B ∼ 1

vφ

�
�

σe

Firr

H

∼ 300

�
km/s

vφ

��
�

0.01

10−4 S/m

σe
G



Constraint on Ohmic Inflation

Ohmic dissipation (up high) 
limits wind speeds

For strong B-fields &

High temp. (ionization)

Need all three for inflation

More study needed to 
determine severity of 
constraint
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Fig. 1.— Estimate of the zonal wind speed, Vφ (in km/s), at the thermal photosphere as a

function of the planetary radiative equilibrium temperature, Teq (in K). Solid, dashed and
dash-dotted lines show results for surface magnetic field strengths Bdip = 3, 10 and 30 G,
respectively. The exponential decline of Vφ at high Teq is caused by strong magnetic drag.
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Cold vs. Hot Jupiters
Radiative
Convective

Cold Jupiter Hot Jupiter

Size (mostly) determined by entropy (adiabat) of 
convective interior.
Radiative layer mediates cooling & contraction



The Mechanical Greenhouse:
Consequences of Mixing a Hot Jupiter

• Radiative zones of Hot Jupiters likely 
turbulent, with diffusion coefficient Kzz

• Delivers dust & disequilibrium molecules 
to the photosphere

• Driven by winds and/or ohmic heating

• Buries heat, inflates planet

• convection in reverse!

•

he
at

IR photosphere

Mixing
layer

deep interior

winds

Youdin & Mitchell (2010)

0.1 bar

103 bar

Hot Jupiter Atmospheres 5

is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick � Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate �. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − �

g
. (18)

Sources of � include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and �.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance � and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

�
dT

dz

����
ad

− dT

dz

�
�

=− �T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
dS

dz

=−Kzzρg

�
1− ∇

∇ad

�
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P �

CP

dS

dz

����
z±�

w

�
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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A Hot Jupiter Analogue with Mechanical Mixing

• Flux from star, F*,in >> cooling flux

• suppresses convection (hot over 
cold) in outer layers

• Forced turbulence drives “anti-
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Greenhouse

• replaces cooling flux & heats interior

• Dissipation adds more heat, further 
aids inflation
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Energy Balance: Radiation + Turbulence

• Radiative flux in diffusion approximation

• Turbulence:

• Heat burial via eddy flux

• Dissipates (!)

• Compute Temperature profile

• Solution for location of radiative-
convective boundary ��cooling rate
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick � Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate �. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − �

g
. (18)

Sources of � include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and �.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance � and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

�
dT

dz

����
ad

− dT

dz

�
�

=− �T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
dS

dz

=−Kzzρg

�
1− ∇

∇ad

�
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P �

CP

dS

dz

����
z±�

w

�
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and
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where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
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The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating
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The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate
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ρ

δρ±
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CP
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�
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where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

Hot Jupiter Atmospheres 5

is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick � Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate �. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − �

g
. (18)

Sources of � include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and �.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance � and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =
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dT

dz

����
ad

− dT

dz

�
�

=− �T

CP

dS
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where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
dS

dz

=−Kzzρg

�
1− ∇

∇ad

�
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P �

CP

dS

dz

����
z±�

w

�
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick � Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate �. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − �

g
. (18)

Sources of � include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and �.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance � and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =
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dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
dS

dz

=−Kzzρg

�
1− ∇

∇ad

�
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt
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CP

dS

dz

����
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�
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where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

Eddy Diffusion
Kzz ~ w⋅�
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is the smaller of the opacities to starlight and emitted ra-
diation near Pthick. As long as Pthick � Pdeep, solutions
are physically consistent below Pthick.

3. ENERGETICS OF TURBULENT RADIATIVE
LAYERS

We now generalize the radiative equilibrium model to
include two effects. First we allow for turbulent eddies
to drive an advective heat flux Feddy. The total flux

F = Frad + Feddy . (17)

includes the radiative and eddy contributions. Second,
we allow for the release of energy at a rate �. In steady
state this heating is balanced by cooling from the diver-
gence of the total flux,

dF

dP
= − �

g
. (18)

Sources of � include the viscous dissipation of turbulence
(§4.3), breaking waves (Showman et al. 2009) and ohmic
dissipation (Batygin & Stevenson 2010).
While equation (1) still describes the radiative flux,

Frad is no longer constant with height. The fractional
contribution of Frad to the total flux can vary, and the
total flux itself can vary. To proceed further we require
a model for Feddy and �.

3.1. Turbulent Heat Transport

We derive Feddy using basic elements of mixing length
theory. This theory is usually applied to convectively un-
stable regions, but instead we apply it to forced turbu-
lence in convectively stable regions. We will show that in
this case the energy flux is inwards. We leave the forcing
mechanism of turbulent motions unspecified, and their
strength a free parameter.
We consider parcels of gas which conserve entropy and

maintain pressure equilibrium with their surroundings as
they exchange position over a vertical distance � and then
dissolve. These parcels contain excess heat δq = ρCP δT
with:

δT =

�
dT

dz

����
ad

− dT

dz

�
�

=− �T

CP

dS

dz
(19)

where δf gives the difference of any quantity f between
the parcel and its surroundings. For stable stratifica-
tion (dS/dz > 0) rising parcels (� > 0) cool and sinking
parcels heat. We express the heat flux, Feddy = wδq with
w the characteristic eddy speed, in terms of the turbulent
diffusion, Kzz = w�, as

Feddy=−KzzρT
dS

dz

=−Kzzρg

�
1− ∇

∇ad

�
. (20)

The flux is always negative for stable stratification. It
vanishes at the RCB where dS/dz = 0 (and ∇ = ∇ad).
We do not model overshoot, which could allow energy
exchange (in either direction) between convectively sta-
ble and unstable zones. In the upper isothermal regions

Feddy ∝ −KzzP , declines in magnitude with height, un-
less Kzz increases with height to compensate, as we will
consider in §4.2. At very low pressure, radiative losses
during the exchange could lower Feddy, but we assume
this correction is negligible in optically thick regions.
To understand the energetics of Feddy, we analyze its

divergence, which describes cooling and (when negative)
heating

dFeddy

dz
= Kzz

ρg

R

dS

dz
−KzzρT

d2S

dz2
− dKzz

dz
ρT

dS

dz
. (21)

The terms on the right hand side represent cooling rates,
−δq̇, which we relate to rates of work, δẇ, using the first
law, δq = δe−δw. Thus −δq̇ = δẇ/∇ad since the internal
energy, δe = ρCV δT = (1 − ∇ad)δq with CV = CP −
R. The first term in equation (21) arises from buoyant
work δẇB = δρgw = Kzzρg(dS/dz)/CP , where δρ/ρ =
−δT/T by pressure equilibrium. The first term on the
RHS of equation (21) is thus −δq̇B = δẇB/∇ad. This
buoyant cooling will be evident in the stratified regions
(P < Pdeep) of Fig. 6.
The second term represents the tendency of mixing

to heat by filling in entropy minima (for d2S/dz2 >
0). More specifically it arises from compressional work,
which vanishes for a constant entropy gradient because
the work done on rising and sinking parcels cancels. For
varying dS/dz consider two parcels that arrive at z, one
from above and one from below. Compressional work is
done on the parcels at a rate

P∇ · v± = −P

ρ

δρ±
δt

= ∓ P �

CP

dS

dz

����
z±�

w

�
(22)

where the top (bottom) sign refers to sinking (rising)
parcels, ∇ ·v is a velocity divergence, and δt = �/w gives
the expansion rate. The net work is the sum of these
terms, δẇC = −∇adKzzρTd2S/dz2. We identify the sec-
ond RHS term in equation (21) as −δq̇C = δẇC/∇ad.
This compressional heating dominates in deeper regions
(P > Pdeep) of Fig. 6. The third and final term repre-
sents a flux imbalance that arises from non-uniform eddy
diffusion as in §4.2.

3.2. Model Equations and Self-Similar Solution

Technique

Our atmospheric model is described by equations (1),
(17), (18) and (20) which reduce to the following pair of
coupled ODEs

dT

dP
=

F + Fiso

krad + FisoP/(∇adT )
(23)

dF

dP
=− �

g
(24)

where

Fiso≡Kzzρg (25)

is (minus one times) the isothermal limit of the eddy
flux. The thermal profile in equation (23) describes the
combined effects of radiative and eddy fluxes. Ignoring
mixing (Fiso → 0) recovers standard radiative diffusion
of equation (1). Strong mixing (Fiso → ∞) creates an
isentropic profile (∇ → ∇ad).

Net Flux

Youdin
& Mitchell 

(2010)



Inflation by the Mechanical 
Greenhouse Effect

• Preferentially inflates hotter planets

• Also lower mass giants (not shown)

• Efficient way to inflate a hot Jupiter

• Simply replaces core flux

• Constraints: delivery of condensates to 
photosphere (TiO, dusty hazes)

• See poster by Nawal Husnoo et al.

• Kzz relevant for photochemical models

(Youdin et al.,         
in prep/preliminary)

Solutions match mechanical 
greenhouse flux to structure 
models of Arras & Bildsten 

(2006)



Conclusions

• Hot Jupiters are inflated ... or never shrank

• Need a mechanism to enhance effects of irradiation

• Ohmic Dissipation hypothesis: self-consistency not yet demonstrated

• Strong B-fields damp strong winds in hot atmosphere ... all required

• Mechanical Greenhouse: turbulent mixing efficiently replaces cooling flux

• Source of deep, weak turbulence unspecified (meridional, MHD)

• Observational connections to condensate/photochemical mixing models


