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Outline of the Lecture

• Basic formulation and solution methods

• Some interesting applications

• Beyond 1D: The need for dynamics
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Basic formulation: What is a radiative convective model?

• Represent entire atmosphere by a single vertical column T (p, t), etc.

• Column generally meant to represent global mean climate

• Only vertical energy transport is modeled

– Radiative transport

– Turbulent transport due to convection

– Convection modeled as a 1D mixing process
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For further reading ...
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Radiating temperature and the greenhouse effect

Tg

T(ps)

Radiation only

Temperature
Radiation

and Turbulence

For many purposes, can assume Tg ≈ T (ps)

For review, see: Pierrehumbert 2010: Infrared Radiation and Planetary
Temperature, Physics Today 64
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Abisko 2011: Energy Balance and Planetary Temperature

A few observed vertical structures
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The IR Radiative Transfer model

• Input T (p), composition (e.g. pCO2,q(p))

• → fluxes I+(p), I−(p)

• Heating rate H = g−1d(I+ − I−)/dp
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Pure radiative equilibrium

• H + Hsw = 0 at each p

• Equivalently I+ − I−+ F~ = const.

• Typically ignore scattering for IR, but incorporate it for F~

• Wavelength of incoming stellar radiation�Wavelength of outgoing IR

• ... but this separation can break down for roasters.

8



R-C Modeling, Exoclimes 2011

Energy balance for atmosphere transparent to incoming stellar
radiation
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How to get OLR(Tg)

Time stepping
required here

IR

OLR

Require zero
net flux

No time stepping
in troposphere

Stratosphere
Troposphere

Tg

ptrop

SW

SW

• Without atmospheric shortwave absorption, stratospheric temperature
depends on insolation only via Tg.
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• For typical atmospheres stratosphere is optically thin in IR. Can then
use isothermal stratosphere or ”all troposphere model” and dispense
with time-stepping entirely.
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Once you have OLR(Tg) ...

T

OLR

Stellar AbsF
lu

x

Plot it, and you’re done!
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When is a 1D model sufficient?

< OLR(Tg, q) >≈ OLR(< Tg >, < q >)

+1
2(∂TTOLR) < T ′2 > +1

2(∂qqOLR) < q′2 > +(∂TqOLR) < T ′q′ >
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Forms of convective adjustment

• If you are time-stepping only to find an equilibrium, then the convective
adjustment stage need not conserve energy

• If you are trying to represent the actual time evolution (e.g. the diurnal
or seasonal cycle) the convective adjustment stage needs to conserve
energy
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What is conserved during convective adjustment?

• Suppose the adjustment takes place in a layer from p1 to p2

• The final state is an adiabat. Which adiabat? (e.g. dry adiabat is a
one-parameter family defined by T (p) = T (p1)(p/p1)

R/cp)

• First Law: T−1δQ = ds = dcp ln θ

• But during adjustment, δQ 6= 0 at each p. Only have
∫ p2
p1

δQdp = 0

• Therefore
∫ p2
p1

T−1δQdp 6= 0; Entropy does not ”mix”
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The answer: Dry or Moist Static Energy

• Define Z(p) from hydrostatic relation

• First law: δQ = d(cpT + gZ) (in dry case)

• Therefore DSE ≡
∫ p2
p1

(cpT + gZ)dp/g conserved during adjustment

• If q is the mass concentration of the condensible, then in dilute limit
(q � 1), MSE density is cpT + gZ + Lq

• Things get interesting (and somewhat unexplored) in the non-dilute
limit, where you need to track the energy carried by the condensate.
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Example: DSE-conserving mixing of a step discontinuity
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Deep atmospheres, optically thick in stellar spectrum

Shortwave
Absorption layer

No net flux in deep layer → isothermal
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Applications: The conventional habitable zone

• Inner edge: Water vapor runaway (”wet” or ”dry” version).
(Runaway = Uninhabitable)

• Outer edge: CO2 runaway.
(Runaway = Habitable)
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Water Vapor runaway and inner edge (pure WV atmosphere)
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More on this from Colin!
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CO2 runaway and outer edge edge (pure CO2 atmosphere)
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Ch. 4, Principles ... plus in-prep radiation model intercomparison by
Pierrehumbert, Abbot and Halevy
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Abisko 2011: Energy Balance and Planetary Temperature

Outer edge: Ice-albedo bifurcation
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Snowbird 2011: Climate sensitivity, feedback and bifurcation

Snowball Earths

Pierrehumbert , Ap. J. L. 2011

Pierrehumbert , Abbot, Voigt & Koll,
      Ann. Rev. Earth and Plan. Sci.  2011
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Snowbird 2011: Climate sensitivity, feedback and bifurcation

Zero-D Snowball Bifurcation
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Applications: H2 worlds

• Conventional outer limit defined by CO2 runaway. Yields Early Mars
equivalent orbit

• To make planets in more distant orbits habitable you need a less con-
densible greenhouse gas

• So how about H2?

• In a distant orbit, a Super-Earth can hold an H2 atmosphere.

• Gravitational lensing has detected Super-Earths in distant orbits.

• Pierrehumbert and Gaidos, ApJL 2011

• Also relevant to Steppenwolf planets
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Pure H2 atmosphere
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Top-of-Atmosphere Energy Balance
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Beyond 1D: The role of large scale dynamics

• Horizontal heat transport

• Lapse rate

• Subsaturation (Relative Humidity)

• Clouds
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Intro to General Circulation: The Hadley Cell
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Gets more global for slow rotation, small planet (Venus,Titan); more
equatorially confined for rapid rotation, large planet (Jupiter, Saturn).

Earth is ”Mr. In-Between.”
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Intro to General Circulation: Extratropical synoptic eddies

Transport hot air poleward/upward, cold air equatorward/downward.
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Beyond 1D: Lapse Rate

• Hadley cell sets the entire tropics to the moist adiabat, even though
convection is active in only a small proportion of the tropics

• In midlatitudes, there may be little convection, and lapse rate is deter-
mined by large scale transports of heat by transient baroclinic eddies.
Lapse rate can have large geographic and seasonal variation.
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Example: Siberian lapse rate
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Beyond 1D: Subsaturation

• Atmospheres with a condensible component need not be saturated

• Subsaturation determines concentration of the condensible (e.g. water
vapor)

• Subsaturation is a dynamical phenomenon

• Subsaturation affects runaway at both the inner and outer edge of the
HZ.
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Where does subsaturation come from?

T2<T1

T1 , q1
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Rapid subsidence creates large T (and hence p) gradients
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RH feedback leads to metastable non-runaway states
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Subsaturation in FMS GCM dynamic simulations

• 3D dynamic general circulation model

• Tide-locked, various orbital periods

• Idealized moist thermodynamics (includes latent heat release)

• Grey gas radiation; no effect of condensible on IR optical depth

• Carried out by Feng Ding
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Long period orbit

37



R-C Modeling, Exoclimes 2011

Short period orbit
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A few take-home points

• Radiative-Convective modeling is still a valuable tool.

• Ideal for exploratory work on new problems, testing convection and
radiation schemes, etc.

• Energy-conserving convective adjustment for atmospheres with con-
densation of a major constituent still has some wrinkles to be worked
out.

• Even for planets with quite uniform surface temperature, dynamics has
important zero-order climate effects via lapse rate, subsaturation and
clouds.
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