

The atmospheric dynamics of super-Earth GJ 1214b

Angela M. Zalucha (Massachusetts Institute of Technology, Southwest Research Institute)

Nikku Madhusudhan (Yale)

Tim Michaels (Southwest Research Institute)

The super-Earth GJ 1214b

gravitational acceleration: 8.93 m s⁻²

radius: 2.678 R_{e}

distance from star: 0.01432 AU

stellar flux at planet: 21519 W m⁻²

rotation period: 1.5803925 Earth days (synchronous)

(Charbonneau et al. 2009)

Miller-Ricci et al. (2009) radiativeequilibrium models

General circulation models (GCMs) are an important tool for investigating planetary atmospheres

 Provide a global, physically consistent picture of an atmosphere

 Solve for the wind in an atmosphere, for which data is extremely rare even for Solar System planets

- Include the effects of wind such as
 - transport of heat by wind (advection)
 - heating/cooling from adiabatic compression/expansion
 - Interactions with solid surface

A GCM for GJ 1214b

- Explicit treatment of large-scale atmospheric dynamics (c.f. Miller-Ricci et al. 2009) in 3D
- Includes a solid surface (c.f hot Jupiter, hot Neptune GCMs)
 - No internal heat source
 - Known IR heat source from below (like a hot plate), surface convection?

Surface friction

The Massachusetts Institute of Technology (MIT) GCM

 Began as an Earth ocean model (Marshall et al. 1997)

- Publicly available for download http://mitgcm.org
- Has since been used in a wide range of applications in Earth's atmosphere and ocean, as well as planetary atmospheres (terrestrial and gas giant)
- I have applied it to
 - Mars (Zalucha et al. 2010)
 - Pluto (Zalucha and Gulbis, in review)
 - Super-Earth exoplanet (here)

Super-Earth MIT GCM specs

- 32 x 32 x 6 cube-sphere configuration (about 2.8° x 2.8° horizontal resolution)
- 30 vertical levels (eta coordinate)
- Hydrostatic, compressible
- Finite volume method is used to discretize the equations in space
- Temperature below condensation point is snapped back to condensation temperature
- Boundary layer friction given by linear drag law that decays with height
- Model is run for 540 Earth days, time-averaged output every 30 days
- Newtonian relaxation to radiative equilibrium temperature $\frac{\partial T}{\partial t} = \frac{-(T - T_{eq})}{\tau} + advection of T + compressional heating$

Cube-sphere grid

Parameter sweep of GJ 1214b

- Atmospheric pressure: 0.1, 1, 10, 100 bar
- Surface albedo: 0.1, 0.4, 0.7
- Mean molecular weight: H₂, H₂O, CO₂

Absorption spectra of GJ 1214b

Wavelength (μ m)

Absorption spectra of GJ 1214b

Zonal velocity (eastward positive)

Zonal velocity (eastward positive)

Meridional velocity (northward positive)

Meridional velocity (northward positive)

Vertical velocity (downward positive)

Vertical velocity (downward positive)

Surface pressure (10⁵ Pa)

temperature (K)

Comparison with previous work

- Unlike any terrestrial-type Solar System planet
- Joshi et al. 1997 (Joshi et al. 2003)
 - "longitudinal, thermally direct cell, which transports heat from the dayside to the nightside. The mass is returned to the dayside through the polar regions at low levels"
 - "Aloft the circulation is fairly longitudinally symmetric, and a superrotating jet is present at the equator"
 - "...the atmosphere being far warmer than radiative-convective calculations, ... especially on the nightside"

• Merlis et al. 2010

• "Rotational waves and eddies shape the distribution of winds, temperature, and precipitation in the rapidly rotating [1 earth day rotation period] atmosphere"

• Wordsworth et al. 2011

• Atmospheric stability of Mars-type worlds (GJ 581d)

Summary

For an H₂O, 1 bar surface pressure, 0.4 surface albedo, GJ 1214b:

- The atmospheric circulation is qualitatively uniform with altitude (except at low levels)
- A strong eastward jet is present at the equator
- Flow at mid- to high latitudes moves over the poles and is slightly deflected westward as it does so
- Surface pressure increases poleward
- Atmospheric circulation mediates the daysidenightside heating differential
- Future work: add more sophisticated RT (nongray, clouds); include frost cycle

vertical velocity (10⁻² Pa/s)

temperature (K)

Altitude = 1.5 km subsolar point 0,0

