Magnetic Drag in Hot Jupiter Atmospheres and Observable Consequences

Emily Rauscher Sagan Fellow University of Arizona

Atmospheric structure

Upper atmosphere: day = hot night = cold Lower atmosphere: equator = hot poles = cold

Thermal ionization + winds

Temperature [K]

log₁₀(magnetic Reynolds number)

Magnetic Drag

Day

Night

50 mbar

The latitudinal component of the induced current, which depends on v, B, and the local resistivity:

$$j_{\theta}(r,\theta,\phi) = -\frac{c\sin\theta}{4\pi r\eta(r,\theta,\phi)} \int_{r}^{R} dr' r'^{2} \left(\frac{\partial\Omega}{\partial r'}B_{r} + \frac{1}{r'}\frac{\partial\Omega}{\partial\theta}B_{\theta}\right)$$

where $\Omega = v_{\phi} r^{-1} \sin^{-1} \theta$ in spherical coordinates (r, θ, ϕ) .

The momentum equation for the (mostly neutral) flow now includes an ion drag term:

$$\rho \frac{d\mathbf{v}}{dt} \propto \frac{1}{c} \mathbf{j} \times \mathbf{B}$$

from which we can calculate a drag timescale:

$$au_{
m drag} \sim rac{
ho \, \left| \mathbf{v}_{\phi}
ight| \, c}{\left| \mathbf{j}_{ heta} imes \mathbf{B}
ight|}$$

Perna, Menou, & Rauscher (2010a); see also Zhu et al. (2005), Liu et al. (2008)

Complex drag structure

Temperature [K]

Observable Consequences

- Slower winds
 - direct measurement of wind speeds?

Altered temperature structure
 phase offset of flux maximum

Ohmic dissipation and extra heating

 amount of radius inflation

Transmission spectra

Rauscher (2011)

Direct measurement of wind speed (?)

(see also Redfield et al. 2008, Jensen et al. 2011)

In the more distant future ... vertical wind shear

Kempton & Rauscher (2011)

Magnetic drag \rightarrow less efficient advection

Maximum wind speed: 8 km/s

Maximum wind speed: 6 km/s

Temperature [in K] at photosphere, P = 50 mbar

Changes in phase offset of max flux

.25e+04 1.73e+05 3.24e+05 4.74e+05 6.25e+05 7.75e+05

2.34e+04 1.83e+05 3.42e+05 5.01e+05 6.60e+05 8.19e+05

2.34e+04 1.83e+05 3.42e+05 5.01e+05 6.60e+05 8.19e+05

Ohmic dissipation and heating

Perna, Menou, & Rauscher (2010b) see also Batygin & Stevenson (2010), Batygin et al. (2011), Laughlin et al. (2011), Menou (2011)

Summary: set of related observables

	B = 0 G	B = 3 G	B = 10 G	B = 30 G
Ohmic heating efficiency, ε	0%	0.6%	3%	60%
Longitude of hotspot	12°	11°	7°	2°
Blueshift of transmission lines	2 km/s			1 km/s

caveat: these numbers will change for more complex (complete) models

As the strength of the magnetic field \uparrow :

- T the amount of ohmic heating and radius inflation
- the longitude of the hotspot and offset in the phase curve
- the wind speeds (constrained by transmission spectra?)
- ... but not without limit.

Kempton & Rauscher (2011), Rauscher & Menou (2011)