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Talk Outline

* (CO, and the outer edge of the habitable zone
* Uncertainties: absorption spectra, CO, clouds
* Simulations of the Early Martian climate
* Simulations of Gliese 581d
* Importance of other greenhouse gases
* Hydrogen-nitrogen warming on Early Earth
* Transient conditions for biogenesis on young
super-Earths

* (Conclusions



Carbon dioxide defines the outer edge
of the classical habitability zone

* Kasting (1993):
Habitability means
surface liquid water

* Inner edge = runaway E——————
H,O greenhouse, outer Vel s
edge = max. possible CO, y L
greenhouse

* Even for pure CO,
atmospheres,
uncertainties persist!
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Selsis et al. 2007, Astronomy & Astrophysics
http://www.webmastergrade.com/wp-content/uploads/2010/08/0cean-View.jpg



CO, collision-induced absorption

— Resultant warming in pure CO,

induced-dipole

absorpion I atmospheres (1D simulations):

" (Gruszka and dimer absorption
Borysow 1998) (Baranav et al. 2004)
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Wordsworth, Forget & Eymet, Icarus (2010)




CO, clouds (1D studies)

* Kasting (1991): CO,
clouds will increase
albedo, probably cool

* Forget & Pierrehumbert
(1997): CO, clouds will
warm via IR scattering

* Colaprete & Toon (2003):
Yes, but warming effect
small due to microphysics
of cloud formation



CO, clouds (GCM studies)

CO, ice clouds visible opacity, L, = 270°, noon at 0°E
Low resolution 32 x 24 High resolution 64 x 49
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Figure 10. An example of the instantaneous CO2 ice clouds coverage for two simulations with different horizontal
resolution (mean surface pressure 2 bar, obliquity=25°, [CCN]=10° kg~*, circular orbit)

Forget, Wordsworth, Millour et al. (2012):
Dry warming of up to ~15 K (a little more with water vapour included)



Two outer edge planets:
Mars and Gliese 581d

\Y VS Gliese 581d

1.34 AU away from Earth (today!) ~20 light years away
Extensive evidence for running surface Discovered 2007 by RV measurements
water only in Noachian era (~3.8 Gya) (Udry et al. Astron. & Astrophys.)

Ave. stellar flux = 110 W m? Ave. stellar flux * 95 W m-2
Mass = 0.107 mg Min. mass = 7.1 my (max ~11 m)
Orbits G-class star Orbits M-class (red dwarf) star

Period [day]

Carr (1996), Malin & Edgett (2003)
Forveille etal. (2011)



3D Early Mars simulations

Mixed CO, / H,0
atmosphere

Self-consistent water
cycle, including surface
exchange, precipitation,
cloud and vapour
radiative effects etc.

Pressure: 600 Pa to 2 bar

32x32x15, 32x36 spatial
& spectral resolution

Ice evolution algorithm:
hice+ = h, +

1ce

dhice/dtl 1 erAt
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Surface temperature vs. pressure

CO2 CLOUDS IN BOTH CASES
RED = DRY (PURE CO2)

BLUE = H20-SATURATED
TROPOSPHERE, NO H20 CLOUDS
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Surface ice evolution

180w 1 E'EI' W

1 bar atmosphere, 25 deg. obliquity



Temperature-altitude correlation

Olympus Mons: 21 km height Kilimanjaro: 5.9 km height
600 Pa atmosphere (today) 1 bar atmosphere

ATsurf~35 K

http://wallpapers.free-review.net/49_~_Mars%2C_Olympus_mons_foggy.htm
http://www.destination360.com/africa/tanzania/images/s/mount-kilimanjaro.jpg



Temperature-altitude correlation
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Effects of diurnal / seasonal heating
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Effects of transient phenomena:
jolts away from climate equilibrium

//
e

geothermal
heating / volcanism?

WARM COLD
LOWLANDS HIGHLANDS




Gliese 581d simulations



Effect of the stellar spectrum

A [ m]

total =
toti
total =

A [wm]

Kasting et al. 1993, Icarus
Wordsworth et al. 2010b, Astronomy & Astrophysics



Effect of the close orbit

* Gliese 581d most likely in
locked or synchronous orbit
due to strong tidal forces
(Leconte et al. 2010, Heller et
al. 2011)

* Dense atmosphere could
collapse on planet’s dark side!

Wordsworth et al. 2011, The Astrophysical Journal Letters
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GCM simulation results

—— 1:1 resonance
1:2 resonance
1:10 resonance
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So, CO,-rich case is potentially
habitable. Is it likely?

10 bars CO, on GJ581d ~4-6 bars equivalent on Earth /
Venus (factor 10-100 less than their total inventories)

H, / He envelope also possible (c.f. Neptune @ 17 mg,)
But intense XUV & stellar wind for first ~1 GYr from GJ581
More sophisticated modelling is needed! (H;* etc.)
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What about other gases?



Hydrogen greenhouse warming I:
Early Earth

* (lassical picture of Earth’s atmosphere in the
Archean: N,-CO,-H,0, trace amounts of H, and CH,

* Constraints on CO, (e.g. Sheldon 2006) lead to
infamous Faint Young Sun paradox

 However: recent hydrodynamic escape modelling
(Tian et al. 2005)
indicates H, levels could
have been much higher
(up to 0.3 v.m.r)

* Could hydrogen have
played a direct role in
greenhouse warming?

http://www.blc.arizona.edu/courses/schaffer/182 /Archean.gif



Hydrogen greenhouse warming I:
Early Earth

Present-day Earth IR emission
spectrum
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Wordsworth et al. 2012, in preparation http://lasp.colorado.edu/~bagenal /3720/CLASS5/EarthBB.jpg



Hydrogen greenhouse warming I:
Early Earth

 Assume surface albedo = 0.22, solar flux = 70%
present value, clear sky & present-day CO, levels

Wordsworth et al. 2012, in preparation



Hydrogen greenhouse warming II:
Transient habitability on young
super-Earths

* Young super-Earths with slowly escaping H,
envelopes will undergo transient habitable periods

* During this time, photochemistry under reducing

conditions = atmospheric formation of pre-biotic
molecules

[MYr]

60

Wordsworth, 2011 40
arxiv.org/abs/1106.1411 20

(see also Stevenson, 1999 and

0.6 0.8
Pierrehumbert & Gaidos, 2011)
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Conclusions

Advances in spectroscopy and 3D cloud modelling
have allowed a new, more accurate assessment of
CO, habitable zone outer edge

Gliese 581d is inside it (just), Early Mars is not...
Hydrogen CIA (H,-H, and H,-N,) can help explain
the faint young Sun paradox on early Earth

Transient hydrogen warming should also occur on
a very wide range of young terrestrial exoplanets

More research on generalised atmospheric
compositions is necessary!



