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Why is the problem interesting from a climate dynamics perspective? 

Climate of an aquaplanet at high obliquity   

Tidally-locked aquaplanets 

Earth-like planet with an atmosphere, 
an ocean and possibility of ice,  

           ................but no land! 
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1. Why is the problem interesting from 
a climate dynamics perspective? 

At high obliquity the poles are 
warmed more than the equator 

Expect a reversal of pole-equator 
temperature gradient !! 

Extreme seasonal cycle 
If polar temperatures are not to wildly 
fluctuate, heat must be stored or carried 
there. 

Likely key role for the ocean 
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Insolation for a tidally-locked 
Earth-like planet 

•  Large and steady 
insolation contrast, 

•  Outgoing long wave 
on night side. 

èrequires a transport 
from day side to night 
side: Atmosphere and 
Ocean 

èno role for storage 
in ocean 

0 W/m^2 1300 W/m^2 



Key	
  climate	
  ques<ons	
  

• 	
  What determines the meridional energy transport and its 
partition between the atmosphere and ocean? 

• 	
  What is the role of the ocean in modulating extremes of 
temperature (through storage and transport)? 

• 	
  What determines the pattern of surface winds? 
- critical to ocean circulation (i.e. atmos angular mtm transport) 

Earth-like 
planet … 

Aqua 
Coupled 
GCM 

… but without 
geometrical constraints  

Atmosphere-only work: Joshi et al., 97; Joshi, 03; Williams and Kasting, 97; Williams and Pollard, 03; 
                                         Merlis and Schneider, 2010; Showman et al. 2009; Heng and Vogt, 2011.  



•  Primitive equation models, 

•  Cube-sphere grid: ~3.75º, 
 
•  Synoptic scale eddies in the 
atmosphere, 

•  Gent and McWilliams eddy 
parameterization in the ocean, 

•  Simplified atmospheric physics 
(SPEEDY, Molteni 2003), 

•  Conservation to numerical 
precision (Campin et al. 2008) 

MIT GCM: Coupled Ocean-Atmosphere-Sea ice: 

Poles well 
represented 

Fully coupled:  
no adjustments Same grid for 

ocean and 
atmosphere 

Temperature 
snap-shot at 
500 mb. 
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Aquaplanet	
  at	
  23.5	
  obliquity	
  



Climate of Aquaplanet 

at obliquity of 23o 
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Today’s Earth climate 

Energy transports 
in an Aquaplanet 

Aquaplanet at 23.5° obliquity 
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- Patterns and magnitudes of transports are well captured in an Aquaplanet 
è to first order, continents are not necessary to explore the climate of an 
Earth-like planet 



_ _ 23°_ _ 90°
Annual means 

Potential Temperature 

3      Climate at high obliquity 
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Ocean Ocean 
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Winds 

Surface westerlies in middle 
latitudes, easterlies in tropics 
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turbulence waves 

turbulence 

Asymmetries between easterly 
and westerly sheared flows 
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Convective index 

Strong surface temperature gradient in summer hemisphere (~40K) 
 and weak gradient in winter hemisphere (~10K) 

Seasonal variations restricted to top 200m 
 ---  amplitude of ~12K at pole 
 ---  almost steady and ~2K at equator 

Atmosphere 

Ocean _ _ 90°
Seasonal Cycle 
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January winds 
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Ocean overturning 
circulation 
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OHT dominated by Eulerian 
wind-driven circulation 
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 Atmosphere and Ocean heat transports are achieved 
seasonally: 
 ----- large in the summer hemisphere 
 ----- nearly vanish in the winter hemisphere 

Equatorward transport everywhere 
----- down large-scale temperature gradient 
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Climate at 54 degree obliquity 
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Fig. 8: Idem to Fig. 2 but for a 54◦ obliquity.
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Fig. 10: Idem to Fig. 4 but for a 54◦ obliquity.
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Tidally-locked Aquaplanet 4 
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50 km (Ocean) 

at T=1 day 

16000 km 
1000 km 
at T=20 days 



Surface air temperature: 

T = 1 day T = 20 days 

OLR 

TOA OLR: 
ΔT = 63 K ΔT = 38 K 
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T = 1 day T = 20 days 

Surface ocean currents 

Surface winds 

Merlis and Schneider, 2010; Showman and Polvani 2011, Heng and Vogt, 2011  



Positive = into 
the atmosphere 

Ocean Surface heat flux  

T = 1 day T = 20 days 
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Surface air temperature: 

T = 1 day T = 20 days 

Coupled 
GCM 

Atm GCM 
+ 

Slab ocean 

Ice covered night side  



Conclusions 

•   Surface climates are rather mild despite extreme summer insolation and 
long polar nights – seasonal cycle between 10 and 35K. 
•  Baroclinic eddies are the primary heat transport mechanism –  Hadley cell 
plays lesser role, 

•   Ocean plays an important role in heat transport, carrying about 1/3 of the total 
•   Wind-driven middle-latitude Ekman cells are the primary mechanism  
subtropical/equatorial cells play a lesser role 
•   Heat is stored in the ocean in the summer and delivered to the atmosphere in 
the winter, keeping it warm and somewhat moist. 

At high obliquity: 

Tidally locked case: 
•  Surface climates are rather mild despite extreme,  
•  Both ocean and atmosphere transport energy from the day to the night 
side, 
•  as the rotation rate decreases, nigth-day heat transport moves to the 
ocean, 
•  the ocean is more “efficient” at smoothing out the night-day temperature 
constrast. 


